Research Article

Stability of Traveling Waves to the Lotka-Volterra Competition Model

Ahmad Alhasanat $\mathbb{D}^{1,2}$ and Chunhua $\mathbf{O u}$ (1
${ }^{1}$ Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1C 5S7
${ }^{2}$ Department of Mathematics and Statistics, Al-Hussein Bin Talal University, Maan, Jordan

Correspondence should be addressed to Chunhua Ou; ou@mun.ca
Received 23 September 2018; Revised 23 November 2018; Accepted 9 December 2018; Published 1 January 2019
Guest Editor: Raúl Villafuerte-Segura
Copyright © 2019 Ahmad Alhasanat and Chunhua Ou. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, the stability of traveling wave solutions to the Lotka-Volterra diffusive model is investigated. First, we convert the model into a cooperative system by a special transformation. The local and the global stability of the traveling wavefronts are studied in a weighted functional space. For the global stability, comparison principle together with the squeezing technique is applied to derive the main results.

1. Introduction

We are concerned here with the diffusive Lotka-Volterra competition model

$$
\begin{align*}
& \phi_{t}=d_{1} \phi_{x x}+r_{1} \phi\left(1-b_{1} \phi-a_{1} \psi\right), \\
& \psi_{t}=d_{2} \psi_{x x}+r_{2} \psi\left(1-a_{2} \phi-b_{2} \psi\right), \tag{1}
\end{align*}
$$

with the initial data

$$
\begin{align*}
& \phi(x, 0)=\phi_{0}(x) \geq 0, \\
& \psi(x, 0)=\psi_{0}(x) \geq 0, \tag{2}
\end{align*}
$$

$$
\forall x \in \mathbb{R}
$$

Here $\phi(x, t)$ and $\psi(x, t)$ are the population densities at time t and location $x ; d_{1}$ and d_{2} are the diffusive coefficients; r_{1} and r_{2} are the net birth rates; a_{1} and a_{2} are the competition coefficients; $1 / b_{1}$ and $1 / b_{2}$ are the carrying capacities for each species. For derivation and biological interpretation of this model, we refer readers to $[1,2]$.

Using the transformations

$$
\begin{aligned}
\sqrt{\frac{r_{1}}{d_{1}}} x & \longrightarrow x \\
r_{1} t & \longrightarrow t
\end{aligned}
$$

$$
\begin{align*}
b_{1} \phi(x, t) & =\widetilde{\phi}(x, t), \\
b_{2} \psi(x, t) & =\widetilde{\psi}(x, t), \\
d & =\frac{d_{2}}{d_{1}}, \\
r & =\frac{r_{2}}{r_{1}}, \\
\frac{a_{1}}{b_{2}} & \longrightarrow a_{1}, \\
\frac{a_{2}}{b_{1}} & \longrightarrow a_{2}, \tag{3}
\end{align*}
$$

the nondimensional form of the system becomes

$$
\begin{align*}
& \widetilde{\phi}_{t}=\widetilde{\phi}_{x x}+\widetilde{\phi}\left(1-\tilde{\phi}-a_{1} \widetilde{\psi}\right), \tag{4}\\
& \widetilde{\psi}_{t}=d \widetilde{\psi}_{x x}+r \widetilde{\psi}\left(1-a_{2} \tilde{\phi}-\widetilde{\psi}\right) .
\end{align*}
$$

By letting $u=\widetilde{\phi}, v=1-\widetilde{\psi}$, this model can be further written as a cooperative system

$$
\begin{align*}
& u_{t}=u_{x x}+u\left(1-a_{1}-u+a_{1} v\right) \\
& v_{t}=d v_{x x}+r(1-v)\left(a_{2} u-v\right) \tag{5}
\end{align*}
$$

with

$$
\begin{align*}
& u(x, 0)=u_{0}(x)=\widetilde{\phi}(x, 0) \\
& v(x, 0)=v_{0}(x)=1-\widetilde{\psi}(x, 0) \tag{6}
\end{align*}
$$

$\forall x \in \mathbb{R}$.
For our study, we will assume that $u_{0}(x)$ and $v_{0}(x)$ are nonnegative. The existence and uniqueness of the solution of the above problem can be easily verified by a classical argument of Picard's iteration. Throughout this paper, we assume that the condition

$$
\begin{equation*}
0<a_{1}<1<a_{2} \tag{C1}
\end{equation*}
$$

is satisfied. Under this condition, equilibria to system (5) in the region $\{(u, v) \mid 0 \leq u \leq 1,0 \leq v \leq 1\}$ are only $(0,0),(0,1)$, and (1,1). In the absence of diffusion in the system (5), it can be shown that $(0,0)$ is unstable and $(1,1)$ is stable. For the system, we are particularly interested in the traveling wave solution, connecting $(1,1)$ and $(0,0)$, in the form

$$
\begin{equation*}
(u, v)(x, t)=(\bar{U}, \bar{V})(z), \tag{7}
\end{equation*}
$$

where $z=x-c t$ is the wave variable, $c \geq 0$ is the wave speed, and (\bar{U}, \bar{V}) is called the wavefront and satisfies

$$
\begin{align*}
& 0=\bar{U}_{z z}+c \bar{U}_{z}+\bar{U}\left(1-a_{1}-\bar{U}+a_{1} \bar{V}\right), \\
& 0=d \bar{V}_{z z}+c \bar{V}_{z}+r(1-\bar{V})\left(a_{2} \bar{U}-\bar{V}\right), \tag{8}
\end{align*}
$$

subject to

$$
\begin{align*}
(\bar{U}, \bar{V})(-\infty) & =(1,1) \\
(\bar{U}, \bar{V})(\infty) & =(0,0) \tag{9}
\end{align*}
$$

This is equivalent to studying traveling waves for the original competition system (4) that connect the boundary equilibria $(0,1)$ and $(1,0)$.

The existence of traveling waves to the above problem is well-studied in literature. It is known that there exists $c^{*} \geq 0$ so that problem (8)-(9) has a monotone solution $(\bar{U}, \bar{V})(z)$ for $c \geq c^{*}$ and no wavefront exists for $c<c^{*}$; see [3-6]. c^{*} is called the minimal wave speed for this system and satisfies $c^{*} \geq 2 \sqrt{1-a_{1}}$. When $c^{*}=2 \sqrt{1-a_{1}}$, we say that the minimal wave speed is linearly determined; see the details in [4].

We know that $(\bar{U}, \bar{V})(x-c t)$ is a special pattern that only satisfies the first two equations in (5). For the stability of this pattern, we want to know if the solution of (5) tends to $(\bar{U}, \bar{V})(x-c t)$ for given initial data $u_{0}(x)$ and $v_{0}(x)$. To this end, we use the (z, t)-coordinate and

$$
\begin{equation*}
(u, v)(x, t)=(U, V)(z, t), \tag{10}
\end{equation*}
$$

to transform the $u v$-model (5) into the partial differential model

$$
\begin{align*}
& U_{t}=U_{z z}+c U_{z}+U\left(1-a_{1}-U+a_{1} V\right), \\
& V_{t}=d V_{z z}+c V_{z}+r(1-V)\left(a_{2} U-V\right) \tag{11}
\end{align*}
$$

subject to

$$
\begin{align*}
& U(z, 0)=u_{0}(z) \\
& V(z, 0)=v_{0}(z) \tag{12}\\
& \quad \forall z \in \mathbb{R}
\end{align*}
$$

It is easy to see that $(\bar{U}, \bar{V})(z)$ is the steady-state to the above new system.

We should mention that dynamics for (4) is very rich. There are always three nonnegative equilibria $(0,0),(1,0)$, and $(0,1)$. In the case when $a_{1}<1, a_{2}<1$, or the case when $a_{1}>1, a_{2}>1$, there exists a unique positive coexistence equilibrium

$$
\begin{equation*}
\left(\widetilde{\phi}^{*}, \widetilde{\psi}^{*}\right)=\left(\frac{1-a_{1}}{1-a_{1} a_{2}}, \frac{1-a_{2}}{1-a_{1} a_{2}}\right) . \tag{13}
\end{equation*}
$$

Based on the phase plane analysis to the ordinary differential system of (4) without diffusion terms, the nonlinearity of the model (4) when $a_{1}<1$ and $a_{2}<1$ is called the persistence case (or coexistence). Likewise, the nonlinearity is called the monostable case when $a_{1}<1$ and $a_{2}>1$ are satisfied, or the bistable case when $a_{1}>1$ and $a_{2}>1$. Traveling waves to (4) have been investigated considerably. For the bistable case, please see $[7,8]$ for the existence of traveling waves connecting (1,0) and (0,1), and [9] for the uniqueness and parameter dependence of wave speeds. For the monostable case, we refer to $[3,10]$ for the existence of traveling waves, and [11, 12] for the selection of the minimal speed. For the persistence (coexistence), the existence of traveling wave connecting $(0,0)$ and $\left(\widetilde{\phi}^{*}, \widetilde{\psi}^{*}\right)$ has been studied in $[13,14]$. When time delays are incorporated into (4) in the persistence case, Li et al. [15] and Gourley and Ruan [16] have proved the existence of traveling waves.

The stability of traveling waves to a scalar partial differential equation has been well-studied, e.g., [17-27], the monograph [6,28] and the survey paper [29]. Indeed, the extension of this study to a general system is not trivial. As we know, when time delays are directly incorporated in the competition terms in (4), the system becomes nonmonotone and the comparison principle cannot work. Alternatively, in [30, 31], the authors studied the stability of traveling waves for the so-called cooperative delayed reaction diffusion system by changing the signs of a_{1} and a_{2}. To be exact, with putting delay $=0$, they studied the cooperative system

$$
\begin{align*}
& \phi_{t}=d_{1} \phi_{x x}+r_{1} \phi\left(1-\widehat{b}_{1} \phi+\widehat{a}_{1} \psi\right) \tag{14}\\
& \psi_{t}=d_{2} \psi_{x x}+r_{2} \psi\left(1+\widehat{a}_{2} \phi-\widehat{b}_{2} \psi\right)
\end{align*}
$$

where $d_{i}, r_{i}, \widehat{a}_{i}$, and \widehat{b}_{i} are all positive. This corresponds to the persistence case in our model (4). Under the condition $\widehat{b}_{1} \widehat{b}_{2}-$ $\widehat{a}_{1} \widehat{a}_{2}>0$, a positive equilibrium

$$
\begin{equation*}
\left(\phi_{+}, \psi_{+}\right)=\left(\frac{\widehat{a}_{1}+\widehat{b}_{2}}{\widehat{b}_{1} \widehat{b}_{2}-\widehat{a}_{1} \widehat{a}_{2}}, \frac{\widehat{b}_{1}+\widehat{a}_{2}}{\widehat{b}_{1} \widehat{b}_{2}-\widehat{a}_{1} \widehat{a}_{2}}\right) \tag{15}
\end{equation*}
$$

exists. They proved that the traveling wave fronts, connecting $(0,0)$ and $\left(\phi_{+}, \psi_{+}\right)$, are exponentially stable in some weighted
L^{∞} spaces, and obtained the decay rates by the weighted energy estimate.

Despite the success in the study of the stability of traveling waves to the classical model (4) in the bistable and persistence cases, the stability of traveling wave in the monostable remains still unsolved. The purpose of this paper is to systematically study the local and the global stability of the steady-state $(\bar{U}, \bar{V})(z)$. Using the method of spectrum analysis in [32], we give the local stability. For the global stability, we construct an upper and a lower solutions to the system (11), and prove their convergence to the traveling wave $(\bar{U}, \bar{V})(z)$. In view of comparison together with the squeezing technique, we arrive at new results on the global stability of the traveling waves. We remark that our method is different from that in $[30,31]$ where weighted energy method was applied.

The rest of the paper is organized as follows. Local analysis of the wave profile near the unstable point is studied in Section 2. In Section 3, we study the local stability of the steady-state by applying the standard linearization. The resulting spectrum problem is studied by the method in [32]. A suitable weighted functional space is chosen to proceed the analysis. In Section 4, besides the weighted functional space, the upper-lower solution method together with the squeezing technique is applied to derive the global stability results. Conclusions are presented in Section 5.

2. The Local Analysis of the Wave Profile Near the Equilibrium $(0,0)$

In this section, we study the behavior of the traveling wave $(\bar{U}, \bar{V})(z)$ locally near the equilibrium $(0,0)$. Assume that the solution has exponential decay as $z \longrightarrow \infty$. Indeed this claim can be easily verified by the maximum principal coupled with a comparison near the neighborhood of infinity. Therefore, we set

$$
\begin{equation*}
(\bar{U}, \bar{V})(z) \sim\left(\zeta_{1} e^{-\mu z}, \zeta_{2} e^{-\mu z}\right) \quad \text { as } z \longrightarrow \infty \tag{16}
\end{equation*}
$$

for positive constants ζ_{1}, ζ_{2}, and μ. By substituting this into (8) and linearizing the equations we have

$$
\begin{equation*}
A(\mu)\binom{\zeta_{1}}{\zeta_{2}}=\binom{0}{0} \tag{17}
\end{equation*}
$$

where $A(\mu)$ is given by

$$
A(\mu)=\left(\begin{array}{cc}
\mu^{2}-c \mu+1-a_{1} & 0 \tag{18}\\
r a_{2} & d \mu^{2}-c \mu-r
\end{array}\right)
$$

The system of algebraic equations (17) has a nontrivial solution if and only if $\operatorname{det}(A)=0$. This implies $\mu=\mu_{1,2,3}>0$, where

$$
\begin{align*}
& \mu_{1}(c)=\frac{c-\sqrt{c^{2}-4\left(1-a_{1}\right)}}{2} \tag{19}\\
& \mu_{2}(c)=\frac{c+\sqrt{c^{2}-4\left(1-a_{1}\right)}}{2}
\end{align*}
$$

and

$$
\begin{equation*}
\mu_{3}(c)=\frac{c+\sqrt{c^{2}+4 d r}}{2 d} . \tag{20}
\end{equation*}
$$

Indeed, a condition so that μ_{1} and μ_{2} are reals is

$$
\begin{equation*}
c \geq 2 \sqrt{1-a_{1}}:=c_{0} \tag{21}
\end{equation*}
$$

For $c>c_{0}$, obviously $\mu_{1}<\mu_{2}$. When $0 \leq d<1$, we have also $\mu_{2}<\mu_{3}$ for all $c>c_{0}$, i.e., $e^{-\mu_{1} z}$ dominates both of $e^{-\mu_{2} z}$ and $e^{-\mu_{3} z}$. In this case, the eigenvector of $A(\mu)$ corresponding to μ_{i}, for $i=1,2$, is the strongly positive vector $\left(\zeta_{1}\left(\mu_{i}\right) \zeta_{2}\left(\mu_{i}\right)\right)^{T}$, where

$$
\begin{align*}
& \quad \zeta_{1}\left(\mu_{i}\right)=-\left(d \mu_{i}^{2}-c \mu_{i}-r\right) \tag{22}\\
& \text { and } \zeta_{2}\left(\mu_{i}\right)=r a_{2}
\end{align*}
$$

It follows that

$$
\begin{array}{r}
\binom{\bar{U}(z)}{\bar{V}(z)}=C_{1}\binom{\zeta_{1}\left(\mu_{1}\right)}{\zeta_{2}\left(\mu_{1}\right)} e^{-\mu_{1} z}+C_{2}\binom{\zeta_{1}\left(\mu_{2}\right)}{\zeta_{2}\left(\mu_{2}\right)} e^{-\mu_{2} z} \tag{23}\\
\text { as } z \longrightarrow \infty
\end{array}
$$

for $C_{1}>0$ or $C_{1}=0, C_{2}>0$. For the case when

$$
\begin{equation*}
1<d<2+\frac{r}{1-a_{1}}:=\widehat{d} \tag{24}
\end{equation*}
$$

the same behavior in (23) is still true if $c^{*}<c \leq \widehat{c}$, where

$$
\begin{equation*}
\widehat{c}=\sqrt{\frac{r+1-a_{1}}{d-1}}+\left(1-a_{1}\right) \sqrt{\frac{d-1}{r+1-a_{1}}} . \tag{25}
\end{equation*}
$$

If $c>\widehat{c}$, then $\mu_{1}<\mu_{3}<\mu_{2}$ and we have

$$
\begin{align*}
\binom{\bar{U}(z)}{\bar{V}(z)}= & C_{1}\binom{\zeta_{1}\left(\mu_{1}\right)}{\zeta_{2}\left(\mu_{1}\right)} e^{-\mu_{1} z} \\
& +C_{2}\binom{-\zeta_{1}\left(\mu_{2}\right)}{-\zeta_{2}\left(\mu_{2}\right)} e^{-\mu_{2} z}+C_{3}\binom{0}{1} e^{-\mu_{3} z} \tag{26}
\end{align*}
$$

as $z \longrightarrow \infty$,
for $C_{1}>0$ or $C_{1}=0, C_{2,3}>0$. Here, $\left(\begin{array}{ll}0 & 1\end{array}\right)^{T}$ is the eigenvector of $A(\mu)$ corresponding to μ_{3}, and note that $\zeta_{1}\left(\mu_{2}\right)<0$ in this case. On the other hand, when

$$
\begin{equation*}
d>\widehat{d} \tag{27}
\end{equation*}
$$

$(\bar{U}, \bar{V})(z)$ behaves like (26) if $c>\hat{c}$. For the case when $c^{*}<$ $c<\widehat{c}$, we have $\mu_{3}<\mu_{1}<\mu_{2}$. Hence,

$$
\begin{align*}
\binom{\bar{U}(z)}{\bar{V}(z)}= & C_{1}\binom{-\zeta_{1}\left(\mu_{1}\right)}{-\zeta_{2}\left(\mu_{1}\right)} e^{-\mu_{1} z} \\
& +C_{2}\binom{-\zeta_{1}\left(\mu_{2}\right)}{-\zeta_{2}\left(\mu_{2}\right)} e^{-\mu_{2} z}+C_{3}\binom{0}{1} e^{-\mu_{3} z} \tag{28}
\end{align*}
$$

$$
\text { as } z \longrightarrow \infty \text {, }
$$

for $C_{1,3}>0$, or $C_{1}=0, C_{2,3}>0$. We summarize the above behaviors in Table 1.

Table 1: The asymptotic behavior of the wave profile (\bar{U}, \bar{V}) near infinity.

Condition on d	Condition on c	The asymptotic behavior
$0 \leq d<1$	$c>c^{*}$	(23)
$1<d<\widehat{d}$	$c^{*}<c<\widehat{c}$	(23)
$1<d$	$c>\hat{c}$	(26)
$d>\widehat{d}$	$c^{*}<c<\widehat{c}$	(28)

Kan-on in [3] derived the asymptotic behaviors of $(\bar{U}, \bar{V})(z)$ near infinity when $c \geq c^{*}$. After deriving the behavior of $\bar{U}(z)$, he used it into the V-equation to find the behavior of $\bar{V}(z)$ when $\mu_{1} \leq \mu_{2} \leq \mu_{3}$ and when $\mu_{3} \leq \mu_{1} \leq \mu_{2}$. Our result here agrees with that in [3] when $c>c^{*}$. We further study the case when $\mu_{1}<\mu_{3}<\mu_{2}$.

Finally, we have the asymptotic behavior for the solution $\bar{U}(z)$ when the wave speed is greater than the minimal speed c^{*}.

Theorem 1. For $c>c^{*}$, the wavefront \bar{U} has the following behavior:

$$
\begin{equation*}
\bar{U}(z) \sim C_{1} e^{-\mu_{1} z}, \quad \text { as } z \longrightarrow \infty \tag{29}
\end{equation*}
$$

for some $C_{1}>0$.
Proof. On the contrary, assume that for some $c_{1}>c^{*}$, the wavefront \bar{U} has the following behavior:

$$
\begin{equation*}
\bar{U}(z) \sim C_{2} e^{-\mu_{2} z}, \quad \text { as } z \longrightarrow \infty \tag{30}
\end{equation*}
$$

for some $C_{2}>0$. By this assumption, it follows that $(\bar{U}, \bar{V})(x-$ $\left.c_{1} t\right)$ is a solution to the following partial differential equation:

$$
\begin{align*}
& u_{t}=u_{x x}+u\left(1-a_{1}-u+a_{1} v\right), \tag{31}\\
& v_{t}=d v_{x x}+r(1-v)\left(a_{2} u-v\right),
\end{align*}
$$

with the initial conditions

$$
\begin{align*}
u(x, 0) & =\bar{U}(x) \\
\text { and } v(x, 0) & =\bar{V}(x) . \tag{32}
\end{align*}
$$

We know that there exists a monotonic traveling wavefront to the system (31) for any $c \geq c^{*}$. In particular, assume $(U, V)(x-$ $c t)$ is a solution for some $c \in\left(c^{*}, c_{1}\right)$ with the initial condition

$$
\begin{align*}
u(x, 0) & =U(x) \\
\text { and } v(x, 0) & =V(x) . \tag{33}
\end{align*}
$$

By a simple computation of the asymptotic behavior of this solution to (8)-(9) near $\pm \infty$, we can always obtain (by shifting if necessary) $\bar{U}(x) \leq U(x)$ for all $x \in(-\infty, \infty)$. From the second equation of (8), we have $\bar{V}(x) \leq V(x)$ for all $x \in$ $(-\infty, \infty)$. From (31), by comparison, we get

$$
\begin{align*}
& \bar{U}\left(x-c_{1} t\right) \leq U(x-c t) \tag{34}\\
& \bar{V}\left(x-c_{1} t\right) \leq V(x-c t)
\end{align*}
$$

for all $(x, t) \in\left(\mathbb{R}, \mathbb{R}^{+}\right)$. On the other hand, fix $\xi=x-c_{1} t$. Then $\bar{U}(\xi)>0$ is fixed, and we have

$$
\begin{align*}
& U(x-c t)=U\left(\xi+\left(c_{1}-c\right) t\right) \sim U(+\infty)=0 \tag{35}\\
& \text { as } t \longrightarrow \infty .
\end{align*}
$$

By (34), this implies that $\bar{U}(\xi) \leq 0$, which is a contradiction. The proof is complete.

3. The Local Stability

To study the local stability, as usual, we add a small perturbation to the traveling wave and study the behavior of this perturbation for large time period. If this perturbation decays, then we say that the traveling wave is locally stable. For $\delta \ll 1$ and a parameter λ, let

$$
\begin{align*}
& U(z, t)=\bar{U}(z)+\delta \phi_{1}(z) e^{\lambda t} \\
& V(z, t)=\bar{V}(z)+\delta \phi_{2}(z) e^{\lambda t} \tag{36}
\end{align*}
$$

where ϕ_{1} and ϕ_{2} are two real functions. Substitute these formulas into (11) and linearize the system about (\bar{U}, \bar{V}) to get the following spectrum problem:

$$
\begin{equation*}
\lambda \Phi=\mathscr{L} \Phi:=D \Phi^{\prime \prime}+c \Phi^{\prime}+J(z) \Phi \tag{37}
\end{equation*}
$$

where $\Phi=\left(\begin{array}{ll}\phi_{1} & \phi_{2}\end{array}\right)^{T}, D$ and $J(z)$ are 2×2 matrices given by

$$
\begin{align*}
& D=\left(\begin{array}{ll}
1 & 0 \\
0 & d
\end{array}\right) \\
& \text { and } J(z) \tag{38}\\
& \qquad=\left(\begin{array}{cc}
1-a_{1}-2 \bar{U}+a_{1} \bar{V} & a_{1} \bar{U} \\
r a_{2}(1-\bar{V}) & r\left(-1-a_{2} \bar{U}+2 \bar{V}\right)
\end{array}\right)
\end{align*}
$$

For Φ in a suitable space, we shall find sign of the maximal real part to the spectrum (λ) of the operator \mathscr{L} to determine the local stability of the traveling wave solution. To proceed, we introduce a weighted functional space L_{w}^{p},

$$
\begin{equation*}
L_{w}^{p}=\left\{f(z): w(z) f(z) \in L^{p}(\mathbb{R}), p \geq 1\right\} \tag{39}
\end{equation*}
$$

with the norm

$$
\begin{equation*}
\|f(z)\|_{L_{w}^{p}}=\left(\int_{-\infty}^{\infty} w(z)|f(z)|^{p} d z\right)^{1 / p} \tag{40}
\end{equation*}
$$

where

$$
\begin{equation*}
w(z)=\left(\frac{1}{w_{1}(z)}, \frac{1}{w_{2}(z)}\right) \tag{41}
\end{equation*}
$$

is the weight function with

$$
\begin{align*}
& w_{1}(z)= \begin{cases}e^{-\alpha\left(z-z_{0}\right)}, & z>z_{0} \\
1, & z \leq z_{0}\end{cases} \tag{42}\\
& w_{2}(z)= \begin{cases}e^{-\beta\left(z-z_{0}\right)}, & z>z_{0} \\
1, & z \leq z_{0}\end{cases}
\end{align*}
$$

for some positive constants α, β, and z_{0} to be chosen. Here, $L^{p}(\mathbb{R})$, for $p \geq 1$, is the well-known Lebesgue space of integrable functions defined on \mathbb{R}. Then we consider the operator \mathscr{L} on this new space and find its spectrum. To do this, we write $\Phi(z)$ in the form

$$
\begin{equation*}
\Phi=\binom{\phi_{1}}{\phi_{2}}=\binom{w_{1} \psi_{1}}{w_{2} \psi_{2}} \tag{43}
\end{equation*}
$$

for L^{p}-functions ψ_{1} and ψ_{2}. Substituting (43) into (37) gives a new spectrum problem in the weighted space L_{w}^{p},

$$
\begin{equation*}
\lambda \Psi=\mathscr{L}_{w} \Psi:=D \Psi^{\prime \prime}+M(z) \Psi^{\prime}+N(z) \Psi \tag{44}
\end{equation*}
$$

where $\Psi=\left(\begin{array}{ll}\psi_{1} & \psi_{2}\end{array}\right)^{T}, M(z)$ and $N(z)$ are 2×2 matrices defined by

$$
M(z)=\left(\begin{array}{cc}
c+2 \frac{w_{1}^{\prime}}{w_{1}} & 0 \tag{45}\\
0 & c+2 d \frac{w_{2}^{\prime}}{w_{2}}
\end{array}\right)
$$

and

$$
N(z)=\left(\begin{array}{cc}
\frac{w_{1}^{\prime \prime}}{w_{1}}+c \frac{w_{1}^{\prime}}{w_{1}} & 0 \tag{46}\\
0 & d \frac{w_{2}^{\prime \prime}}{w_{2}}+c \frac{w_{2}^{\prime}}{w_{2}}
\end{array}\right)+Y(z)
$$

with the $i k$-element of the matrix $Y(z), y_{i k}$, being given in terms of the $i k$-element of the matrix $J(z)$ as $y_{i k}=\left(w_{k} / w_{i}\right) j_{i k}$; that is,

$$
N(z)=\left(\begin{array}{cc}
\frac{w_{1}^{\prime \prime}}{w_{1}}+c \frac{w_{1}^{\prime}}{w_{1}}+1-a_{1}-2 \bar{U}+a_{1} \bar{V} & a_{1} \bar{U} \frac{w_{2}}{w_{1}} \tag{47}\\
r a_{2}(1-\bar{V}) \frac{w_{1}}{w_{2}} & d \frac{w_{2}^{\prime \prime}}{w_{2}}+c \frac{w_{2}^{\prime}}{w_{2}}+r\left(-1-a_{2} \bar{U}+2 \bar{V}\right)
\end{array}\right)
$$

The details to find the essential spectrum of the operator \mathscr{L}_{w} can be finalized by using Theorem A. 2 in [32] and are given below. After we choose the weight function so that the essential spectrum is on the left-half complex plane, we can determine the sign of the maximal real part of the point spectrum in the weighted space as well.

First of all, to apply the method in [32], we need to choose α and β so that the matrix functions $M(z)$ and $N(z)$ are bounded; i.e., the limits

$$
\begin{array}{r}
\lim _{z \rightarrow \infty} \bar{U}(z) \frac{w_{2}(z)}{w_{1}(z)}=A_{1} \tag{48}\\
\text { and } \lim _{z \rightarrow \infty}(1-\bar{V}(z)) \frac{w_{1}(z)}{w_{2}(z)}=A_{2},
\end{array}
$$

for some constants A_{1} and A_{2}, are satisfied. We choose

$$
\begin{equation*}
\alpha-\mu_{1}<\beta \leq \alpha \tag{49}
\end{equation*}
$$

where μ_{1} is defined in (19). This makes, by using Theorem 1 , $A_{1}=0$ and

$$
A_{2}= \begin{cases}0 & \text { when } \beta<\alpha \tag{50}\\ 1 & \text { when } \beta=\alpha\end{cases}
$$

Now, we define

$$
\begin{align*}
S_{ \pm} & :=\left\{\lambda \mid \operatorname{det}\left(-\tau^{2} D+i \tau M_{ \pm}+N_{ \pm}-\lambda I\right)=0,-\infty\right. \tag{51}\\
& <\tau<\infty\}, \tag{55}
\end{align*}
$$

where $M_{ \pm}$and $N_{ \pm}$are the limits of $M(z)$ and $N(z)$ as $z \longrightarrow$ $\pm \infty$, respectively. Then the essential spectrum of the operator
\mathscr{L}_{w} is contained in the union of regions inside or on the curves S_{+}and S_{-}; see [32, pp. 140]. By letting $z \longrightarrow+\infty, M_{+}$, and N_{+}are given as (taking condition (49) into account)

$$
\begin{align*}
M_{+} & =\left(\begin{array}{cc}
c-2 \alpha & 0 \\
0 & c-2 d \beta
\end{array}\right) \tag{52}\\
\text { and } N_{+} & =\left(\begin{array}{cc}
\alpha^{2}-c \alpha+1-a_{1} & 0 \\
A_{2} & d \beta^{2}-c \beta-r
\end{array}\right) .
\end{align*}
$$

The equation $\operatorname{det}\left(-\tau^{2} D+i \tau M_{+}+N_{+}-\lambda I\right)=0$ has two solutions $\lambda=\lambda_{1,2}$, where

$$
\begin{align*}
& \lambda_{1}=-\tau^{2}+i \tau(c-2 \alpha)+\alpha^{2}-c \alpha+1-a_{1} \\
& \lambda_{2}=-\tau^{2} d+i \tau(c-2 d \beta)+d \beta^{2}-c \beta-r \tag{53}
\end{align*}
$$

This means that S_{+}is the union of two parabolas in the complex plane which are symmetric about the real axis; namely,

$$
\begin{align*}
& S_{+, 1}=\left\{\lambda_{1} \mid-\infty<\tau<\infty\right\} \text { and } \\
& S_{+, 2}=\left\{\lambda_{2} \mid-\infty<\tau<\infty\right\} . \tag{54}
\end{align*}
$$

The most right points of these curves are $\alpha^{2}-c \alpha+1-a_{1}$ and $d \beta^{2}-c \beta-r$, respectively, which are negative if

$$
\begin{aligned}
& \alpha \in\left(\mu_{1}, \mu_{2}\right) \text { and } \\
& \beta \in\left(0, \mu_{3}\right),
\end{aligned}
$$

where μ_{1}, μ_{2}, and μ_{3} are defined in (19)-(20). Hence, when the above condition satisfies, $S_{+}=S_{+, 1} \cup S_{+, 2}$ is on the left-half complex plane.

Similarly, we find S_{-}by solving the equation $\operatorname{det}\left(-\tau^{2} D+\right.$ $\left.i \tau M_{-}+N_{-}-\lambda I\right)=0$, with

$$
\begin{align*}
& M_{-}=\left(\begin{array}{ll}
c & 0 \\
0 & c
\end{array}\right) \text { and } \\
& N_{-}=\left(\begin{array}{cc}
-1 & a_{1} \\
0 & r\left(1-a_{2}\right)
\end{array}\right) . \tag{56}
\end{align*}
$$

This gives two solutions $\lambda=\lambda_{3,4}$, where

$$
\begin{align*}
& \lambda_{3}=-\tau^{2}+i \tau c-1 \\
& \lambda_{4}=-\tau^{2} d+i \tau c+r\left(1-a_{2}\right) . \tag{57}
\end{align*}
$$

From (C1), $S_{-}=\left\{\lambda_{3} \mid-\infty<\tau<\infty\right\} \cup\left\{\lambda_{4} \mid-\infty<\tau<\infty\right\}$ is on the left-half complex plane.

The above analysis shows that the essential spectrum of \mathscr{L}_{w} is on the left-half complex plane as long as conditions (49) and (55) are satisfied. In fact, there are many choices of α and β satisfying these conditions depending on μ_{1}, μ_{2}, and μ_{3}. We choose them by the following algorithm.

Algorithm 2. Two mechanisms are valid to choose α and β so that all conditions in (49) and (55) hold:
(1) If $\mu_{1}<\mu_{3}$, then we choose $\beta=\alpha$ for any $\alpha \in$ $\left(\mu_{1}, \min \left\{\mu_{2}, \mu_{3}\right\}\right)$.
(2) If $\mu_{1} \geq \mu_{3}$, then we choose $\epsilon<\beta<\mu_{3}$ and $\alpha=\mu_{1}+\epsilon$ for small $\epsilon>0$. In particular, we can choose $\beta=2 \epsilon$ and $\alpha=\mu_{1}+\epsilon$, for $\epsilon<\min \left\{\mu_{2}-\mu_{1}, \mu_{3} / 2\right\}$.

Finally, in order to get a local stability result, we need to check the sign of the principal eigenvalue in the point spectrum for (37)-(38). Consider the associated linear partial differential system

$$
\begin{equation*}
u_{t}=D u_{z z}+c u_{z}+J(z) u \tag{58}
\end{equation*}
$$

where $u(z, t)=\left(u_{1}(z, t), u_{2}(z, t)\right)$. The eigenpair (λ, Φ) of (37) implies a solution $e^{\lambda t} \Phi$ to the above system. Let $Q_{t}=u(t, z, \phi)$ denote the solution semiflow of (58) for any given initial data ϕ in L^{p}. It is easy to see Q_{t} is compact and strongly positive. By the well-known Krein-Rutman theorem (see, e.g., [33]), Q_{t} has a simple principal eigenvalue $\lambda_{\text {max }}$ with a strongly positive eigenvector, and all other eigenvalues $e^{\lambda t}$ must satisfy

$$
\begin{equation*}
\left|e^{\lambda t}\right|<e^{\lambda_{\max } t} \tag{59}
\end{equation*}
$$

For any $c>c^{*}$, we have from Theorem 1 that $\bar{U}(z) \sim C_{1} e^{-\mu_{1} z}$, $C_{1}>0$, as $z \longrightarrow \infty$. $\lambda=0$ is an eigenvalue to the operator \mathscr{L} defined in (37) with the one-sign (strongly positive) eigenvector $\left(-\bar{U}^{\prime},-\bar{V}^{\prime}\right)(z)$. By the choice of the weighted functional space L_{w}^{p}, the one-sign eigenvector $\left(\bar{U}^{\prime}, \bar{V}^{\prime}\right)(z)$ is not inside. Hence, the real parts of point spectrum of the operator \mathscr{L}_{w} in L_{w}^{p} are all negative. We can also explain this in a simple analysis. Assume to the contrary that (λ, Φ) is an eigenpair of the eigenvalue problem (37)-(38) with $\lambda>0$ and $\Phi \in L_{w}^{p}$. Obviously, the one-sign function $\bar{\Phi}=\left(-\bar{U}^{\prime},-\bar{V}^{\prime}\right)(z)$
satisfies (58). For Φ in the L_{w}^{p}-space, we have essentially (or except for a set of zero measure) $\bar{\Phi}(z)>\Phi(z)$ as $z \longrightarrow \infty$. On the other hand, when $z \longrightarrow-\infty$, we can apply the method of asymptotic analysis and assume that the eigenfunction of (37) behaves like $k e^{\mu z}$ for some positive values k and μ. By substituting it into the eigenvalue problem and using the behavior of $J(z)$, we obtain that μ is increasing with respect to λ. This implies that $\bar{\Phi}(z)>\Phi(z)$ as $z \longrightarrow-\infty$. Hence, by choosing \bar{k} sufficient large, we can have $\bar{k} \bar{\Phi} \geq|\Phi|$. By comparison, from the partial differential system (58), we obtain $\bar{k} \bar{\Phi}(z) \geq|\Phi| e^{\lambda t}$, which contradicts $\lambda>0$. This implies that for $\Phi \in L_{w}^{p}$, the real parts of all eigenvalues λ of (37) should be nonpositive.

Now we are in a position to state the local stability result.
Theorem 3. For any $c>c^{*}$, the wavefront $(\bar{U}, \bar{V})(z)$ is locally stable in the weighted functional space L_{w}^{p} with the weight function $w(z)$ defined in (41)-(42), where α and β in the formula of $w(z)$ are chosen by Algorithm 2.

4. The Global Stability

We study here the global stability of the steady-state $(\bar{U}, \bar{V})(z)$ in a special choice of the weighted functional space $L_{w}^{p}(\mathbb{R})$. Let $p=\infty$ and define the norm $\|f\|_{L_{w}^{\infty}}=$ ess $\sup _{z \in \mathbb{R}}|w(z) f(z)|$, for some weight function $w(z)$. Assume $\mu_{1}<\mu_{3}$. By Algorithm 2, we choose $\alpha=\beta \in$ $\left(\mu_{1}, \min \left\{\mu_{2}, \mu_{3}\right\}\right)$. Specifically, let $\alpha=\beta=\mu_{1}+\epsilon$, for small positive number ϵ. Also, we assume that the functions $\bar{U}(z)$ and $\bar{V}(z)$ satisfy the condition

$$
\begin{equation*}
\frac{\bar{V}(z)}{\bar{U}(z)} \leq \min \left\{a_{2}, \frac{1}{a_{1}}\right\}, \quad \forall z \in(-\infty,+\infty) . \tag{C2}
\end{equation*}
$$

Theorem 4. Suppose $c>c^{*}, \mu_{1}<\mu_{3}$, and conditions ($\mathbf{C 1}$) (C2) hold true. Assume that the initial data $U(z, 0)=U_{0}(z)$ and $V(z, 0)=V_{0}(z)$ satisfy

$$
(0,0) \leq\left(U_{0}, V_{0}\right)(z) \leq(1,1),
$$

$$
\begin{equation*}
\forall z \in \mathbb{R}, \tag{60}
\end{equation*}
$$

$$
\lim _{z \rightarrow-\infty} \inf \left(U_{0}, V_{0}\right)(z)>(0,0)
$$

and

$$
\begin{align*}
& \left|U_{0}(z)-\bar{U}(z)\right| \in L_{w}^{\infty}(\mathbb{R}), \\
& \left|V_{0}(z)-\bar{V}(z)\right| \in L_{w}^{\infty}(\mathbb{R}) . \tag{61}
\end{align*}
$$

Then the solution $(U, V)(z, t)$ to (11) exists globally with

$$
\begin{equation*}
(0,0) \leq(U, V)(z, t) \leq(1,1), \quad \forall(z, t) \in \mathbb{R} \times \mathbb{R}^{+} \tag{62}
\end{equation*}
$$

and converges to the steady-state $(\bar{U}, \bar{V})(z)$ exponentially in the sense of

$$
\begin{align*}
& \sup _{z \in \mathbb{R}}|U(z, t)-\bar{U}(z)| \leq k e^{-\eta t}, \quad t>0, \\
& \sup _{z \in \mathbb{R}}|V(z, t)-\bar{V}(z)| \leq k e^{-\eta t}, \quad t>0, \tag{63}
\end{align*}
$$

for positive constants k and η.

To prove Theorem 4, we will find an upper and a lower solution to the partial differential equations system (11). For $z \in \mathbb{R}$, define

$$
\begin{align*}
& U_{0}^{+}(z)=\max \left\{U_{0}(z), \bar{U}(z)\right\}, \\
& V_{0}^{+}(z)=\max \left\{V_{0}(z), \bar{V}(z)\right\}, \\
& U_{0}^{-}(z)=\min \left\{U_{0}(z), \bar{U}(z)\right\}, \tag{64}\\
& V_{0}^{-}(z)=\min \left\{V_{0}(z), \bar{V}(z)\right\} .
\end{align*}
$$

It is easy to see that the following inequalities are true:

$$
\begin{align*}
(0,0) & \leq\left(U_{0}^{-}, V_{0}^{-}\right)(z) \leq\left(U_{0}, V_{0}\right)(z) \leq\left(U_{0}^{+}, V_{0}^{+}\right)(z) \\
& \leq(1,1) \\
(0,0) & \leq\left(U_{0}^{-}, V_{0}^{-}\right)(z) \leq(\bar{U}, \bar{V})(z) \leq\left(U_{0}^{+}, V_{0}^{+}\right)(z) \tag{65}\\
& \leq(1,1) .
\end{align*}
$$

Denote $\left(U^{+}, V^{+}\right)(z, t)$ and $\left(U^{-}, V^{-}\right)(z, t)$ as the solutions to the system (11) with the initial data $\left(U_{0}^{+}, V_{0}^{+}\right)(z)$ and $\left(U_{0}^{-}, V_{0}^{-}\right)(z)$, respectively; that is,

$$
\begin{align*}
U_{t}^{ \pm}= & U_{z z}^{ \pm}+c U_{z}^{ \pm} \\
& +U^{ \pm}\left(1-a_{1}-U^{ \pm}+a_{1} V^{ \pm}\right), \\
V_{t}^{ \pm}= & d V_{z z}^{ \pm}+c V_{z}^{ \pm} \tag{66}\\
& +r\left(1-V^{ \pm}\right)\left(a_{2} U^{ \pm}-V^{ \pm}\right), \\
\left(U^{ \pm}, V^{ \pm}\right)(z, 0)= & \left(U_{0}^{ \pm}, V_{0}^{ \pm}\right)(z) .
\end{align*}
$$

By the comparison principle, one gets

$$
\begin{align*}
(0,0) & \leq\left(U^{-}, V^{-}\right)(z, t) \leq(U, V)(z, t) \\
& \leq\left(U^{+}, V^{+}\right)(z, t) \leq(1,1), \quad \forall(z, t) \in \mathbb{R} \times \mathbb{R}^{+}, \\
(0,0) & \leq\left(U^{-}, V^{-}\right)(z, t) \leq(\bar{U}, \bar{V})(z) \leq\left(U^{+}, V^{+}\right)(z, t) \tag{67}\\
& \leq(1,1), \quad \forall(z, t) \in \mathbb{R} \times \mathbb{R}^{+} .
\end{align*}
$$

In the following lemmas we shall prove the convergence of $\left(U^{+}, V^{+}\right)(z, t)$ and $\left(U^{-}, V^{-}\right)(z, t)$ to the wavefront $(\bar{U}, \bar{V})(z)$. Then we apply the squeezing theorem to obtain the result in Theorem 4.

Lemma 5. Under the conditions in Theorem $4,\left(U^{+}, V^{+}\right)(z, t)$ converges to $(\bar{U}, \bar{V})(z)$.

Proof. For $(z, t) \in \mathbb{R} \times \mathbb{R}^{+}$, define

$$
\begin{align*}
P(z, t) & =U^{+}(z, t)-\bar{U}(z) \\
\text { and } Q(z, t) & =V^{+}(z, t)-\bar{V}(z) . \tag{68}
\end{align*}
$$

These functions, P and Q, satisfy the initial value conditions

$$
\begin{aligned}
P(z, 0) & =U_{0}^{+}(z)-\bar{U}(z) \\
\text { and } Q(z, 0) & =V_{0}^{+}(z)-\bar{V}(z) .
\end{aligned}
$$

By (65) and (67), for all $z \in \mathbb{R}$ and $t \geq 0$, we have

$$
\begin{equation*}
(0,0) \leq(P, Q)(z, t) \leq(1,1) \tag{70}
\end{equation*}
$$

By (8) and (66) and using condition (C2), we can verify that P and Q satisfy

$$
\begin{align*}
P_{t} \leq & P_{z z}+c P_{z}+\left(1-a_{1}\right) P+(P+\bar{U})\left(-P+a_{1} Q\right) \\
Q_{t} \leq & Q_{z z}+c Q_{z}+r\left(a_{2} P-Q\right) \tag{71}\\
& +r(Q+\bar{V})\left(-a_{2} P+Q\right)
\end{align*}
$$

To study the stability in the weighted functional space L_{w}^{∞}, with $w(z)$ defined in (41), we first let

$$
\begin{equation*}
\binom{P}{Q}(z, t)=e^{-\alpha\left(z-z_{0}\right)}\binom{\bar{P}}{\bar{Q}}(z, t), \tag{72}
\end{equation*}
$$

for all $(z, t) \in \mathbb{R} \times \mathbb{R}^{+}$,
where \bar{P} and \bar{Q} are functions in $L^{\infty}(\mathbb{R})$ and z_{0} is the same number used in the weight function $w(z)$. This gives

$$
\begin{align*}
\binom{\bar{P}}{\bar{Q}}_{t} \leq & D\binom{\bar{P}}{\bar{Q}}_{z z}+M\binom{\bar{P}}{\bar{Q}}_{z}+A(\alpha)\binom{\bar{P}}{\bar{Q}} \\
& +\binom{\left(\bar{U}+e^{-\alpha\left(z-z_{0}\right)} \bar{P}\right)\left(-\bar{P}+a_{1} \bar{Q}\right)}{r\left(\bar{V}+e^{-\alpha\left(z-z_{0}\right)} \bar{Q}\right)\left(-a_{2} \bar{P}+\bar{Q}\right)} \tag{73}\\
:= & \binom{\mathscr{L}_{1}(\bar{P}, \bar{Q})}{\mathscr{L}_{2}(\bar{P}, \bar{Q})}
\end{align*}
$$

where $A(\alpha)$ is the same matrix defined in (18) and $M=$ $\operatorname{diag}(c-2 \alpha, c-2 d \alpha)$.

Define $\bar{P}_{1}(z, t)$ and $\bar{Q}_{1}(z, t)$ as

$$
\begin{align*}
& \bar{P}_{1}(z, t)=k_{1} \zeta_{1} e^{-\eta_{1} t} \\
& \text { and } \bar{Q}_{1}(z, t)=k_{1} \zeta_{2} e^{-\eta_{1} t} \tag{74}\\
& \qquad \\
& \qquad \forall(z, t) \in \mathbb{R} \times \mathbb{R}^{+},
\end{align*}
$$

for some constants $k_{1}, \eta_{1}>0$ to be chosen and $\left(\zeta_{1}, \zeta_{2}\right)=$ $\left(\zeta_{1}(\alpha), \zeta_{2}(\alpha)\right)$ is the eigenvector of the matrix $A(\alpha)$ associated with the eigenvalue $\alpha^{2}-c \alpha+1-a_{1}$. Simple computations give

$$
\begin{align*}
\zeta_{1}(\alpha) & =\left(\alpha^{2}-c \alpha+1-a_{1}\right)-\left(d \alpha^{2}-c \alpha-r\right) \\
& =\left(\mu_{1}^{2}+\epsilon\right)(1-d)+1-a_{1}+r \tag{75}\\
\zeta_{2}(\alpha) & =r a_{2}
\end{align*}
$$

which are positive for small ϵ and $\mu_{1}<\mu_{3}$. Since the initial values $\bar{P}(z, 0)$ and $\bar{Q}(z, 0)$ are in the space L_{w}^{∞}, we can choose $k_{1} \geq \max _{z \in \mathbb{R}}\left\{\bar{P}(z, 0) / \zeta_{1}, \bar{Q}(z, 0) / \zeta_{2}\right\}$. Direct computations and using condition ($\mathbf{C} 2$) show that both of $\mathscr{L}_{1}\left(\bar{P}_{1}, \bar{Q}_{1}\right)$ and

Figure 1: The phase portrait of system (80) when $\epsilon_{1}=0.003$ and $r=1.875$.
$\mathscr{L}_{2}\left(\bar{P}_{1}, \bar{Q}_{1}\right)$ are negative. This allows choosing a positive value to η_{1} so that the inequality

$$
\begin{equation*}
\binom{\bar{P}_{1}}{\bar{Q}_{1}}_{t}=-\eta_{1} k_{1}\binom{\zeta_{1}}{\zeta_{2}} e^{-\eta_{1} t} \geq\binom{\mathscr{L}_{1}\left(\bar{P}_{1}, \bar{Q}_{1}\right)}{\mathscr{L}_{2}\left(\bar{P}_{1}, \bar{Q}_{1}\right)} \tag{76}
\end{equation*}
$$

holds. Hence, since $\left(\bar{P}_{1}, \bar{Q}_{1}\right)(0, z) \geq(\bar{P}, \bar{Q})(0, z)$ and by comparison on unbounded domain, see, e.g., [34, Proposition 2.1],

$$
\begin{align*}
(P, Q)(z, t)= & (\bar{P}, \bar{Q}) e^{-\alpha\left(z-z_{0}\right)} \\
\leq k_{1}\left(\zeta_{1}, \zeta_{2}\right) e^{-\alpha\left(z-z_{0}\right)-\eta_{1} t} & \tag{77}\\
& \forall(z, t) \in \mathbb{R} \times \mathbb{R}^{+} .
\end{align*}
$$

In particular, this is true when $z \in\left[z_{0}, \infty\right)$, for any fixed z_{0}.
Now, we introduce the weight function $w(z)$ defined in (41)-(42) with $\alpha=\beta=\mu_{1}+\epsilon$. By the above analysis, we need to prove the convergence of $(P, Q)(z, t)$ to $(0,0)$ for $z \in\left(-\infty, z_{0}\right]$. Note that the full system of $(P, Q)(z, t)$ can be expressed as

$$
\begin{align*}
\binom{P}{Q}_{t}= & D\binom{P}{Q}_{z z}+c\binom{P}{Q}_{z}+J(z)\binom{P}{Q} \tag{78}\\
& +\binom{\left(-P+a_{1} Q\right) P}{r\left(-a_{2} P+Q\right) Q}
\end{align*}
$$

Here, $J(z)$ is the same 2×2 matrix defined in (38). Let z_{0} be chosen so that

$$
J(z) \leq\left(\begin{array}{cc}
-1+\epsilon_{1} & a_{1}+\epsilon_{1} \tag{79}\\
\epsilon_{1} & r\left(1-a_{2}\right)+\epsilon_{1}
\end{array}\right):=J_{\epsilon_{1}},
$$

for some given small $\epsilon_{1}>0$, when $z \leq z_{0}$. This is equivalent to require that $(\bar{U}, \bar{V})(z)$ is close to $(1,1)$ for all $z \leq z_{0}$. Define $(\widehat{P}, \widehat{Q})(t)$ as the solution of the autonomous system

$$
\begin{equation*}
\binom{\widehat{P}}{\widehat{Q}}_{t}=J_{\epsilon_{1}}\binom{\widehat{P}}{\widehat{Q}}+\binom{\left(-\widehat{P}+a_{1} \widehat{Q}\right) \widehat{P}}{r\left(-a_{2} \widehat{P}+\widehat{Q}\right) \widehat{Q}} \tag{80}
\end{equation*}
$$

with the initial data

$$
\begin{align*}
& \widehat{P}(0) \geq \bar{P}(z, 0), \\
& \widehat{Q}(0) \geq \bar{Q}(z, t), \tag{81}
\end{align*}
$$

$$
\forall z \in \mathbb{R} .
$$

Then $(\widehat{P}, \widehat{Q})$ is an upper solution to system (78).
Now we need to prove the convergence of $(\widehat{P}, \widehat{Q})(t)$ to $(0,0)$ as $t \longrightarrow \infty$. The Jacobian matrix $J(0,0)=J_{\epsilon_{1}}$ of system (80) at the fixed point $(0,0)$ has two eigenvalues, $\hat{\lambda}_{2}<\hat{\lambda}_{1}<0$. By the phase plane analysis, there exists $0<\delta \leq 1$ so that the flow in the $\widehat{P} \widehat{Q}$-space converges to origin for any initial data $(\widehat{P}, \widehat{Q})(0)$ in the box $[0,1] \times[0, \delta]$. Hence, we conclude that

$$
\begin{equation*}
(\widehat{P}, \widehat{Q})=\widehat{k}_{1}\left(\widehat{C}_{1}, \widehat{C}_{2}\right) e^{\widehat{\lambda}_{1} t} \quad \text { as } t \longrightarrow \infty \tag{82}
\end{equation*}
$$

for positive constant \widehat{k}_{1} and $\left(\widehat{C}_{1} \widehat{C}_{2}\right)^{T}$ is the eigenvector of $J_{\epsilon_{1}}$ corresponding to $\hat{\lambda}_{1}$. For the maximal possible choice of the constant δ so that we have the convergence result inside the box $[0,1] \times[0, \delta]$; see Remark 6 .

We can choose \widehat{k}_{1} large and $\bar{\lambda}_{1}=\min \left\{\eta_{1},-\widehat{\lambda}_{1}\right\}$ so that, at the boundary $z=z_{0}$, we have

$$
\begin{equation*}
(P, Q)\left(z_{0}, t\right) \leq k_{1}\left(\zeta_{1}, \zeta_{2}\right) e^{-\eta_{1} t} \leq \widehat{k}_{1}\left(\zeta_{1}, \zeta_{2}\right) e^{-\bar{\lambda}_{1} t} \tag{83}
\end{equation*}
$$

Hence, by comparison on the domain $\left(-\infty, z_{0}\right] \times[0, \infty)$, see, e.g., [35, Lemma 3.2],

$$
\begin{align*}
(P, Q)(z, t) \leq \widehat{k}_{1}\left(\zeta_{1}, \zeta_{2}\right) e^{-\bar{\lambda}_{1} t} & \tag{84}\\
& \\
& \forall(z, t) \in\left(-\infty, z_{0}\right] \times \mathbb{R}^{+}
\end{align*}
$$

This completes the proof.
Remark 6. The maximal possible value of the constant δ, which could be 1 , depends on the location of the fourth fixed point to the system (80) near or inside the box $[0,1] \times[0,1]$. See Figure 1 for all possible different cases. In Figure 1(a), the
positive fixed point is far away from the box $[0,1] \times[0,1]$ and does not affect the flow. This happens when $a_{2}>2$. Hence we set $\delta=1$. Figure 1(b) shows the effect of the positive fixed point on the flow, which still outside the box. The maximal choice of δ for this case exists in the interval $\left(a_{2}-1-\epsilon_{1} / r, 1\right)$. The number $a_{2}-1-\epsilon_{1} / r$ is the positive $\widehat{Q}-$ intercept of the nullcline $\widehat{Q}_{t}=0$. A fixed point exists inside the box $[0,1] \times[0,1]$ in Figure 1(c), where δ becomes close to the value $a_{2}-1-\epsilon_{1} / r$.

Lemma 7. Under the conditions in Theorem 4, $\left(U^{-}, V^{-}\right)(z, t)$ converges to $(\bar{U}, \bar{V})(z)$.

Proof. For $(z, t) \in \mathbb{R} \times \mathbb{R}^{+}$, define

$$
\begin{align*}
R(z, t) & =\bar{U}(z)-U^{-}(z, t) \\
\text { and } S(z, t) & =\bar{V}(z)-V^{-}(z, t) . \tag{85}
\end{align*}
$$

These functions, R and S, satisfy the initial value conditions

$$
\begin{align*}
R(z, 0) & =\bar{U}(z)-U_{0}^{-}(z) \tag{86}\\
\text { and } S(z, 0) & =\bar{V}(z)-V_{0}^{-}(z) .
\end{align*}
$$

From (65) and (67), for all $z \in \mathbb{R}$ and $t \geq 0$, we have

$$
\begin{equation*}
(0,0) \leq(R, S)(z, t) \leq(1,1) \tag{87}
\end{equation*}
$$

From (8) and (66), R and S satisfy the system

$$
\begin{align*}
\binom{R}{S}_{t}= & D\binom{R}{S}_{z z}+c\binom{R}{S}_{z}+J(z)\binom{R}{S} \tag{88}\\
& -\binom{\left(-R+a_{1} S\right) R}{r\left(-a_{2} R+S\right) S}
\end{align*}
$$

with $J(z)$ defined in (38). By condition (C2), we have

$$
\begin{align*}
& R_{t} \leq R_{z z}+c R_{z}+\left(1-a_{1}\right) R+(R-\bar{U})\left(R-a_{1} S\right), \\
& S_{t} \leq d S_{z z}+c S_{z}+r\left(a_{2} R-S\right)+r(S-\bar{V})\left(a_{2} R-S\right) . \tag{89}
\end{align*}
$$

Similar to the previous analysis in the proof of Lemma 5, and making a use of the facts $R<\bar{U}$ and $S<\bar{V}$, we can prove that there exist $\eta_{2}>0$ and

$$
\begin{equation*}
k_{2} \geq e^{\alpha\left(z-z_{0}\right)} \max _{z \in \mathbb{R}}\left\{\frac{R(z, 0)}{\zeta_{1}}, \frac{S(z, 0)}{\zeta_{2}}\right\} \tag{90}
\end{equation*}
$$

so that

$$
\begin{equation*}
(R, S)(z, t) \leq k_{2}\left(\zeta_{1}, \zeta_{2}\right) e^{-\eta_{2} t}, \quad \forall(z, t) \in \mathbb{R} \times \mathbb{R}^{+} \tag{91}
\end{equation*}
$$

For the choice of z_{0} in proof of Lemma 5, we study the stability in the weighted space L_{w}^{∞}. To this end, define $(\widehat{R}, \widehat{S})(t)$ as the solution of the system

$$
\begin{equation*}
\binom{\widehat{R}}{\widehat{S}}_{t}=J_{\epsilon_{1}}\binom{\widehat{R}}{\widehat{S}}-w_{1}\binom{\left(-\widehat{R}+a_{1} \widehat{S}\right) \widehat{R}}{r\left(-a_{2} \widehat{R}+\widehat{S}\right) \widehat{S}} \tag{92}
\end{equation*}
$$

with the initial data

$$
\begin{align*}
& \widehat{R}(0) \geq R(z, 0) \\
& \widehat{S}(0) \geq S(z, 0) \tag{93}
\end{align*}
$$

$$
\forall z \in \mathbb{R}
$$

It is easy to see that $(\widehat{R}, \widehat{S})$ is an upper solution to the system (88). The phase plane analysis shows that $(\widehat{R}, \widehat{S})(t)$ converges to origin for any initial data in the region $[0,1] \times[0,1]$ except the point $(1,1)$. Similar to the previous lemma,

$$
\begin{align*}
(R, S)(z, t) \leq \widehat{k}_{2}\left(\zeta_{1}, \zeta_{2}\right) e^{-\bar{\lambda}_{2} t} & \tag{94}\\
& \\
& \forall(z, t) \in\left(-\infty, z_{0}\right] \times \mathbb{R}^{+}
\end{align*}
$$

for some positive constants \widehat{k}_{2} and $\bar{\lambda}_{2}$. This completes the proof.

Now, we are ready to give the proof of Theorem 4.
Proof of Theorem 4. From (67), for all $(z, t) \in \mathbb{R} \times \mathbb{R}^{+}$, we have

$$
\begin{align*}
& |R(z, t)| \leq|U(z, t)-\bar{U}(z)| \leq|P(z, t)| \\
& |S(z, t)| \leq|V(z, t)-\bar{V}(z)| \leq|Q(z, t)| . \tag{95}
\end{align*}
$$

By Lemmas 5 and 7 and the squeezing theorem, it follows that there exist $k>0$ and $\eta>0$ so that

$$
\begin{align*}
& |U(z, t)-\bar{U}(z)| \leq k e^{-\eta t} \\
& |V(z, t)-\bar{V}(z)| \leq k e^{-\eta t} \tag{96}
\end{align*}
$$

for all $(z, t) \in \mathbb{R} \times \mathbb{R}^{+}$. This proves the desired result.
Condition (C2) is used in the previous analysis to construct the upper solutions in the proof of Lemmas 5 and 7. It implies that, at $c=c_{0}$ and $z \longrightarrow+\infty$,

$$
\begin{equation*}
\frac{\zeta_{2}\left(\mu_{1}\right)}{\zeta_{1}\left(\mu_{1}\right)} \leq \min \left\{a_{2}, \frac{1}{a_{1}}\right\} \tag{97}
\end{equation*}
$$

and it can be guaranteed by

$$
\begin{gather*}
d \leq 2 \\
\left(a_{1} a_{2}-1\right) r \leq(2-d)\left(1-a_{1}\right) \tag{98}
\end{gather*}
$$

This condition arose in the linear speed selection studies; see [36]. To see that the condition (C2) can be realized for all $z \in$ \mathbb{R}, we prove the following claim.

Claim 8. $d=0$ and $a_{1} a_{2} \leq 1 \mathrm{imply}(\mathbf{C} 2)$.
Proof. In the case when $d=0$, the \bar{V}-equation can be written in the form

$$
\begin{align*}
\bar{V}^{\prime} & =\frac{r}{c}(1-\bar{V})\left(\bar{V}-a_{2} \bar{U}\right), \\
\bar{V}(-\infty) & =1 \tag{99}\\
\bar{V}(+\infty) & =0 .
\end{align*}
$$

Since $a_{1} a_{2} \leq 1$, we need to prove $\bar{V}(z) \leq a_{2} \bar{U}(z)$ for all $z \in$ \mathbb{R}. Assume, for contrary, this is not true for some $\bar{z} \in \mathbb{R}$. By (99), \bar{V} is increasing at the neighborhood of \bar{z}. Since $\bar{U}(z)$ is a decreasing function, we have $\bar{V}(\bar{z}+\delta)>\bar{V}(\bar{z})>a_{2} \bar{U}(\bar{z})>$ $a_{2} \bar{U}(\bar{z}+\delta)$, for some $\delta>0$. Similarly, we can show that $\bar{V}(z)$ is increasing for all $z \geq \bar{z}$, which contradicts the fact $\bar{V}(+\infty)=$ 0 . This implies that condition (C2) holds true.

5. Conclusions

The local and the global stability of traveling waves to the two-species Lotka-Volterra competition model (5) under the condition (C1) are investigated. Using the linearization and the essential spectrum analysis in [32], we find that the traveling wavefront is stable in some weighted functional space; see Theorem 3. Many choices of the exponential weight functions are valid; see Algorithm 2.

Under some further condition (C2), we apply the upperlower solution method to obtain a global stability result. Indeed, we prove that both the upper and the lower solutions tend to the wavefront. Our main results are presented in Theorem 4.

Data Availability

We have used Maple codes to do the figure in the paper. They are available from the corresponding author upon request. No other data were used in this study.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

This work is partially supported by the NSERC Discovery Grant.

References

[1] A. Okubo, P. K. Maini, M. H. Williamson, and J. D. Murray, "On the spatial spread of the grey squirrel in Britain," Proceedings Royal Society of London, B, vol. 238, no. 1291, pp. 113-125, 1989.
[2] J. D. Murray, Journal of Mathematical Biology, vol. 19, Springer, Berlin, Germany, 1989.
[3] Y. Kan-on, "Fisher wave fronts for the Lotka-Volterra competition model with diffusion," Nonlinear Analysis. Theory, Methods \& Applications. An International Multidisciplinary Journal, vol. 28, no. 1, pp. 145-164, 1997.
[4] B. Li, H. F. Weinberger, and M. A. Lewis, "Spreading speeds as slowest wave speeds for cooperative systems," Mathematical Biosciences, vol. 196, no. 1, pp. 82-98, 2005.
[5] X. Liang and X.-Q. Zhao, "Asymptotic speeds of spread and traveling waves for monotone semiflows with applications," Communications on Pure and Applied Mathematics, vol. 60, no. 1, pp. 1-40, 2007.
[6] A. I. Volpert, V. A. Volpert, and V. Volpert, Traveling Wave Solutions of Parabolic Systems, vol. 140 of Translations of

Mathematical Monographs, American Mathematical Society, Providence, RI, USA, 1994.
[7] C. Conley and R. Gardner, "An application of the generalized Morse index to travelling wave solutions of a competitive reaction-diffusion model," Indiana University Mathematics Journal, vol. 33, no. 3, pp. 319-343, 1984.
[8] R. A. Gardner, "Existence and stability of travelling wave solutions of competition models: a degree theoretic approach," Journal of Differential Equations, vol. 44, no. 3, pp. 343-364, 1982.
[9] Y. Kan-on, "Parameter dependence of propagation speed of travelling waves for competition-diffusion equations," SIAM Journal on Mathematical Analysis, vol. 26, no. 2, pp. 340-363, 1995.
[10] Y. Hosono, "The minimal speed of traveling fronts for a diffusive Lotka-Volterra competition model," Bulletin of Mathematical Biology, vol. 60, no. 3, pp. 435-448, 1998.
[11] A. Alhasanat and C. Ou, "On a Conjecture Raised by Yuzo Hosono," Journal of Dynamics and Differential Equations.
[12] W. Huang, "Problem on minimum wave speed for a LotkaVolterra reaction-diffusion competition model," Journal of Dynamics and Differential Equations, vol. 22, no. 2, pp. 285-297, 2010.
[13] M. M. Tang and P. C. Fife, "Propagating fronts for competing species equations with diffusion," Archive for Rational Mechanics and Analysis, vol. 73, no. 1, pp. 69-77, 1980.
[14] J. H. van Vuuren, "The existence of travelling plane waves in a general class of competition-diffusion systems," IMA Journal of Applied Mathematics, vol. 55, no. 2, pp. 135-148, 1995.
[15] W.-T. Li, G. Lin, and S. Ruan, "Existence of travelling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems," Nonlinearity, vol. 19, no. 6, pp. 1253-1273, 2006.
[16] S. A. Gourley and S. Ruan, "Convergence and travelling fronts in functional differential equations with nonlocal terms: a competition model," SIAM Journal on Mathematical Analysis, vol. 35, no. 3, pp. 806-822, 2003.
[17] P. C. Fife and J. B. McLeod, "A phase plane discussion of convergence to travelling fronts for nonlinear diffusion," Archive for Rational Mechanics and Analysis, vol. 75, no. 4, pp. 281-314, 1981.
[18] T. Gallay, "Local stability of critical fronts in nonlinear parabolic partial differential equations," Nonlinearity, vol. 7, no. 3, pp. 741764, 1994.
[19] X. Hou and Y. Li, "Local stability of traveling-wave solutions of nonlinear reaction-diffusion equations," Discrete and Continuous Dynamical Systems - Series A, vol. 15, no. 2, pp. 681-701, 2006.
[20] K. Kirchgässner, "On the nonlinear dynamics of travelling fronts," Journal of Differential Equations, vol. 96, no. 2, pp. 256278, 1992.
[21] S. Ma and X.-Q. Zhao, "Global asymptotic stability of minimal fronts in monostable lattice equations," Discrete and Continuous Dynamical Systems - Series A, vol. 21, no. 1, pp. 259-275, 2008.
[22] H. J. K. Moet, "A note on the asymptotic behavior of solutions of the KPP equation," SIAM Journal on Mathematical Analysis, vol. 10, no. 4, pp. 728-732, 1979.
[23] D. H. Sattinger, "On the stability of waves of nonlinear parabolic systems," Advances in Mathematics, vol. 22, no. 3, pp. 312-355, 1976.
[24] W. Shen, "Travelling waves in time almost periodic structures governed by bistable nonlinearities. I. Stability and uniqueness," Journal of Differential Equations, vol. 159, no. 1, pp. 1-54, 1999.
[25] J.-C. Tsai and J. Sneyd, "Existence and stability of traveling waves in buffered systems," SIAM Journal on Applied Mathematics, vol. 66, no. 1, pp. 237-265, 2005.
[26] Y. Wu and X. Xing, "Stability of traveling waves with critical speeds for p-degree Fisher-type equations," Discrete and Continuous Dynamical Systems - Series A, vol. 20, no. 4, pp. 1123-1139, 2008.
[27] G. Lv and M. Wang, "Nonlinear stability of travelling wave fronts for delayed reaction diffusion equations," Nonlinearity, vol. 23, no. 4, pp. 845-873, 2010.
[28] M. Bramson, "Convergence of solutions of the Kolmogorov equation to travelling waves," Memoirs of the American Mathematical Society, vol. 44, no. 285, iv+190 pages, 1983.
[29] J. Xin, "Front propagation in heterogeneous media," SIAM Review, vol. 42, no. 2, pp. 161-230, 2000.
[30] G. Lv and M. Wang, "Nonlinear stability of traveling wave fronts for delayed reaction diffusion systems," Nonlinear Analysis: Real World Applications, vol. 13, no. 4, pp. 1854-1865, 2012.
[31] Y. Meng, W. Zhang, and Z. Yu, "Existence and asymptotic of traveling wave fronts for the delayed Volterra-type cooperative system with spatial diffusion," Advances in Difference Equations, Paper No. 203, 19 pages, 2018.
[32] D. Henry, Geometric Theory of Semilinear Parabolic Equations, vol. 840 of Lecture Notes in Mathematics, Springer, New York, NY, USA, 1993.
[33] P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, vol. 247 of Pitman Research Notes in Mathematics Series, Longman Scientific \& Technical, Harlow, UK, 1991.
[34] D. G. Aronson and H. F. Weinberger, "Multidimensional nonlinear diffusion arising in population genetics," Advances in Mathematics, vol. 30, no. 1, pp. 33-76, 1978.
[35] H. R. Thieme, "Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations," Journal für die reine und angewandte Mathematik, vol. 306, pp. 94-121, 1979.
[36] M. A. Lewis, B. Li, and H. F. Weinberger, "Spreading speed and linear determinacy for two-species competition models," Journal of Mathematical Biology, vol. 45, no. 3, pp. 219-233, 2002.

Advances in
Operations Research
$=$

Decision Sciences
Journal of
Applied Mathematics
$=$

The Scientific World Journal

Journal of
Probability and Statistics

