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�e interference of the complex background and less information of the small targets are two major problems in vehicle attribute
recognition. In this paper, two cascaded networks of vehicle attribute recognition are established to solve the two problems. For
vehicle targets with normal size, the multitask cascaded convolution neural networkMC-CNN-NTuses the improved Faster R-CNN
as the location subnetwork. �e vehicle targets in the complex background are extracted by the location subnetwork to the
classi�cation subnetwork CNN for the classi�cation. �e implementation of this task decomposition strategy e�ectively eliminates
the interference of the complex background in target detection. For vehicle targets with small size, themultitask cascaded convolution
neural network MC-CNN-ST applies the network compression strategy and the multilayer feature fusion strategy to extract the
feature maps.�ese strategies enrich the location information and semantic information of the featuremaps. In order to optimize the
nonlinear mapping ability and the hard-to-detect samples mining ability of the networks, the activation function and the loss
function in the two cascaded networks are improved. �e experimental results show that MC-CNN-NT for the normal targets and
MC-CNN-ST for the small targets achieve the state-of-the-art performance compared with other attribute recognition networks.

1. Introduction

Vehicle attribute recognition can provide the support for
the statistics of the road tra�c �ow [1], the automatic
driving of the vehicles [2, 3], and the detection and the
tracking of the illegal vehicles [4]. Location and recognition
for the vehicles with di�erent sizes in complex natural
scenes are important issues in the intelligent transportation
researches.

�e traditional methods of vehicle recognition are
mainly to build 3D models of the vehicles and extract the
features of the vehicles manually. In the aspect of vehicle
attribute recognition based on 3D models, the Bayesian
algorithm is applied to generate a 3D vehicle model for
matching the features and realizing the vehicle classi�cation
[5]. A 3D curve alignment method [6] is established to
identify the types of the vehicles from a single image. �e

image gradient is used to calculate the attitude scores of the
targets, and the real-time vehicle location is realized [7]. In
the aspect of vehicle attribute recognition based on the
feature extraction manually, the directional gradient his-
togram (HOG) [8] is fused with the rectangular �lter. �e
features are extracted manually to recognize the vehicle
targets. Scale-Invariant Feature Transform (SIFT) is pro-
posed to describe the edge features and classify the vehicles
[9]. �e edge-oriented histogram is obtained to extract the
vehicle features [10]. �ese features are input into the
support vector machine (SVM) classi�er to classify the
vehicles. �e traditional vehicle recognition methods es-
sentially use the human-made features to represent the
images. Since the hand-made features are sensitive to illu-
mination, shooting angle, and target background, the gen-
eralization ability of the algorithms is weak. Moreover, the
extraction speed of the manual features is slow, which does
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not meet the needs for the recognition of massive data of
intelligent transportation.

In recent years, since the deep convolution networks
have excellent performance in dealing with the big data
samples and nonlinear mapping, they are widely used in the
field of target recognition. At present, there are mainly two
kinds of target recognition methods based on the deep
convolution networks. 1e first method is the region pro-
posal method, such as R-CNN [11], Fast-CNN [12], Faster
R-CNN [13], and SPP Net [14]. 1e other method is the
region-free method, such as YOLO [15] and SSD [16]. 1ese
two deep network recognition methods are also applied in
vehicle recognition. 1e multitask R-CNN method is
established to recognize four types of vehicles (car, truck,
bus, and van) [17]. 1e improved Faster R-CNN [18] is
constructed to detect the vehicles in aerial images.1e use of
the hyper region proposal network (HRPN) and the multiple
boosted classifiers reduces false detection. SSD with the
feature fusion method [19] is proposed to recognize the six
categories of vehicles (cyclist, motocycle, bus, minibus, car,
and truck) and persons. In [19], an image segmentation
strategy is employed to improve the recognition effect for the
small targets. Vehicle attribute recognition methods based
on the deep convolution networks are driven by data to
extract the features; this strategy eliminates the sensibility of
the hand-made features, and the methods are universal and
accurate. However, the abovementioned vehicle recognition
methods based on the deep convolution networks all adopt
one-stage networks to complete vehicle location and rec-
ognition at the same time. 1e strategy of doing multiple
tasks in the same network has two main shortcomings. First,
it is easy to produce false acceptance and false rejection in the
complex background (illumination change, local occlusion,
target scale change) [20]. Second, the target images undergo
several convolutions and pooling, which results in the
disappearance or the transformation of the location of the
feature points for the small targets. 1e recognition accuracy
for the small targets is reduced.

In view of two shortcomings of one-stage deep convo-
lution neural networks, the multitask cascaded neural net-
works and the multiscale feature fusion networks are
established. In the aspect of the multitask cascaded neural
networks, the two-stage multitask cascaded CNN [3] is ap-
plied to recognize the vehicles. 1e multitask cascaded net-
work based on IFR-CNN and CNN [21] is obtained to
recognize different types of vehicles. 1e two-stage cascaded
YOLO [22] is established to carry out the vehicle location and
license plate recognition. 1e multitask convolution neural
networks are devised to segment the targets from the complex
background firstly and then recognize the targets. 1ese
methods divide the background and the targets and eliminate
the interference of the complex background for the target
recognition. 1e accuracy of target attribute recognition is
higher than that of one stage deep convolution networks. In
the aspect of themultiscale feature fusion, the feature pyramid
network (FPN) [23] as a feature extractor achieves the most
advanced single-model recognition results on COCO data-
sets. 1e FPN network uses multiscale fusion features to
describe the target information, which solves the problem of

the feature disappearance for the small targets. 1e feature
fusion networks are widely used in the fields of human body
detection [24], situation assessment [25], and face recognition
[26]. However, the multiscale feature fusion models for the
small targets are few in the vehicle attributes recognition.

We devote this paper to the study of vehicle attribute
recognitionmodels. Our contributions aremainly as follows.
(1) Two cascaded models MC-CNN-NT and MC-CNN-ST
are proposed. MC-CNN-NTis applied to recognition vehicle
targets with normal size. MC-CNN-ST is used to recognition
vehicle targets with small size. (2) 1e activation function
and the loss function in the two cascaded networks are
improved. 1e performance of feature extraction and
classification of two networks is enhanced. (3) 1e strategies
of network compression and feature fusion in MC-CNN-ST
are employed. 1e object edge information extracted by the
bottom filter and semantics information extracted by the
high-level filter are fused to realize the precise location of the
vehicles. (4) 1e SYIT-Vehicle dataset and the COCO-Ve-
hicle dataset are constructed and annotated. 1e target
quantity and quality in the two dataset provide the guarantee
for verifying network performance.

1e rest of this paper is outlined as follows. Section 2 and
Section 3 describe the architectures of MC-CNN-NT and
MC-CNN-ST in detail, respectively. Section 4 reports the
experimental results of the twomultitask cascaded networks.
Section 5 denotes the conclusions.

2. Architecture: The Multitask Cascaded
Network MC-CNN-NT

1is section demonstrates the architecture of the multitask
cascaded network MC-CNN-NT for recognizing vehicle
targets with normal size. Section 2.1 demonstrates the
framework of MC-CNN-NT. Section 2.2 introduces the
improvement of the activation function and the loss
function in MC-CNN-NT. Section 2.3 shows the basic
processes of attribute recognition using MC-CNN-NT in
detail.

2.1. *e Framework of MC-CNN-NT. Aiming at the low
accuracy of the vehicle target recognition in the complex
background with one stage network, a multitask cascaded
network MC-CNN-NT is constructed. 1e problem of ve-
hicle attribute recognition is decomposed into two sub-
problems: target location and target classification. 1e
improved Faster R-CNN is employed as the location sub-
network of MC-CNN-NT.1is subnetwork consists of three
parts: the network of the feature extraction, the network of
the region proposal (RPN), and the network of the object
location. CNN is used as the classification subnetwork in the
cascaded networks. 1e framework of MC-CNN-NT is
shown in Figure 1.

1e feature extraction network in the MC-CNN-NT lo-
cation subnetwork applies VGG-D as the backbone network
to extract the image features. 13 convolution layers and the
first four subsampling layers in theVGG-Dmodel are selected.
1e fifth subsampling layers and three full-connection layers
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in the VGG-D model are discarded. 1e parameters of the
feature extraction network are detailed in Table 1. In RPN, the
sizes of anchors are set to 128 × 128, 256 × 256, 512 × 512{ }.
1e length-width ratios of anchors are set to
1 : 2, 1 : 1, 2 : 1{ }.1e number of anchors is 3 × 3 � 9. A 3 × 3
sliding box is used to traverse the top-level feature map of the
feature extraction network. Each pixel on the feature map
corresponds to 9 anchors of different sizes in the original
maps. In RPN, the classification layer and the regression layer
output the scores of 9 anchors corresponding to each pixel and
their respective location coordinates. Let the top feature map
size of the shared convolution bew × h.1e classification layer
outputs the scores of w × h × 9 × 2 candidate regions. 1e
regression layer outputs w × h × 9 × 4 coordinate parameters.
As Fast R-CNN, ROI pooling is carried out for the proposal
regions of RPN network. 1e coordinate parameters of the
targets are output through the multiple full-connection layers.

1e classification subnetwork of MC-CNN-NT is based
on CNN. VGG-E is selected as the backbone network of the
classification subnetwork. According to the coordinate
values output by the location subnetwork, the target regions
are cut out from the original images. 1e extracted image
size is normalized to 227 × 227 × 3. 1e normalized single
target images are input into the classification subnetwork for
vehicle type recognition. 1e parameters of the classification
subnetwork are detailed in Table 2.

2.2. Activation Function and Loss Function. In order to
enhance the recognition performance of the cascaded net-
work MC-CNN-NT, the activation function and the loss
function are improved in Faster R-CNN and CNN.

2.2.1. Activation Function: PReLU. 1e activation function
is an important part of the deep network. 1e form of the
activation function plays a key role in the quality of the
feature extraction. 1e activation function can be divided
into two categories: the saturated activation function and the
unsaturated activation function. Since the unsaturated ac-
tivation function has the advantages of solving “gradient
disappearance” and fast convergence speed, it attracts more
attentions from researchers of deep learning [27, 28].

In this paper, ReLU [29] is updated to PReLU [27].
PReLU function formula is described as follows:

g xi(  � max 0, xi(  + ki min 0, xi( . (1)

ReLU function formula is shown as follows:

g(x) � max(0, x), (2)

where x is the input signal of the activation function, k is a
coefficient controlling the slope of the negative part in the
PReLU function, and the subscript i denotes the channel i.
1e improved activation function PReLU adds a linear term
to the negative signals.1is strategy alleviates the problem of
gradient disappearance when the network propagates back
to the negative signals. When the activation function has
better nonlinear mapping ability for different negative sig-
nals, the learning strategy is adopted for the slope ki in model
training.

In this paper, ki is trained by using backpropagation and
updated using the momentum method. According to the
chain rule, the gradient derivative formula of ki is formed as
follows:
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Figure 1: 1e framework of MC-CNN-NT.

Table 1: Parameters of the feature extraction network of MC-
CNN-NT.

Layer Type Number Size Stride Padding
1 Conv 64 3× 3 1 2
2 Conv 64 3× 3 1 2
3 Pool 64 2× 2 2 0
4 Conv 128 3× 3 1 2
5 Conv 128 3× 3 1 2
6 Pool 128 2× 2 1 2
7 Conv 256 3× 3 2 0
8 Conv 256 3× 3 1 2
8 Conv 256 3× 3 1 2
10 Pool 256 2× 2 2 0
11 Conv 512 3× 3 1 2
12 Conv 512 3× 3 1 2
13 Conv 512 3× 3 1 2
14 Pool 512 2× 2 2 0
15 Conv 512 3× 3 1 2
16 Conv 512 3× 3 1 2
17 Conv 512 3× 3 1 2
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, (3)

where σ is the objective function of the model and zσ/zg(xi)

is the gradient function transferred by the deeper convo-
lution neural network. 1e gradient derivative of the acti-
vation function g(xi) is demonstrated as follows:

zg xi( 

zki

�
0, if xi ≥ 0,

xi, if xi ≺ 0.

⎧⎪⎨

⎪⎩
(4)

1e reverse update formula of ki is adopted as follows:

Δki ≔ δΔki + η
zσ
zki

, (5)

where δ represents the momentum and η represents the
learning rate of the network.

As shown equation (4), the gradient derivative of PReLU
activation function only adds a very small number of pa-
rameters. 1e computational complexity of the network and
the risk of overfitting can be neglected. 1e adaptability of
rectifier parameter ki improves the training accuracy of the
cascaded network. 1e inherent unsaturation of PReLU
function makes it perform better in controlling gradient and
convergence rate.

2.2.2. Loss Function. 1e location subnetwork of MC-CNN-
NTis the improved Faster R-CNN; it needs to train RPN and
Fast R-CNN.1e classification subnetwork ofMC-CNN-NT

needs to train CNN. For three different networks, three loss
functions LRPN( pi , ti ), LFastR− CNN( pi , ti ), and
LCNN( pi ) are described as follows:

LRPN pi , ti (  �
1

Ncls


i

FLcls pi(  + ω
1

Nreg


i

δiLreg ti, t
∗
i( , (6)

LFastR− CNN pi , ti (  � 
i

FLcls pi(  + 
i

Lreg ti, t
∗
i( , (7)

LCNN pi (  � 
i

FLcls pi( . (8)

RPN and Fast R-CNN are two multitask networks. 1eir
loss functions are composed of classification loss and re-
gression loss. CNN only completes the classification task,
and the loss function is only related to the classification loss.
Here, FLcls(pi) represents classification loss, and Lreg(ti, t∗i )

represents regression loss.
In the R-CNN series network framework, the commonly

used loss function of classification is the cross-entropy loss
function. 1e cross-entropy loss function uses the loga-
rithmic loss log(pi) to characterize the difference between
the real sample and the prediction box. Although the cross-
entropy loss function has a low loss value for a single easy-to-
detect sample, it still contributes a lot to the overall loss of
the network due to the large number of the easy-to-detect
samples. However, due to the small number of the hard-to-
detect samples, the contribution of the hard-to-detect
samples to the loss function is small. As a result, the training
of the network is towards the easy-to-detect samples, which
affects the quality of the network recognition. In this paper,
we update the cross-entropy classification loss function to
the Focal loss function. 1e strategy of assigning different
weights to different samples is adopted to increase the
contribution of the hard-to-detect samples in the loss
function.

1e Focal Loss function is defined as follows:

FLcls pi(  � − 1 − pi( 
clog pi( , (9)

pi �
ezi


k
q�1e

zq

, (10)

where zi is the network output of the category i, and
pi(0≤pi ≤ 1) is the output probability of the category i. 1e
Focal Loss function adds a modulating factor (1 − pi)

c to the
standard cross-entropy loss function. As shown in Figure 2,
− logpi and (1 − pi)

c are small for the easy-to-detect samples
(pi is large). 1ey lead that FLcls(pi) is small. 1e weights are
slightly adjusted when the deep network backpropagation
occurs. − logpi and (1 − pi)

c are large for the hard-to-detect
samples (pi is small). 1ey lead that FLcls(pi) is large. 1e
weights are dramatically adjusted when the deep network
backpropagation occurs. 1e learning of the hard-to-detect
samples is strengthened. In equation (9), c is a parameter for
adjusting the weight rate, which is called focusing parameter.
When c � 0, the Focal Loss function is equal to the cross-
entropy loss function.1e influence of themodulation factor
is increased with the increase of the value c.

Table 2: Parameters of the classification subnetwork of MC-CNN-
NT.

Layer Type Number Size Stride Padding
1 Conv 64 3× 3 1 2
2 Conv 64 3× 3 1 2
3 Pool 64 2× 2 2 0
4 Conv 128 3× 3 1 2
5 Conv 128 3× 3 1 2
6 Pool 128 2× 2 2 0
7 Conv 256 3× 3 1 2
8 Conv 256 3× 3 1 2
8 Conv 256 3× 3 1 2
10 Conv 256 3× 3 1 2
11 Pool 256 2× 2 2 0
12 Conv 512 3× 3 1 2
13 Conv 512 3× 3 1 2
14 Conv 512 3× 3 1 2
15 Conv 512 3× 3 1 2
16 Pool 512 2× 2 2 0
17 Conv 512 3× 3 1 2
18 Conv 512 3× 3 1 2
19 Conv 512 3× 3 1 2
20 Conv 512 3× 3 1 2
21 Pool 512 2× 2 2 0
22 FC 4096 1× 1 — —
23 FC 4096 1× 1 — —
24 FC 6 1× 1 — —
25 Softmax — — — —
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1e Smooth L1 function is used as the regression loss in
LRPN( pi , ti ) and LFastR− CNN( pi , ti ) functions [30].
1e definition of the Lreg(ti, t∗i ) function is denoted in the
following equation:

Lreg ti, t
∗
i(  � SmoothL1

ti, t
∗
i(  �

0.5 ti − t∗i( 
2
, ti − t∗i


≺ 1,

ti − t∗i


 − 0.5, otherwise,

⎧⎨

⎩

(11)

where ti � (tix, tiy, tiw, tih) represents the translation scaling
values of the four prediction boxes. t∗i � (t∗ix, t∗iy, t∗iw, t∗ih) is
the four coordinates of the ground-true box. δi is a label
function in equations (6) and (7). If the label of the pre-
diction box is a positive sample, δi � 1. Otherwise, δi � 0.
According to the definitions of the regression loss of RPN
and Fast R-CNN, it can be seen that the regression losses of
two networks are calculated only for the positive samples.
Here, the definitions of the positive samples and the negative
samples in PRN and Fast R-CNN adopt the definitions of
reference [13] and reference [12], respectively.

In equation (6), the classification loss is normalized by
the mini-batch size Ncls.1e regression loss is normalized by
the number of anchors Nreg. Set Ncls � 256, ω � 10,
Nreg � 2400. By using the normalization strategy, the weight
of the classification loss is approximately equal to the weight
of the regression loss in RPN. In equation (7), the weight of
the classification loss and the regression loss in Fast R-CNN
is set to 1, and the contribution of two kinds of losses to the
total loss is equal.

2.3. *e Basic Procedures of the Multitask Cascaded Network
MC-CNN-NT. 1e specific steps using MC-CNN-NT to
recognize the vehicles are as follows:

Step 1 (partitioning the dataset): firstly, according to the
ratio of 9 :1, the dataset is divided into two parts: the
training verification set and the testing set. 1en,
according to the ratio of 9 :1, the training verification
set is divided into two parts: the training set and the

verification set. According to such partitioning rules,
the original dataset is divided into three parts: the
training set, the verification set, and the testing set.
Step 2 (annotating the dataset): the positions of the
vehicle targets in the images are labeled. 1e co-
ordinates of the upper left corner and the lower right
corner of the vehicle targets in the images are recorded.
1e generated annotation information is saved in the
corresponding XML file.

Step 3 (preprocessing the image data): the images are
scaled. 1e color formats of the images are converted.
Let the zoom ratio be S, the input image size be
W × H, and the zoomed image size be W′ × H′. Here,
S � W/W′ � H/H′. When the images are scaled, the
long side is less than 1000, and the short side is less
than 600 (at least one is equal). 1e target regions in
the images are also scaled at the same scale. Since the
Caffe frame recognizes the BGR color format, the
RGB (Red-Green-Blue) color format of the images
is converted to the BGR (Blue-Green-Red) color
format.
Step 4 (setting the hyperparameters of the cascaded
network): let the maximum number of the iterations in
the location subnetwork and the classification sub-
network of MC-CNN-NT be Nloc

max and Nclc
max, re-

spectively. Let the initial learning rate in the location
subnetwork and the classification subnetwork of MC-
CNN-NT be ηloc and ηclc, respectively.
Step 5 (initializing the weights and the thresholds of the
cascaded network): for the location subnetwork of MC-
CNN-NT, the VGG-Dmodel parameters are applied to
initialize the parameters of the convolution layer shared
by RPN and Fast R-CNN.1e parameters of the unique
layers of RPN and Fast R-CNN are initialized by
Gaussian distribution with the mean of 0 and the
standard deviation of 0.01. 1e thresholds of each layer
are initialized by the constant 0.
For the classification subnetwork of MC-CNN-NT, the
VGG-A model parameters are used to initialize the
parameters of the first four convolution layers and the
last three full connection layers of VGG-E. 1e pa-
rameters of the other layers are initialized by Gaussian
distribution with the mean of 0 and the standard de-
viation of 0.01. 1e thresholds of each layer are ini-
tialized by the constant 0.
Step 6 (training the location subnetwork): train the
location subnetwork using the images coming from
the training set. 1e weights and the thresholds of
the location subnetwork are adjusted by cyclic it-
erations. When the number of the iterations of the
location subnetwork is greater than Nloc

max, execute
step 7.
Step 7 (testing the location subnetwork): test the lo-
cation subnetwork using the images coming from the
testing set. 1e target prediction boxes on the testing
images are output. 1e position coordinates of the
prediction boxes are obtained.
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Figure 2: 1e curve of Focal Loss function.
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Step 8 (extracting the targets from the location sub-
network): according to the coordinates of the target
prediction boxes in the location subnetwork, the target
regions are extracted from the original images as the
input images of the classification subnetwork.
Step 9 (preprocessing the classification subnetwork
images): the size of the images that are input into the
classification subnetwork is adjusted to 227 × 227 × 3.
Step 10 (training the classification subnetwork): the
weights and the thresholds of the classification network
are adjusted by cyclic iterations. When the number of
the iterations is greater than the number of the itera-
tions Nclc

max, execute step 11.
Step 11 (testing the classification subnetwork): the
classification subnetwork is tested with the images
coming from the testing set. 1e confidence scores of
each testing image belonging to different categories are
obtained. 1e category with the highest confidence
score is the recognized category of the target.

3. Architecture: The Multitask Cascaded
Network MC-CNN-ST

1e regions of the small target images contain few pixels. If
the deep convolution neural network is used to extract
information from the deep feature maps, the edge and the
detailed information of the images is lost. 1e recognition
accuracy of the small targets is reduced. In this section, in
order to solve this problem, the cascaded strategy of the
multitask network is employed and a cascaded networkMC-
CNN-ST is established. 1is new network is more practical
for the attribute recognition of the small targets. Section 3.1
introduces the structure of the location subnetwork in MC-
CNN-ST. Section 3.2 demonstrates the structure of the
classification subnetwork in MC-CNN-ST. 1e data aug-
mentation section is described in Section 3.3.

3.1. *e Location Subnetwork of MC-CNN-ST. In Figure 3,
the convolution layer i is represented as Conv i, the sub-
sampling layer i is represented as Dpool i, and the upsampling
layer is represented as Upool i. FC represents the full con-
nection layer. RS is the abbreviation of reshape, and it is a data
reorganization layer. Softmax is a classifier.

In the location subnetwork ofMC-CNN-ST, the network
compression strategy and the feature fusion strategy are
proposed to improve the feature extraction quality. 1e
location sub network of MC-CNN-ST inherits RPN and the
object location network in the location sub network of MC-
CNN-NT. 1e improved activation function and the loss
function in MC-CNN-NT are also applied to MC-CNN-ST.
Figure 3 shows the framework of MC-CNN-ST.

In the network of the feature extraction of MC-CNN-ST,
the last seven convolution layers of VGG-D in the location
sub network of MC-CNN-NTare abandoned. 1e number of
the network layers is compressed to 6. 1e first six convo-
lution layers of VGG-D use 3× 3 size convolution cores. 1e
second convolution layer and the fourth convolution layer

connect a 2× 2 size subsampling layer, respectively. 1is
forward propagation network structure with six convolution
layers and two subsampling layers is called as the backbone
network of the feature extraction. In order to extract richer
feature information, the lateral connection structure in the
feature extraction network is constructed. 1e first convo-
lution layer, the third convolution layer, and the sixth con-
volution layer of the backbone network connect two
convolution cores of 3× 3 size in the lateral connection paths,
respectively. 1e three branches of the network are called
Branch 1, Branch 2, and Branch 3, respectively. Branch 1
consists of Conv1, Dpool3, Conv7, and Conv8. Branch 2
consists of Conv2, Dpool1, Conv3, Conv9, and Conv10.
Branch 3 consists of Conv4, Dpool2, Conv5, Conv6, Upool1,
Conv11, and Conv12. 1e composition of the three branches
is shown in Figure 3.

Branch 1 integrates the information of the first convo-
lution layer into the feature maps, and the footprints of the
target locations are well preserved. Branch 2 integrates the
information of the third convolution layer into the feature
maps, which includes the edge information of the targets and
the semantic information of the images. Branch 3 integrates
the information of the sixth convolution layer into the
feature maps, and the strong semantic information of the
targets is incorporated into the feature maps. 1e extracted
features of the three branches include the details of the
vehicle edges in the shallow feature maps and the strong
semantic information in the high-level feature maps. 1e
implementation of the network fusion strategy enriches the
diversity of the extracted features. A 2× 2 subsampling layer
and a 2× 2 upsampling layer are added to Branch 1 and
Branch 3, respectively. Using this scheme, the scale of the
feature maps output by each branch is consistent. After one
subsampling and multiple convolutions, the size of the
feature maps becomes a quarter of the original ones. 1e
processes of the size change of the feature maps in three
branches are demonstrated in Figure 4. As shown in Fig-
ure 4, Branch 1 generates 32 feature maps, Branch 2 gen-
erates 64 feature maps, and Branch 3 generates 128 feature
maps. 1e feature extraction network stacks and fuses the
output feature maps of three branches and generates 224
feature maps for RPN.

3.2. *e Classification Subnetwork of MC-CNN-ST. A new
shallow convolution network is constructed as a classifica-
tion sub network of MC-CNN-ST. 1e shallow network
applies the activation function PReLU and the loss function
Focal Loss in MC-CNN-NT.1e network structure is shown
in Figure 3. 1e network consists of three convolution layers
Conv16, Conv17, Conv18, two maximum pooling layers
Dpool4, Dpool5, a data reorganization layer reshape, and a
softmax classifier. 1e images to be classified are the single
target images extracted by the location sub network of MC-
CNN-ST. 1e image size is normalized to 28× 28. 1e
number of the input images for each batch is set to 50. Since
each image has three channel charts of blue, green, and red,
the number of Conv16 images that input into the classifi-
cation network is 3× 50�150. 1e size transition processes
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Figure 4: 1e processes of the size change of the feature maps in three branches.
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Figure 3: 1e framework of MC-CNN-ST.
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from Conv16 to Conv18 are shown in Table 3. Here, the
reshape layer reorganizes the features coming from Dpool5,
the size of the feature map vectors becomes 8192×150.
Conv18 uses six convolution cores of 8192×1 size to extract
the features. 1e width of the feature maps output by
Conv18 is (8192 − 8192 + 0)/1 + 1� 1. 1e height of the
feature maps output by Conv18 is (150 − 1 + 0)/1 + 1� 150.
1e full connection layer maps the distributed feature
extracted from Conv18 to the sample label space. 1e
number of neural nodes in the full connection layer is set to
50× 6� 300. Here, 50 is the number of the images input in
each batch and 6 is the number of the vehicle categories.
Softmax classifier outputs the probability values of each
target belonging to six type vehicles. 1e category that
obtains the maximum probability value is the vehicle rec-
ognition category. 1e network adopts the strategies of
inputting multiple images in the same batch and the shallow
network, the recognition speed of the network is enhanced.

3.3. Data Augmentation. When MC-CNN-ST has robust
localization performance for small targets with different
sizes, positions, and perspectives, we use random sampling
to translate, rotate, flip, and cut the images. 1e specific
operations are presented as follows. (1) Targets are randomly
translated 10k(k � ±5, ±10, ±15, ±20) pixels along X or Y
axis. (2) 1e images are rotated 180 degrees. (3) 1e images
are flipped along the axis of the image center. (4) 1e length
of the original images is randomly clipped as the input
images. 1ese samples contain at least one central point of
the targets. Four data augmentation schemes can effectively
avoid overfitting of the model.

4. Experiments

In this section, two groups of experiments are designed to
verify the effectiveness of the cascaded network MC-CNN-
NT and MC-CNN-ST. Section 4.1 introduces the hardware
and software environment of the experiments and the initial
setting of the network parameters. Section 4.2 shows the
experimental results for the normal targets using MC-CNN-
NT. Section 4.3 demonstrates the experimental results for
the small targets using MC-CNN-ST.

4.1. Environment and the Initial Value Settings. 1e exper-
iments use Caffe framework to implement the target de-
tection algorithms. 1e hardware in the experiments is used
as follows: 32GB RAM, Intel i7 CPU and NVIDIA Geforce
GTX1080Ti 11GB GPU. 1e software in the experiments is
applied as follows: Ubutu 16.04, Python 2.7.14, CUDA8.0
and CUDNN 6.0.

In MC-CNN-NT, some network initial weights are pre-
trained on the ImageNet dataset.1ese weights partly locates
in the convolution layers shared by PRN and Fast R-CNN in
the location sub network, and partly locates in the first four
convolution layers and the last three full connection layers of
VGG-E in the classification sub network. 1e other con-
volution layer initial weights are initialized by Gaussian
distribution with the mean value of 0 and the standard

deviation of 0.01. 1e maximum number of the iterations is
set to 70,000.1e learning rate of the first 50,000 iterations is
set to 0.001. 1e learning rate of the last 20,000 iterations is
reduced to 0.0001.

In MC-CNN-ST, the Gaussian distribution with the
mean value of 0 and the standard deviation of 0.01 is used to
initialize the weights of the whole network randomly. 1e
maximum number of the iterations is set to 100,000. 1e
learning rate of the first 50,000 iterations is set to 0.001. 1e
learning rate of the last 50,000 iterations is reduced to 0.0001.

1e other initial parameters of two groups of experi-
ments use the same setting strategy. 1e thresholds of two
cascaded networks are initially set to 0. 1e focusing pa-
rameter of the Focal Loss function c is set to 2. 1e mo-
mentum term is set to 0.9. 1e weight-decay coefficient is set
to 0.0005. Dropout method is applied to prevent overfitting,
and the probability of discarding network neurons is 0.5.

4.2. Experiments of Vehicle Attributes Recognition for the
Normal Targets. In the experiments of vehicle attribute
recognition for the normal targets, two datasets are selected:
the SYIT-Vehicle dataset and BIT-Vehicle dataset [31]. 1e
common feature of the two datasets is that they contain six
categories of vehicles: bus, microbus, minivan, sedan, SUV,
and truck. 1e differences of the two datasets are that the
location, size, environment, and quantity of the images.

4.2.1. Datasets. 1e vehicle images in the BIT-Vehicle
dataset are derived from the road monitoring. 1e images
are obtained directly above the road surveillance camera.
1e sizes of images are 1600×1200 and 1600×1080, re-
spectively. 1e dataset contains 9850 images with 10053
vehicle targets. Among them, the number of bus, microbus,
minivan, sedan, SUV, and truck is 558, 883, 476, 5922, 1392,
and 822, respectively. 1e sample images of the dataset are
shown in Figure 5.

1e vehicle images in SYIT-Vehicle dataset are derived
from the image capturing equipment of the Institute of
Optimization 1eory and Process Control in Shenyang
Ligong University. 1e dataset contains the vehicle images
with multi-region, multi-angle, and multi-illumination. 1e
dataset contains 12000 images with 12161 vehicle targets.
Among them, the number of bus, microbus, minivan, sedan,
SUV, and truck is 1770, 2174, 1817, 2626, 1891, and 1883,
respectively. 1e sizes of images are not fixed. 1e back-
ground of the vehicle targets of the SYIT-Vehicle dataset is
more complex than that of the BIT-Vehicle dataset.1e sizes
of vehicle targets of the SYIT-Vehicle dataset are more
diverse than those of the BIT-Vehicle dataset. 1e sample
images of the SYIT-Vehicle dataset are shown in Figure 6.

In this paper, the SYIT-Vehicle dataset is employed as
the training validation set and the testing set. 1e sample
ratio of the training validation set and the testing set is 9 :1.
1e sample ratio of the training set and the verification set is
set to 9 :1. 1e BIT-Vehicle dataset is used as the migration
dataset. 1e robustness of the algorithm is verified by
randomly selecting 3600 images from the BIT-Vehicle
dataset.
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4.2.2. Results and Analysis. In this section, the target at-
tribute recognition experiments using MC-CNN-NT are
described. Nine networks are selected as the comparison
networks.1ree noncascaded networks (CNN, Fast R-CNN,
and Faster R-CNN) and six cascaded networks
(CNN+CNN [3], IFR-CNN+CNN [21], MC-CNN, MC-
CNN-P, MC-CNN-F, and MC-CNN-NT) are included in
nine networks. Table 4 describes the principal structures of
nine networks participating in the comparison.

1e results of vehicle attribute recognition using MC-
CNN-NT are shown in Tables 5 and 6. 1e attribute rec-
ognition accuracy of the cascaded network MC-CNN is
significantly higher than that of the noncascaded network.
1e recognition accuracy of MC-CNN is 84.24% on the

Figure 5: 1e samples of the BIT-Vehicle dataset.

Figure 6: 1e samples of the SYIT-Vehicle dataset.

Table 3: Parameters of the classification sub network in MC-CNN-ST.

Position Feature map input size Kernel size Kernel number Stride Padding Feature map output size
Conv16 28 × 28 5 × 5 256 × 150 1 0 24 × 24
Dpool4 24 × 24 2 × 2 256 × 150 2 0 12 × 12
Conv17 12 × 12 5 × 5 512 × 150 1 0 8 × 8
Dpool5 8 × 8 2 × 2 512 × 150 2 0 4 × 4
Reshape 4 × 4 — — — — 8192 × 150
Conv18 8192 × 150 8192 × 1 6 1 0 1 × 150

Table 4: 1e main structures of nine networks.

Method Structure

CNN One stage + exhaustive sliding
window+CNN+SVM+ single loss

Fast R-CNN One stage + selective
search +CNN+ softmax +multi loss

Faster R-CNN One stage +RPN+CNN+ softmax +multi loss
CNN+CNN Two stages +CNN+CNN
IFR-
CNN+CNN Two stages + IFR-CNN+CNN

MC-CNN Two stages + faster R-CNN+CNN
MC-CNN-P MC-CNN+PReLU
MC-CNN-F MC-CNN+Focal Loss
MC-CNN-NT MC-CNN+PReLU+Focal Loss
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SYIT-Vehicle dataset, which is 4.42% higher than that of Faster
R-CNN. 1e recognition accuracy of MC-CNN is 74.33% on
the BIT-Vehicle dataset, which is 4.87% higher than that of
Faster R-CNN. 1e multitask decomposition strategy of the
cascaded networkMC-CNN improves the recognition accuracy
of the network. 1e cascaded network MC-CNN-P enhances
the recognition accuracy by 0.88% and 2.7% compared with
MC-CNN in two datasets, respectively. 1e cascaded network
MC-CNN-F enhances the recognition accuracy by 2.22% and
4.15% compared with MC-CNN in two datasets, respectively.
1e adaptive learning strategy for the negative values of the
activation function PReLU and the hard-to-detect sample re-
inforcement learning strategy of the Focal loss function both
improve the quality of the cascaded network target recognition.
MC-CNN-NT gets 91.27% recognition accuracy on the SYIT-
Vehicle dataset. 1e increases of MC-CNN-NT accuracy are
11.45%, 9.38%, 6.31%, 7.03%, 6.15%, and 4.81% than Faster
R-CNN, CNN+CNN, IFR-CNN+CNN, MC-CNN, MC-
CNN-P, and MC-CNN-F, respectively. MC-CNN-NT gets
82.63% recognition accuracy on the BIT-Vehicle dataset. 1e
increases of MC-CNN-NTaccuracy are 13.17%, 11.19%, 6.99%,
8.3%, 5.6%, and 4.15% than Faster R-CNN, CNN+CNN, IFR-
CNN+CNN, MC-CNN, MC-CNN-P, and MC-CNN-F, re-
spectively. MC-CNN-NT that combines the PReLU function
with the Focal loss function achieves the best performance of
target attribute recognition. Simultaneously, MC-CNN-NT
achieves high accuracy in the migration datasets, which verifies
that the model has good robustness.

4.3. Experiments of Vehicle Attributes Recognition for the
Small Targets

4.3.1. Datasets. 1e COCO-Vehicle dataset is used to carry
out the experiments of vehicle attribute recognition for the

small targets. 1e COCO-Vehicle dataset contains seven
category targets: person, bus, microbus, minivan, sedan,
SUV, and truck. 1e dataset is manually annotated
according to the file of the COCO dataset [32]. 1e person,
car, and bus in the COCO dataset are extracted, and the car
in COCO dataset is subdivided into sedan, minivan, mi-
crobus, SUV, and truck. Since the number of trucks in the
COCO dataset is few, 300 trucks from the VOC2007 dataset
are selected to supplement them. 1e sample images of the
COCO-Vehicle dataset are shown in Figure 7.

In this paper, the definition of small target, medium
target, and large target is based on the standard of reference
[33]: Ppix represents the percentage of ROIS pixels in the
whole image. 1e targets with Ppix ≤ 2.4% are defined as the
small targets. 1e targets with 2.4%≤Ppix ≤ 47.2% are de-
fined as the medium targets. 1e targets with Ppix ≥ 47.2%
are defined as the large targets. In the COCO-Vehicle
dataset, the number of small targets accounts for 63.10%, the
number of medium targets accounts for 32.86%, and the
number of large targets accounts for 4.04%. 1e statistical
results of the COCO-Vehicle dataset are shown in Table 7.

4.3.2. Experiments of the Location for the Small Targets.
In order to verify the small target location performance of
MC-CNN-ST, the contrast experiments of six networks are
designed in this paper. 1e main structures of the six net-
works are shown in Table 8. Net-A network is an original
Faster R-CNN Network. Net-B network is based on the
original Faster R-CNN, which compresses the number of
convolution layers in the feature extraction network to 6.
Net-C network and Net-D network fuse the second, fourth,
and sixth convolution layers of VGG-E. Net-C network adds
a 5 × 5 convolution layer to the three branches of the fusion
network. Net-D network adds two 3 × 3 convolution layers

Table 5: 1e attribute recognition results for the normal targets on the SYIT-Vehicle dataset.

Method Bus (%) Microbus (%) Minivan (%) Sedan (%) SUV (%) Truck (%) Total (%)
CNN 80.00 68.65 75.14 63.25 64.33 68.65 70.00
Fast R-CNN 78.92 70.81 73.51 68.33 70.27 76.22 72.97
Faster R-CNN 87.03 76.76 78.92 69.73 81.62 77.30 79.82
CNN+CNN 88.94 79.31 80.14 75.23 83.20 79.41 81.89
IFR-CNN+CNN 92.49 84.23 83.74 82.23 84.02 81.41 84.96
MC-CNN 91.35 83.70 83.70 80.92 84.78 81.00 84.24
MC-CNN-P 94.05 84.67 83.62 83.16 84.78 80.46 85.12
MC-CNN-F 94.60 84.62 84.24 84.08 87.57 83.62 86.46
MC-CNN-NT 97.30 91.11 90.57 88.41 90.73 89.49 91.27

Table 6: 1e attribute recognition results for the normal targets on the BIT-Vehicle dataset.

Method Bus (%) Microbus (%) Minivan (%) Sedan (%) SUV (%) Truck (%) Total (%)
CNN 60.00 41.08 48.11 44.87 52.44 50.27 52.88
Fast R-CNN 78.92 42.17 48.11 45.95 54.60 58.92 57.30
Faster R-CNN 81.24 64.33 64.33 62.17 66.49 65.95 69.46
CNN+CNN 82.24 66.03 67.00 65.57 67.3 68.03 71.44
IFR-CNN+CNN 85.24 70.43 78.01 70.21 73.68 76.24 75.64
MC-CNN 83.70 70.19 76.68 69.11 70.19 76.14 74.33
MC-CNN-P 88.03 71.77 82.08 70.73 73.98 75.60 77.03
MC-CNN-F 89.11 73.52 83.70 72.35 75.22 77.00 78.48
MC-CNN-NT 90.19 77.76 86.41 75.60 79.38 86.41 82.63
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to the three branches of the fusion network. Net-E network
and Net-F network fuse the first, third, and sixth convo-
lution layers of VGG-E. Net-F network is the location
subnetwork of the cascaded network MC-CNN-ST. Dif-
ferent from Net-F network, Net-E network adds a 5 × 5
convolution layer to the three branches of the network.

1e location results of six networks are shown in Table 9
and Figure 8. As shown in Table 9, theMC-CNN-ST location
network (Net-F) using the network compression strategy has
better recognition ability for the background region of the
suspected targets. 1e number of false acceptances is re-
duced. 1e increase of Net-F network recognition precision
is 21.23%, 8.55%, 5.03%, 2.42%, and 2.7% more than Net-A,
Net-B, Net-C, Net-D, and Net-E, respectively. Net-F net-
work using the network fusion strategy enhances the ex-
pressive ability for the target features and reduces the

number of false rejection. 1e increase of the recall rate of
Net-F network is 21.64%, 10.03%, 5.01%, 3.92%, and 1.93%
than Net-A, Net-B, Net-C, Net-D, and Net-E, respectively.

1e location results of Net-A, Net-B, and Net-F corre-
spond to the images of the first, second, and third columns of
Figures 8(a) and 8(b), respectively. As shown in Figure 8(a),
Net-A network recognizes 8 and 10 targets in two different
images, respectively. Net-B network recognizes 11 and 13
targets in two images, respectively. Net-F network recog-
nizes 12 and 14 targets in two images, respectively. Net-F
network recognizes the largest number of the targets.
Longitudinal network compression strategy and horizontal
network fuse strategy of Net-F network reduce the number
of false rejection in the model and improve the recall rate of
the network. In Figure 8(b), the vehicles marked with the red
borders are correctly identified as the foreground. Buildings,
billboards, and other backgrounds are misidentified as ve-
hicles marked with the green borders. As shown in
Figure 8(b), the number of false detections in Net-F network

Figure 7: 1e samples of the COCO-Vehicle dataset.

Table 7: 1e sample statistics of the COCO-Vehicle datasets.

Target type Person Bus Microbus Minivan Sedan SUV Truck Total
Small 5083 240 356 261 3249 900 40 10129
Middle 1783 796 176 235 1430 483 372 5275
Big 16 240 9 38 273 40 32 648
Total 6882 1276 541 534 4952 1423 444 16052

Table 8: 1e structures of six location networks.

Method Description of comparative experiments
Net-A 1e original faster R-CNN
Net-B Faster R-CNN+ structure compression

Net-C Structure compression + the fusion of 2, 4, 6 feature
map+ using one 5× 5

Net-D Structure compression + the fusion of 2, 4, 6 feature
map + using two 3× 3

Net-E Structure compression + the fusion of 1, 3, 6 feature
map+ using one 5× 5

Net-F Structure compression + the fusion of 1, 3, 6 feature
map + using two 3× 3

Table 9: 1e location results for the small targets on the COCO-
Vehicle dataset.

Method Vehicle TP FP FN Precision (%) Recall (%)
Net-A 1913 1237 546 676 69.38 64.66
Net-B 1913 1459 319 454 82.06 76.27
Net-C 1913 1555 262 358 85.58 81.29
Net-D 1913 1576 211 337 88.19 82.38
Net-E 1913 1614 222 299 87.91 84.37
Net-F 1913 1651 171 262 90.61 86.30
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(a)

(b)

Figure 8: 1e results of the comparative experiments. (a) 1e reduction of false negative. (b) 1e reduction of false positive.
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is 1, which is less than the number of false detections in Net-
A and Net-B.

4.3.3. Experiments of Attribute Recognition for the Small
Targets. In order to verify the small target recognition
performance of MC-CNN-ST, the contrast experiments of
seven networks are designed in this paper. 1ese seven
networks include three noncascaded networks (CNN, Fast
R-CNN, and Faster R-CNN) and four cascaded networks
(CNN+CNN, IFR-CNN+CNN, MC-CNN-NT, and MC-
CNN-ST). 1e results of attribute recognition are demon-
strated in Table 10 and Figure 9.

As shown in Table 10, MC-CNN-ST achieves the su-
perior recognition results in seven networks. 1e increases
of the accuracy of MC-CNN-STare 33.54%, 24.36%, 19.99%,
19.23%, 18.62%, and 17.58 than CNN, Fast R-CNN, Faster
R-CNN, CNN+CNN, IFR-CNN+CNN, and MC-CNN-

NT, respectively. As shown in Figure 9, MC-CNN-ST has
good attribute recognition ability for six category vehicles.

5. Conclusions

1is paper is devoted to solving the problem of vehicle
attribute recognition. 1e multitask cascaded networks MC-
CNN-NT and MC-CNN-ST are established to recognize
vehicle attributes with normal size and small size, re-
spectively. 1e cascaded multitask networks improve the
recognition effect of one-stage networks in the complex
background. 1e implementation of the network com-
pression strategy and the feature fusion strategy reduces the
false acceptance rate and improves the recall rate for the
small targets. 1e use of the activation function PReLU and
the loss function Focal Loss improves the nonlinear mapping
ability of the networks and the mining ability for the hard-
to-detect samples. 1e experimental results show that the

Table 10: 1e attribute recognition results for the small targets on the COCO-Vehicle dataset.

Method Bus (%) Microbus (%) Minivan (%) Sedan (%) SUV (%) Truck (%) Total (%)
CNN 65.25 37.70 38.36 43.93 38.36 51.14 45.79
Fast R-CNN 70.50 49.18 53.77 44.59 54.09 57.70 54.97
Faster R-CNN 74.10 53.12 59.67 51.15 55.41 60.62 59.34
CNN+CNN 74.99 54.89 59.80 52.53 56.99 61.39 60.10
IFR-CNN+CNN 75.70 55.12 59.97 53.45 57.41 62.51 60.71
MC-CNN-NT 77.70 57.04 60.00 54.75 58.36 62.62 61.75
MC-CNN-ST 88.27 79.46 75.67 75.10 77.52 79.95 79.33

Sedan (score: 0.56783)
Microbus (score: 0.21713)
Suv (score: 0.21153)
Minivan (score: 0.00264)
Truck (score: 0.00083)
Bus (score: 0.00003)

Bus (score: 0.71095)
Sedan (score: 0.56783)
Microbus (score: 0.00915)
Truck (score: 0.00664)
Minivan (score: 0.00554)
Suv (score: 0.00223)

Suv (score: 0.58509)
Minivan (score: 0.41485)
Sedan (score: 0.00004)
Microbus (score: 0.00002)
Bus (score: 0.00000)
Truck (score: 0.00000)

Minivan (score: 0.77346)
Microbus (score: 0.16201)
Suv (score: 0.04194)
Sedan (score: 0.01891)
Truck (score: 0.00337)
Bus (score: 0.00031)

Microbus (score: 0.98683)
Truck (score: 0.00489)
Suv (score: 0.00392)
Bus (score: 0.00315)
Sedan (score: 0.00086)
Minivan (score: 0.00035)

Truck (score: 0.52163)
Sedan (score: 0.28987)
Minivan (score: 0.17136)
Microbus (score: 0.01456)
Suv (score: 0.00254)
Bus (score: 0.00004)

Figure 9: 1e classification results for the small targets using MC-CNN-ST.
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increase of the recognition accuracy of MC-CNN-NTfor the
normal targets is 18.3%, 11.45%, 9.38%, 6.31%, and 7.03%
more than Fast R-CNN, Faster R-CNN, CNN+CNN, IFR-
CNN+CNN, and MC-CNN, respectively. 1e increase of
the recognition accuracy of MC-CNN-ST for the small
targets is 24.36%, 19.99%, 19.23%, 18.62%, and 17.58% than
Fast R-CNN, Faster R-CNN, CNN+CNN, IFR-
CNN+CNN, and MC-CNN-NT, respectively. In the future
research, we consider fusing the infrared image features with
the visible image features to enhance the recognition ac-
curacy for the small target vehicles.
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