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In this paper, the stability of travelingwave solutions to the Lotka-Volterra diffusivemodel is investigated. First, we convert themodel
into a cooperative system by a special transformation. The local and the global stability of the traveling wavefronts are studied in a
weighted functional space. For the global stability, comparison principle together with the squeezing technique is applied to derive
the main results.

1. Introduction

We are concerned here with the diffusive Lotka-Volterra
competition model𝜙𝑡 = 𝑑1𝜙𝑥𝑥 + 𝑟1𝜙 (1 − 𝑏1𝜙 − 𝑎1𝜓) ,𝜓𝑡 = 𝑑2𝜓𝑥𝑥 + 𝑟2𝜓 (1 − 𝑎2𝜙 − 𝑏2𝜓) , (1)

with the initial data𝜙 (𝑥, 0) = 𝜙0 (𝑥) ≥ 0,𝜓 (𝑥, 0) = 𝜓0 (𝑥) ≥ 0,∀𝑥 ∈ R. (2)

Here 𝜙(𝑥, 𝑡) and 𝜓(𝑥, 𝑡) are the population densities at time𝑡 and location 𝑥; 𝑑1 and 𝑑2 are the diffusive coefficients; 𝑟1
and 𝑟2 are the net birth rates; 𝑎1 and 𝑎2 are the competition
coefficients; 1/𝑏1 and 1/𝑏2 are the carrying capacities for each
species. For derivation and biological interpretation of this
model, we refer readers to [1, 2].

Using the transformations

√ 𝑟1𝑑1𝑥 󳨀→ 𝑥,
𝑟1𝑡 󳨀→ 𝑡,

𝑏1𝜙 (𝑥, 𝑡) = 𝜙 (𝑥, 𝑡) ,𝑏2𝜓 (𝑥, 𝑡) = 𝜓̃ (𝑥, 𝑡) ,
𝑑 = 𝑑2𝑑1 ,𝑟 = 𝑟2𝑟1 ,𝑎1𝑏2 󳨀→ 𝑎1,𝑎2𝑏1 󳨀→ 𝑎2,

(3)
the nondimensional form of the system becomes𝜙𝑡 = 𝜙𝑥𝑥 + 𝜙 (1 − 𝜙 − 𝑎1𝜓̃) ,𝜓̃𝑡 = 𝑑𝜓̃𝑥𝑥 + 𝑟𝜓̃ (1 − 𝑎2𝜙 − 𝜓̃) . (4)

By letting 𝑢 = 𝜙, V = 1 − 𝜓̃, this model can be further written
as a cooperative system𝑢𝑡 = 𝑢𝑥𝑥 + 𝑢 (1 − 𝑎1 − 𝑢 + 𝑎1V) ,

V𝑡 = 𝑑V𝑥𝑥 + 𝑟 (1 − V) (𝑎2𝑢 − V) , (5)

Hindawi
Complexity
Volume 2019, Article ID 6569520, 11 pages
https://doi.org/10.1155/2019/6569520

http://orcid.org/0000-0003-1990-0263
http://orcid.org/0000-0003-0390-0373
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/6569520


2 Complexity

with 𝑢 (𝑥, 0) = 𝑢0 (𝑥) = 𝜙 (𝑥, 0) ,
V (𝑥, 0) = V0 (𝑥) = 1 − 𝜓̃ (𝑥, 0) ,∀𝑥 ∈ R. (6)

For our study, we will assume that 𝑢0(𝑥) and V0(𝑥) are
nonnegative. The existence and uniqueness of the solution
of the above problem can be easily verified by a classical
argument of Picard’s iteration. Throughout this paper, we
assume that the condition0 < 𝑎1 < 1 < 𝑎2 (C1)
is satisfied. Under this condition, equilibria to system (5) in
the region {(𝑢, V) | 0 ≤ 𝑢 ≤ 1, 0 ≤ V ≤ 1} are only (0, 0), (0, 1),
and (1, 1). In the absence of diffusion in the system (5), it can
be shown that (0, 0) is unstable and (1, 1) is stable. For the
system, we are particularly interested in the traveling wave
solution, connecting (1, 1) and (0, 0), in the form(𝑢, V) (𝑥, 𝑡) = (𝑈,𝑉) (𝑧) , (7)

where 𝑧 = 𝑥 − 𝑐𝑡 is the wave variable, 𝑐 ≥ 0 is the wave speed,
and (𝑈, 𝑉) is called the wavefront and satisfies0 = 𝑈𝑧𝑧 + 𝑐𝑈𝑧 + 𝑈 (1 − 𝑎1 − 𝑈 + 𝑎1𝑉) ,0 = 𝑑𝑉𝑧𝑧 + 𝑐𝑉𝑧 + 𝑟 (1 − 𝑉) (𝑎2𝑈 − 𝑉) , (8)

subject to (𝑈, 𝑉) (−∞) = (1, 1) ,(𝑈, 𝑉) (∞) = (0, 0) . (9)

This is equivalent to studying traveling waves for the original
competition system (4) that connect the boundary equilibria(0, 1) and (1, 0).

The existence of traveling waves to the above problem is
well-studied in literature. It is known that there exists 𝑐∗ ≥ 0
so that problem (8)-(9) has a monotone solution (𝑈, 𝑉)(𝑧)
for 𝑐 ≥ 𝑐∗ and no wavefront exists for 𝑐 < 𝑐∗; see [3–6]. 𝑐∗
is called the minimal wave speed for this system and satisfies𝑐∗ ≥ 2√1 − 𝑎1. When 𝑐∗ = 2√1 − 𝑎1, we say that the minimal
wave speed is linearly determined; see the details in [4].

We know that (𝑈,𝑉)(𝑥 − 𝑐𝑡) is a special pattern that only
satisfies the first two equations in (5). For the stability of
this pattern, we want to know if the solution of (5) tends to(𝑈,𝑉)(𝑥 − 𝑐𝑡) for given initial data 𝑢0(𝑥) and V0(𝑥). To this
end, we use the (𝑧, 𝑡)-coordinate and(𝑢, V) (𝑥, 𝑡) = (𝑈,𝑉) (𝑧, 𝑡) , (10)

to transform the 𝑢V-model (5) into the partial differential
model 𝑈𝑡 = 𝑈𝑧𝑧 + 𝑐𝑈𝑧 + 𝑈 (1 − 𝑎1 − 𝑈 + 𝑎1𝑉) ,𝑉𝑡 = 𝑑𝑉𝑧𝑧 + 𝑐𝑉𝑧 + 𝑟 (1 − 𝑉) (𝑎2𝑈 − 𝑉) , (11)

subject to 𝑈 (𝑧, 0) = 𝑢0 (𝑧) ,𝑉 (𝑧, 0) = V0 (𝑧) ,∀𝑧 ∈ R. (12)

It is easy to see that (𝑈, 𝑉)(𝑧) is the steady-state to the above
new system.

We should mention that dynamics for (4) is very rich.
There are always three nonnegative equilibria (0, 0), (1, 0),
and (0, 1). In the case when 𝑎1 < 1, 𝑎2 < 1, or the case when𝑎1 > 1, 𝑎2 > 1, there exists a unique positive coexistence
equilibrium

(𝜙∗, 𝜓̃∗) = ( 1 − 𝑎11 − 𝑎1𝑎2 , 1 − 𝑎21 − 𝑎1𝑎2) . (13)

Based on the phase plane analysis to the ordinary differential
system of (4) without diffusion terms, the nonlinearity of the
model (4) when 𝑎1 < 1 and 𝑎2 < 1 is called the persistence
case (or coexistence). Likewise, the nonlinearity is called the
monostable case when 𝑎1 < 1 and 𝑎2 > 1 are satisfied, or
the bistable case when 𝑎1 > 1 and 𝑎2 > 1. Traveling waves
to (4) have been investigated considerably. For the bistable
case, please see [7, 8] for the existence of traveling waves
connecting (1, 0) and (0, 1), and [9] for the uniqueness and
parameter dependence of wave speeds. For the monostable
case, we refer to [3, 10] for the existence of traveling waves,
and [11, 12] for the selection of the minimal speed. For
the persistence (coexistence), the existence of traveling wave
connecting (0, 0) and (𝜙∗, 𝜓̃∗) has been studied in [13, 14].
When time delays are incorporated into (4) in the persistence
case, Li et al. [15] and Gourley and Ruan [16] have proved the
existence of traveling waves.

The stability of traveling waves to a scalar partial dif-
ferential equation has been well-studied, e.g., [17–27], the
monograph [6, 28] and the survey paper [29]. Indeed, the
extension of this study to a general system is not trivial. As
we know, when time delays are directly incorporated in the
competition terms in (4), the system becomes nonmonotone
and the comparison principle cannot work. Alternatively, in
[30, 31], the authors studied the stability of traveling waves for
the so-called cooperative delayed reaction diffusion system
by changing the signs of 𝑎1 and 𝑎2. To be exact, with putting
delay = 0, they studied the cooperative system𝜙𝑡 = 𝑑1𝜙𝑥𝑥 + 𝑟1𝜙 (1 − 𝑏̂1𝜙 + 𝑎1𝜓) ,𝜓𝑡 = 𝑑2𝜓𝑥𝑥 + 𝑟2𝜓 (1 + 𝑎2𝜙 − 𝑏̂2𝜓) , (14)

where 𝑑𝑖, 𝑟𝑖, 𝑎𝑖, and 𝑏̂𝑖 are all positive. This corresponds to the
persistence case in our model (4). Under the condition 𝑏̂1𝑏̂2 −𝑎1𝑎2 > 0, a positive equilibrium

(𝜙+, 𝜓+) = ( 𝑎1 + 𝑏̂2𝑏̂1𝑏̂2 − 𝑎1𝑎2 , 𝑏̂1 + 𝑎2𝑏̂1𝑏̂2 − 𝑎1𝑎2) (15)

exists. They proved that the traveling wave fronts, connecting(0, 0) and (𝜙+, 𝜓+), are exponentially stable in some weighted
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𝐿∞ spaces, and obtained the decay rates by the weighted
energy estimate.

Despite the success in the study of the stability of
traveling waves to the classical model (4) in the bistable
and persistence cases, the stability of traveling wave in the
monostable remains still unsolved. The purpose of this paper
is to systematically study the local and the global stability
of the steady-state (𝑈, 𝑉)(𝑧). Using the method of spectrum
analysis in [32], we give the local stability. For the global
stability, we construct an upper and a lower solutions to the
system (11), and prove their convergence to the traveling wave(𝑈,𝑉)(𝑧). In view of comparison together with the squeezing
technique, we arrive at new results on the global stability of
the traveling waves. We remark that our method is different
from that in [30, 31] where weighted energy method was
applied.

The rest of the paper is organized as follows. Local
analysis of the wave profile near the unstable point is studied
in Section 2. In Section 3, we study the local stability of
the steady-state by applying the standard linearization. The
resulting spectrum problem is studied by the method in [32].
A suitable weighted functional space is chosen to proceed
the analysis. In Section 4, besides the weighted functional
space, the upper-lower solution method together with the
squeezing technique is applied to derive the global stability
results. Conclusions are presented in Section 5.

2. The Local Analysis of the Wave Profile Near
the Equilibrium (0, 0)

In this section, we study the behavior of the traveling wave(𝑈,𝑉)(𝑧) locally near the equilibrium (0, 0). Assume that the
solution has exponential decay as 𝑧 󳨀→ ∞. Indeed this claim
can be easily verified by themaximum principal coupled with
a comparison near the neighborhood of infinity. Therefore,
we set (𝑈, 𝑉) (𝑧) ∼ (𝜁1𝑒−𝜇𝑧, 𝜁2𝑒−𝜇𝑧) as 𝑧 󳨀→ ∞, (16)

for positive constants 𝜁1, 𝜁2, and 𝜇. By substituting this into
(8) and linearizing the equations we have

𝐴 (𝜇)(𝜁1𝜁2) = (00) , (17)

where 𝐴(𝜇) is given by

𝐴 (𝜇) = (𝜇2 − 𝑐𝜇 + 1 − 𝑎1 0𝑟𝑎2 𝑑𝜇2 − 𝑐𝜇 − 𝑟) . (18)

The system of algebraic equations (17) has a nontrivial
solution if and only if det(𝐴) = 0. This implies 𝜇 = 𝜇1,2,3 > 0,
where

𝜇1 (𝑐) = 𝑐 − √𝑐2 − 4 (1 − 𝑎1)2 ,
𝜇2 (𝑐) = 𝑐 + √𝑐2 − 4 (1 − 𝑎1)2 ,

(19)

and

𝜇3 (𝑐) = 𝑐 + √𝑐2 + 4𝑑𝑟2𝑑 . (20)

Indeed, a condition so that 𝜇1 and 𝜇2 are reals is𝑐 ≥ 2√1 − 𝑎1 fl 𝑐0. (21)

For 𝑐 > 𝑐0, obviously 𝜇1 < 𝜇2. When 0 ≤ 𝑑 < 1,
we have also 𝜇2 < 𝜇3 for all 𝑐 > 𝑐0, i.e., 𝑒−𝜇1𝑧 dominates
both of 𝑒−𝜇2𝑧 and 𝑒−𝜇3𝑧. In this case, the eigenvector of 𝐴(𝜇)
corresponding to 𝜇𝑖, for 𝑖 = 1, 2, is the strongly positive vector(𝜁1(𝜇𝑖) 𝜁2(𝜇𝑖))𝑇, where𝜁1 (𝜇𝑖) = − (𝑑𝜇2𝑖 − 𝑐𝜇𝑖 − 𝑟)

and 𝜁2 (𝜇𝑖) = 𝑟𝑎2. (22)

It follows that

(𝑈 (𝑧)𝑉 (𝑧)) = 𝐶1 (𝜁1 (𝜇1)𝜁2 (𝜇1)) 𝑒−𝜇1𝑧 + 𝐶2 (𝜁1 (𝜇2)𝜁2 (𝜇2)) 𝑒−𝜇2𝑧,
as 𝑧 󳨀→ ∞, (23)

for 𝐶1 > 0 or 𝐶1 = 0, 𝐶2 > 0. For the case when1 < 𝑑 < 2 + 𝑟1 − 𝑎1 fl 𝑑, (24)

the same behavior in (23) is still true if 𝑐∗ < 𝑐 ≤ 𝑐, where
𝑐 = √ 𝑟 + 1 − 𝑎1𝑑 − 1 + (1 − 𝑎1)√ 𝑑 − 1𝑟 + 1 − 𝑎1 . (25)

If 𝑐 > 𝑐, then 𝜇1 < 𝜇3 < 𝜇2 and we have

(𝑈 (𝑧)𝑉 (𝑧)) = 𝐶1 (𝜁1 (𝜇1)𝜁2 (𝜇1)) 𝑒−𝜇1𝑧
+ 𝐶2 (−𝜁1 (𝜇2)−𝜁2 (𝜇2)) 𝑒−𝜇2𝑧 + 𝐶3 (01) 𝑒−𝜇3𝑧,

as 𝑧 󳨀→ ∞,
(26)

for𝐶1 > 0 or𝐶1 = 0,𝐶2,3 > 0. Here, (0 1)𝑇 is the eigenvector
of 𝐴(𝜇) corresponding to 𝜇3, and note that 𝜁1(𝜇2) < 0 in this
case. On the other hand, when𝑑 > 𝑑, (27)(𝑈, 𝑉)(𝑧) behaves like (26) if 𝑐 > 𝑐. For the case when 𝑐∗ <𝑐 < 𝑐, we have 𝜇3 < 𝜇1 < 𝜇2. Hence,
(𝑈 (𝑧)𝑉 (𝑧)) = 𝐶1 (−𝜁1 (𝜇1)−𝜁2 (𝜇1)) 𝑒−𝜇1𝑧

+ 𝐶2 (−𝜁1 (𝜇2)−𝜁2 (𝜇2)) 𝑒−𝜇2𝑧 + 𝐶3 (01) 𝑒−𝜇3𝑧,
as 𝑧 󳨀→ ∞,

(28)

for 𝐶1,3 > 0, or 𝐶1 = 0, 𝐶2,3 > 0. We summarize the above
behaviors in Table 1.
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Table 1: The asymptotic behavior of the wave profile (𝑈, 𝑉) near
infinity.

Condition on 𝑑 Condition on 𝑐 The asymptotic behavior0 ≤ 𝑑 < 1 𝑐 > 𝑐∗ (23)1 < 𝑑 < 𝑑 𝑐∗ < 𝑐 < 𝑐 (23)1 < 𝑑 𝑐 > 𝑐 (26)𝑑 > 𝑑 𝑐∗ < 𝑐 < 𝑐 (28)

Kan-on in [3] derived the asymptotic behaviors of(𝑈,𝑉)(𝑧) near infinity when 𝑐 ≥ 𝑐∗. After deriving the
behavior of 𝑈(𝑧), he used it into the 𝑉-equation to find the
behavior of 𝑉(𝑧) when 𝜇1 ≤ 𝜇2 ≤ 𝜇3 and when 𝜇3 ≤ 𝜇1 ≤ 𝜇2.
Our result here agreeswith that in [3] when 𝑐 > 𝑐∗.We further
study the case when 𝜇1 < 𝜇3 < 𝜇2.

Finally, we have the asymptotic behavior for the solution𝑈(𝑧) when the wave speed is greater than the minimal speed𝑐∗.
Theorem 1. For 𝑐 > 𝑐∗, the wavefront 𝑈 has the following
behavior: 𝑈 (𝑧) ∼ 𝐶1𝑒−𝜇1𝑧, as 𝑧 󳨀→ ∞ (29)

for some 𝐶1 > 0.
Proof. On the contrary, assume that for some 𝑐1 > 𝑐∗, the
wavefront 𝑈 has the following behavior:𝑈 (𝑧) ∼ 𝐶2𝑒−𝜇2𝑧, as 𝑧 󳨀→ ∞ (30)

for some𝐶2 > 0. By this assumption, it follows that (𝑈, 𝑉)(𝑥−𝑐1𝑡) is a solution to the following partial differential equation:𝑢𝑡 = 𝑢𝑥𝑥 + 𝑢 (1 − 𝑎1 − 𝑢 + 𝑎1V) ,
V𝑡 = 𝑑V𝑥𝑥 + 𝑟 (1 − V) (𝑎2𝑢 − V) , (31)

with the initial conditions𝑢 (𝑥, 0) = 𝑈 (𝑥)
and V (𝑥, 0) = 𝑉 (𝑥) . (32)

We know that there exists a monotonic traveling wavefront to
the system (31) for any 𝑐 ≥ 𝑐∗. In particular, assume (𝑈,𝑉)(𝑥−𝑐𝑡) is a solution for some 𝑐 ∈ (𝑐∗, 𝑐1)with the initial condition𝑢 (𝑥, 0) = 𝑈 (𝑥)

and V (𝑥, 0) = 𝑉 (𝑥) . (33)

By a simple computation of the asymptotic behavior of this
solution to (8)-(9) near ±∞, we can always obtain (by shifting
if necessary) 𝑈(𝑥) ≤ 𝑈(𝑥) for all 𝑥 ∈ (−∞,∞). From the
second equation of (8), we have 𝑉(𝑥) ≤ 𝑉(𝑥) for all 𝑥 ∈(−∞,∞). From (31), by comparison, we get𝑈 (𝑥 − 𝑐1𝑡) ≤ 𝑈 (𝑥 − 𝑐𝑡) ,𝑉 (𝑥 − 𝑐1𝑡) ≤ 𝑉 (𝑥 − 𝑐𝑡) , (34)

for all (𝑥, 𝑡) ∈ (R,R+). On the other hand, fix 𝜉 = 𝑥 − 𝑐1𝑡.
Then 𝑈(𝜉) > 0 is fixed, and we have𝑈 (𝑥 − 𝑐𝑡) = 𝑈 (𝜉 + (𝑐1 − 𝑐) 𝑡) ∼ 𝑈 (+∞) = 0

as 𝑡 󳨀→ ∞. (35)

By (34), this implies that 𝑈(𝜉) ≤ 0, which is a contradiction.
The proof is complete.

3. The Local Stability

To study the local stability, as usual, we add a small per-
turbation to the traveling wave and study the behavior of
this perturbation for large time period. If this perturbation
decays, then we say that the traveling wave is locally stable.
For 𝛿 ≪ 1 and a parameter 𝜆, let𝑈 (𝑧, 𝑡) = 𝑈 (𝑧) + 𝛿𝜙1 (𝑧) 𝑒𝜆𝑡,𝑉 (𝑧, 𝑡) = 𝑉 (𝑧) + 𝛿𝜙2 (𝑧) 𝑒𝜆𝑡, (36)

where 𝜙1 and 𝜙2 are two real functions. Substitute these
formulas into (11) and linearize the system about (𝑈, 𝑉) to get
the following spectrum problem:𝜆Φ =LΦ fl 𝐷Φ󸀠󸀠 + 𝑐Φ󸀠 + 𝐽 (𝑧)Φ, (37)

whereΦ = (𝜙1 𝜙2)𝑇, 𝐷 and 𝐽(𝑧) are 2 × 2matrices given by

𝐷 = (1 00 𝑑)
and 𝐽 (𝑧)
= (1 − 𝑎1 − 2𝑈 + 𝑎1𝑉 𝑎1𝑈𝑟𝑎2 (1 − 𝑉) 𝑟 (−1 − 𝑎2𝑈 + 2𝑉)) .

(38)

ForΦ in a suitable space, we shall find sign of themaximal
real part to the spectrum (𝜆) of the operatorL to determine
the local stability of the traveling wave solution. To proceed,
we introduce a weighted functional space 𝐿𝑝𝑤,𝐿𝑝𝑤 = {𝑓 (𝑧) : 𝑤 (𝑧) 𝑓 (𝑧) ∈ 𝐿𝑝 (R) , 𝑝 ≥ 1} (39)

with the norm󵄩󵄩󵄩󵄩𝑓 (𝑧)󵄩󵄩󵄩󵄩𝐿𝑝𝑤 = (∫∞−∞𝑤 (𝑧) 󵄨󵄨󵄨󵄨𝑓 (𝑧)󵄨󵄨󵄨󵄨𝑝 𝑑𝑧)1/𝑝 , (40)

where 𝑤 (𝑧) = ( 1𝑤1 (𝑧) , 1𝑤2 (𝑧)) (41)

is the weight function with

𝑤1 (𝑧) = {{{
𝑒−𝛼(𝑧−𝑧0), 𝑧 > 𝑧01, 𝑧 ≤ 𝑧0,

𝑤2 (𝑧) = {{{
𝑒−𝛽(𝑧−𝑧0), 𝑧 > 𝑧01, 𝑧 ≤ 𝑧0,

(42)
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for some positive constants 𝛼, 𝛽, and 𝑧0 to be chosen. Here,𝐿𝑝(R), for 𝑝 ≥ 1, is the well-known Lebesgue space of
integrable functions defined on R. Then we consider the
operator L on this new space and find its spectrum. To do
this, we write Φ(𝑧) in the form

Φ = (𝜙1𝜙2) = (𝑤1𝜓1𝑤2𝜓2) , (43)

for 𝐿𝑝-functions 𝜓1 and 𝜓2. Substituting (43) into (37)
gives a new spectrum problem in the weighted space𝐿𝑝𝑤, 𝜆Ψ =L𝑤Ψ fl 𝐷Ψ󸀠󸀠 +𝑀 (𝑧)Ψ󸀠 + 𝑁 (𝑧)Ψ, (44)

where Ψ = (𝜓1 𝜓2)𝑇, 𝑀(𝑧) and 𝑁(𝑧) are 2 × 2 matrices
defined by

𝑀(𝑧) = (𝑐 + 2𝑤󸀠1𝑤1 0
0 𝑐 + 2𝑑𝑤󸀠2𝑤2) (45)

and

𝑁(𝑧) = (𝑤󸀠󸀠1𝑤1 + 𝑐𝑤󸀠1𝑤1 0
0 𝑑𝑤󸀠󸀠2𝑤2 + 𝑐𝑤󸀠2𝑤2)+𝑌 (𝑧) , (46)

with the 𝑖𝑘-element of the matrix 𝑌(𝑧), 𝑦𝑖𝑘, being given in
terms of the 𝑖𝑘-element of the matrix 𝐽(𝑧) as 𝑦𝑖𝑘 = (𝑤𝑘/𝑤𝑖)𝑗𝑖𝑘;
that is,

𝑁(𝑧) = (𝑤󸀠󸀠1𝑤1 + 𝑐𝑤󸀠1𝑤1 + 1 − 𝑎1 − 2𝑈 + 𝑎1𝑉 𝑎1𝑈𝑤2𝑤1𝑟𝑎2 (1 − 𝑉) 𝑤1𝑤2 𝑑𝑤󸀠󸀠2𝑤2 + 𝑐𝑤󸀠2𝑤2 + 𝑟 (−1 − 𝑎2𝑈 + 2𝑉)) . (47)

The details to find the essential spectrum of the operator
L𝑤 can be finalized by using Theorem A.2 in [32] and are
given below. After we choose the weight function so that
the essential spectrum is on the left-half complex plane, we
can determine the sign of the maximal real part of the point
spectrum in the weighted space as well.

First of all, to apply the method in [32], we need to choose𝛼 and 𝛽 so that the matrix functions 𝑀(𝑧) and 𝑁(𝑧) are
bounded; i.e., the limits

lim
𝑧󳨀→∞

𝑈 (𝑧) 𝑤2 (𝑧)𝑤1 (𝑧) = 𝐴1
and lim
𝑧󳨀→∞

(1 − 𝑉 (𝑧)) 𝑤1 (𝑧)𝑤2 (𝑧) = 𝐴2,
(48)

for some constants 𝐴1 and 𝐴2, are satisfied. We choose𝛼 − 𝜇1 < 𝛽 ≤ 𝛼, (49)

where 𝜇1 is defined in (19). This makes, by using Theorem 1,𝐴1 = 0 and
𝐴2 = {{{

0 when 𝛽 < 𝛼,1 when 𝛽 = 𝛼. (50)

Now, we define𝑆± fl {𝜆 | det (−𝜏2𝐷 + 𝑖𝜏𝑀± + 𝑁± − 𝜆𝐼) = 0, −∞< 𝜏 < ∞} , (51)

where𝑀± and 𝑁± are the limits of𝑀(𝑧) and 𝑁(𝑧) as 𝑧 󳨀→±∞, respectively.Then the essential spectrum of the operator

L𝑤 is contained in the union of regions inside or on the
curves 𝑆+ and 𝑆−; see [32, pp. 140]. By letting 𝑧 󳨀→ +∞,𝑀+,
and𝑁+ are given as (taking condition (49) into account)

𝑀+ = (𝑐 − 2𝛼 00 𝑐 − 2𝑑𝛽)
and 𝑁+ = (𝛼2 − 𝑐𝛼 + 1 − 𝑎1 0𝐴2 𝑑𝛽2 − 𝑐𝛽 − 𝑟) .

(52)

The equation det(−𝜏2𝐷 + 𝑖𝜏𝑀+ + 𝑁+ − 𝜆𝐼) = 0 has two
solutions 𝜆 = 𝜆1,2, where𝜆1 = −𝜏2 + 𝑖𝜏 (𝑐 − 2𝛼) + 𝛼2 − 𝑐𝛼 + 1 − 𝑎1,𝜆2 = −𝜏2𝑑 + 𝑖𝜏 (𝑐 − 2𝑑𝛽) + 𝑑𝛽2 − 𝑐𝛽 − 𝑟. (53)

This means that 𝑆+ is the union of two parabolas in the
complex plane which are symmetric about the real axis;
namely, 𝑆+,1 = {𝜆1 | −∞ < 𝜏 < ∞} and𝑆+,2 = {𝜆2 | −∞ < 𝜏 < ∞} . (54)

Themost right points of these curves are 𝛼2 − 𝑐𝛼+ 1 − 𝑎1 and𝑑𝛽2 − 𝑐𝛽 − 𝑟, respectively, which are negative if𝛼 ∈ (𝜇1, 𝜇2) and𝛽 ∈ (0, 𝜇3) , (55)

where𝜇1, 𝜇2, and 𝜇3 are defined in (19)-(20). Hence, when the
above condition satisfies, 𝑆+ = 𝑆+,1 ∪ 𝑆+,2 is on the left-half
complex plane.
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Similarly, we find 𝑆− by solving the equation det(−𝜏2𝐷 +𝑖𝜏𝑀− + 𝑁− − 𝜆𝐼) = 0, with
𝑀− = (𝑐 00 𝑐) and

𝑁− = (−1 𝑎10 𝑟 (1 − 𝑎2)) .
(56)

This gives two solutions 𝜆 = 𝜆3,4, where𝜆3 = −𝜏2 + 𝑖𝜏𝑐 − 1,𝜆4 = −𝜏2𝑑 + 𝑖𝜏𝑐 + 𝑟 (1 − 𝑎2) . (57)

From (C1), 𝑆− = {𝜆3 | −∞ < 𝜏 < ∞} ∪ {𝜆4 | −∞ < 𝜏 < ∞}
is on the left-half complex plane.

The above analysis shows that the essential spectrum of
L𝑤 is on the left-half complex plane as long as conditions
(49) and (55) are satisfied. In fact, there are many choices of𝛼 and 𝛽 satisfying these conditions depending on 𝜇1, 𝜇2, and𝜇3. We choose them by the following algorithm.

Algorithm 2. Twomechanisms are valid to choose 𝛼 and 𝛽 so
that all conditions in (49) and (55) hold:

(1) If 𝜇1 < 𝜇3, then we choose 𝛽 = 𝛼 for any 𝛼 ∈(𝜇1,min{𝜇2, 𝜇3}).
(2) If 𝜇1 ≥ 𝜇3, then we choose 𝜖 < 𝛽 < 𝜇3 and 𝛼 = 𝜇1 + 𝜖

for small 𝜖 > 0. In particular, we can choose 𝛽 = 2𝜖
and 𝛼 = 𝜇1 + 𝜖, for 𝜖 < min{𝜇2 − 𝜇1, 𝜇3/2}.

Finally, in order to get a local stability result, we need
to check the sign of the principal eigenvalue in the point
spectrum for (37)-(38). Consider the associated linear partial
differential system𝑢𝑡 = 𝐷𝑢𝑧𝑧 + 𝑐𝑢𝑧 + 𝐽 (𝑧) 𝑢, (58)

where 𝑢(𝑧, 𝑡) = (𝑢1(𝑧, 𝑡), 𝑢2(𝑧, 𝑡)).The eigenpair (𝜆,Φ) of (37)
implies a solution 𝑒𝜆𝑡Φ to the above system. Let𝑄𝑡 = 𝑢(𝑡, 𝑧, 𝜙)
denote the solution semiflow of (58) for any given initial data𝜙 in 𝐿𝑝. It is easy to see 𝑄𝑡 is compact and strongly positive.
By thewell-knownKrein-Rutman theorem (see, e.g., [33]),𝑄𝑡
has a simple principal eigenvalue𝜆max with a strongly positive
eigenvector, and all other eigenvalues 𝑒𝜆𝑡 must satisfy󵄨󵄨󵄨󵄨󵄨𝑒𝜆𝑡󵄨󵄨󵄨󵄨󵄨 < 𝑒𝜆max𝑡. (59)

For any 𝑐 > 𝑐∗, we have fromTheorem 1 that 𝑈(𝑧) ∼ 𝐶1𝑒−𝜇1𝑧,𝐶1 > 0, as 𝑧 󳨀→ ∞. 𝜆 = 0 is an eigenvalue to the operator
L defined in (37) with the one-sign (strongly positive)
eigenvector (−𝑈󸀠, −𝑉󸀠)(𝑧). By the choice of the weighted
functional space 𝐿𝑝𝑤, the one-sign eigenvector (𝑈󸀠, 𝑉󸀠)(𝑧) is
not inside. Hence, the real parts of point spectrum of the
operator L𝑤 in 𝐿𝑝𝑤 are all negative. We can also explain this
in a simple analysis. Assume to the contrary that (𝜆, Φ) is an
eigenpair of the eigenvalue problem (37)-(38) with 𝜆 > 0 andΦ ∈ 𝐿𝑝𝑤. Obviously, the one-sign functionΦ = (−𝑈󸀠, −𝑉󸀠)(𝑧)

satisfies (58). For Φ in the 𝐿𝑝𝑤-space, we have essentially (or
except for a set of zeromeasure)Φ(𝑧) > Φ(𝑧) as 𝑧 󳨀→ ∞. On
the other hand, when 𝑧 󳨀→ −∞, we can apply the method
of asymptotic analysis and assume that the eigenfunction
of (37) behaves like 𝑘𝑒𝜇𝑧 for some positive values 𝑘 and 𝜇.
By substituting it into the eigenvalue problem and using the
behavior of 𝐽(𝑧), we obtain that 𝜇 is increasing with respect
to 𝜆. This implies that Φ(𝑧) > Φ(𝑧) as 𝑧 󳨀→ −∞. Hence,
by choosing 𝑘 sufficient large, we can have 𝑘Φ ≥ |Φ|.
By comparison, from the partial differential system (58), we
obtain 𝑘Φ(𝑧) ≥ |Φ|𝑒𝜆𝑡, which contradicts 𝜆 > 0. This implies
that for Φ ∈ 𝐿𝑝𝑤, the real parts of all eigenvalues 𝜆 of (37)
should be nonpositive.

Now we are in a position to state the local stability result.

Theorem 3. For any 𝑐 > 𝑐∗, the wavefront (𝑈,𝑉)(𝑧) is locally
stable in the weighted functional space 𝐿𝑝𝑤 with the weight
function 𝑤(𝑧) defined in (41)-(42), where 𝛼 and 𝛽 in the
formula of 𝑤(𝑧) are chosen by Algorithm 2.

4. The Global Stability

We study here the global stability of the steady-state(𝑈, 𝑉)(𝑧) in a special choice of the weighted functional
space 𝐿𝑝𝑤(R). Let 𝑝 = ∞ and define the norm ‖𝑓‖𝐿∞𝑤 =
ess sup𝑧∈R|𝑤(𝑧)𝑓(𝑧)|, for some weight function 𝑤(𝑧).
Assume 𝜇1 < 𝜇3. By Algorithm 2, we choose 𝛼 = 𝛽 ∈(𝜇1,min{𝜇2, 𝜇3}). Specifically, let 𝛼 = 𝛽 = 𝜇1 + 𝜖, for small
positive number 𝜖. Also, we assume that the functions 𝑈(𝑧)
and 𝑉(𝑧) satisfy the condition𝑉 (𝑧)𝑈 (𝑧) ≤ min{𝑎2, 1𝑎1} , ∀𝑧 ∈ (−∞,+∞) . (C2)
Theorem 4. Suppose 𝑐 > 𝑐∗, 𝜇1 < 𝜇3, and conditions (C1) -(C2) hold true. Assume that the initial data 𝑈(𝑧, 0) = 𝑈0(𝑧)
and 𝑉(𝑧, 0) = 𝑉0(𝑧) satisfy(0, 0) ≤ (𝑈0, 𝑉0) (𝑧) ≤ (1, 1) ,∀𝑧 ∈ R,

lim
𝑧󳨀→−∞

inf (𝑈0, 𝑉0) (𝑧) > (0, 0) , (60)

and 󵄨󵄨󵄨󵄨󵄨𝑈0 (𝑧) − 𝑈 (𝑧)󵄨󵄨󵄨󵄨󵄨 ∈ 𝐿∞𝑤 (R) ,󵄨󵄨󵄨󵄨󵄨𝑉0 (𝑧) − 𝑉 (𝑧)󵄨󵄨󵄨󵄨󵄨 ∈ 𝐿∞𝑤 (R) . (61)

Then the solution (𝑈,𝑉)(𝑧, 𝑡) to (11) exists globally with(0, 0) ≤ (𝑈, 𝑉) (𝑧, 𝑡) ≤ (1, 1) , ∀ (𝑧, 𝑡) ∈ R ×R
+, (62)

and converges to the steady-state (𝑈, 𝑉)(𝑧) exponentially in the
sense of

sup
𝑧∈R

󵄨󵄨󵄨󵄨󵄨𝑈 (𝑧, 𝑡) − 𝑈 (𝑧)󵄨󵄨󵄨󵄨󵄨 ≤ 𝑘𝑒−𝜂𝑡, 𝑡 > 0,
sup
𝑧∈R

󵄨󵄨󵄨󵄨󵄨𝑉 (𝑧, 𝑡) − 𝑉 (𝑧)󵄨󵄨󵄨󵄨󵄨 ≤ 𝑘𝑒−𝜂𝑡, 𝑡 > 0, (63)

for positive constants 𝑘 and 𝜂.
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To prove Theorem 4, we will find an upper and a lower
solution to the partial differential equations system (11). For𝑧 ∈ R, define 𝑈+0 (𝑧) = max {𝑈0 (𝑧) , 𝑈 (𝑧)} ,𝑉+0 (𝑧) = max {𝑉0 (𝑧) , 𝑉 (𝑧)} ,𝑈−0 (𝑧) = min {𝑈0 (𝑧) , 𝑈 (𝑧)} ,𝑉−0 (𝑧) = min {𝑉0 (𝑧) , 𝑉 (𝑧)} .

(64)

It is easy to see that the following inequalities are true:(0, 0) ≤ (𝑈−0 , 𝑉−0 ) (𝑧) ≤ (𝑈0, 𝑉0) (𝑧) ≤ (𝑈+0 , 𝑉+0 ) (𝑧)≤ (1, 1) ,(0, 0) ≤ (𝑈−0 , 𝑉−0 ) (𝑧) ≤ (𝑈,𝑉) (𝑧) ≤ (𝑈+0 , 𝑉+0 ) (𝑧)≤ (1, 1) .
(65)

Denote (𝑈+, 𝑉+)(𝑧, 𝑡) and (𝑈−, 𝑉−)(𝑧, 𝑡) as the solutions
to the system (11) with the initial data (𝑈+0 , 𝑉+0 )(𝑧) and(𝑈−0 , 𝑉−0 )(𝑧), respectively; that is,𝑈±𝑡 = 𝑈±𝑧𝑧 + 𝑐𝑈±𝑧+ 𝑈± (1 − 𝑎1 − 𝑈± + 𝑎1𝑉±) ,𝑉±𝑡 = 𝑑𝑉±𝑧𝑧 + 𝑐𝑉±𝑧+ 𝑟 (1 − 𝑉±) (𝑎2𝑈± − 𝑉±) ,(𝑈±, 𝑉±) (𝑧, 0) = (𝑈±0 , 𝑉±0 ) (𝑧) .

(66)

By the comparison principle, one gets(0, 0) ≤ (𝑈−, 𝑉−) (𝑧, 𝑡) ≤ (𝑈, 𝑉) (𝑧, 𝑡)≤ (𝑈+, 𝑉+) (𝑧, 𝑡) ≤ (1, 1) , ∀ (𝑧, 𝑡) ∈ R × R
+,(0, 0) ≤ (𝑈−, 𝑉−) (𝑧, 𝑡) ≤ (𝑈, 𝑉) (𝑧) ≤ (𝑈+, 𝑉+) (𝑧, 𝑡)≤ (1, 1) , ∀ (𝑧, 𝑡) ∈ R × R

+.
(67)

In the following lemmaswe shall prove the convergence of(𝑈+, 𝑉+)(𝑧, 𝑡) and (𝑈−, 𝑉−)(𝑧, 𝑡) to the wavefront (𝑈, 𝑉)(𝑧).
Then we apply the squeezing theorem to obtain the result in
Theorem 4.

Lemma 5. Under the conditions in Theorem 4, (𝑈+, 𝑉+)(𝑧, 𝑡)
converges to (𝑈, 𝑉)(𝑧).
Proof. For (𝑧, 𝑡) ∈ R ×R+, define𝑃 (𝑧, 𝑡) = 𝑈+ (𝑧, 𝑡) − 𝑈 (𝑧)

and 𝑄(𝑧, 𝑡) = 𝑉+ (𝑧, 𝑡) − 𝑉 (𝑧) . (68)

These functions, 𝑃 and 𝑄, satisfy the initial value conditions𝑃 (𝑧, 0) = 𝑈+0 (𝑧) − 𝑈 (𝑧)
and 𝑄 (𝑧, 0) = 𝑉+0 (𝑧) − 𝑉 (𝑧) . (69)

By (65) and (67), for all 𝑧 ∈ R and 𝑡 ≥ 0, we have(0, 0) ≤ (𝑃, 𝑄) (𝑧, 𝑡) ≤ (1, 1) . (70)

By (8) and (66) and using condition (C2), we can verify that𝑃 and 𝑄 satisfy

𝑃𝑡 ≤ 𝑃𝑧𝑧 + 𝑐𝑃𝑧 + (1 − 𝑎1) 𝑃 + (𝑃 + 𝑈) (−𝑃 + 𝑎1𝑄) ,𝑄𝑡 ≤ 𝑄𝑧𝑧 + 𝑐𝑄𝑧 + 𝑟 (𝑎2𝑃 − 𝑄)+ 𝑟 (𝑄 + 𝑉) (−𝑎2𝑃 + 𝑄) .
(71)

To study the stability in the weighted functional space 𝐿∞𝑤 ,
with 𝑤(𝑧) defined in (41), we first let

(𝑃𝑄) (𝑧, 𝑡) = 𝑒−𝛼(𝑧−𝑧0)( 𝑃𝑄 ) (𝑧, 𝑡) ,
for all (𝑧, 𝑡) ∈ R ×R

+, (72)

where 𝑃 and 𝑄 are functions in 𝐿∞(R) and 𝑧0 is the same
number used in the weight function 𝑤(𝑧). This gives

( 𝑃𝑄 )
𝑡

≤ 𝐷( 𝑃𝑄 )
𝑧𝑧

+𝑀( 𝑃𝑄 )
𝑧

+ 𝐴 (𝛼)( 𝑃𝑄 )
+ ( (𝑈 + 𝑒−𝛼(𝑧−𝑧0)𝑃) (−𝑃 + 𝑎1𝑄)𝑟 (𝑉 + 𝑒−𝛼(𝑧−𝑧0)𝑄) (−𝑎2𝑃 + 𝑄) )

fl ( L1 (𝑃, 𝑄)
L2 (𝑃, 𝑄) ) ,

(73)

where 𝐴(𝛼) is the same matrix defined in (18) and 𝑀 =
diag(𝑐 − 2𝛼, 𝑐 − 2𝑑𝛼).

Define 𝑃1(𝑧, 𝑡) and 𝑄1(𝑧, 𝑡) as𝑃1 (𝑧, 𝑡) = 𝑘1𝜁1𝑒−𝜂1𝑡
and 𝑄1 (𝑧, 𝑡) = 𝑘1𝜁2𝑒−𝜂1𝑡,∀ (𝑧, 𝑡) ∈ R ×R

+, (74)

for some constants 𝑘1, 𝜂1 > 0 to be chosen and (𝜁1, 𝜁2) =(𝜁1(𝛼), 𝜁2(𝛼)) is the eigenvector of the matrix 𝐴(𝛼) associated
with the eigenvalue 𝛼2−𝑐𝛼+1−𝑎1. Simple computations give

𝜁1 (𝛼) = (𝛼2 − 𝑐𝛼 + 1 − 𝑎1) − (𝑑𝛼2 − 𝑐𝛼 − 𝑟)= (𝜇21 + 𝜖) (1 − 𝑑) + 1 − 𝑎1 + 𝑟,𝜁2 (𝛼) = 𝑟𝑎2,
(75)

which are positive for small 𝜖 and 𝜇1 < 𝜇3. Since the initial
values 𝑃(𝑧, 0) and 𝑄(𝑧, 0) are in the space 𝐿∞𝑤 , we can choose𝑘1 ≥ max𝑧∈R{𝑃(𝑧, 0)/𝜁1, 𝑄(𝑧, 0)/𝜁2}. Direct computations
and using condition (C2) show that both of L1(𝑃1, 𝑄1) and
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(a) 𝑎1 = 0.5 and 𝑎2 = 2.4.We choose 𝛿 = 1
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(b) 𝑎1 = 0.5 and 𝑎2 = 1.4.The maximal possible
value of 𝛿 is in (0.3984, 1)
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(c) 𝑎1 = 0.3 and 𝑎2 = 1.4.The maximal possible
value of 𝛿 becomes close to 0.3984

Figure 1: The phase portrait of system (80) when 𝜖1 = 0.003 and 𝑟 = 1.875.
L2(𝑃1, 𝑄1) are negative.This allows choosing a positive value
to 𝜂1 so that the inequality

(𝑃1𝑄1)𝑡 = −𝜂1𝑘1 (𝜁1𝜁2) 𝑒−𝜂1𝑡 ≥ (L1 (𝑃1, 𝑄1)L2 (𝑃1, 𝑄1)) (76)

holds. Hence, since (𝑃1, 𝑄1)(0, 𝑧) ≥ (𝑃, 𝑄)(0, 𝑧) and by
comparison onunbounded domain, see, e.g., [34, Proposition
2.1],(𝑃, 𝑄) (𝑧, 𝑡) = (𝑃, 𝑄) 𝑒−𝛼(𝑧−𝑧0)

≤ 𝑘1 (𝜁1, 𝜁2) 𝑒−𝛼(𝑧−𝑧0)−𝜂1𝑡,∀ (𝑧, 𝑡) ∈ R ×R
+. (77)

In particular, this is true when 𝑧 ∈ [𝑧0,∞), for any fixed 𝑧0.
Now, we introduce the weight function 𝑤(𝑧) defined in

(41)-(42) with 𝛼 = 𝛽 = 𝜇1 + 𝜖. By the above analysis,
we need to prove the convergence of (𝑃, 𝑄)(𝑧, 𝑡) to (0, 0) for𝑧 ∈ (−∞, 𝑧0]. Note that the full system of (𝑃, 𝑄)(𝑧, 𝑡) can be
expressed as

(𝑃𝑄)
𝑡

= 𝐷(𝑃𝑄)
𝑧𝑧

+ 𝑐(𝑃𝑄)
𝑧

+ 𝐽 (𝑧) (𝑃𝑄)
+ ( (−𝑃 + 𝑎1𝑄)𝑃𝑟 (−𝑎2𝑃 + 𝑄)𝑄) .

(78)

Here, 𝐽(𝑧) is the same 2 × 2matrix defined in (38). Let 𝑧0 be
chosen so that

𝐽 (𝑧) ≤ (−1 + 𝜖1 𝑎1 + 𝜖1𝜖1 𝑟 (1 − 𝑎2) + 𝜖1) fl 𝐽𝜖1 , (79)

for some given small 𝜖1 > 0, when 𝑧 ≤ 𝑧0. This is equivalent
to require that (𝑈, 𝑉)(𝑧) is close to (1, 1) for all 𝑧 ≤ 𝑧0. Define(𝑃̂, 𝑄)(𝑡) as the solution of the autonomous system

(𝑃̂̂𝑄)
𝑡

= 𝐽𝜖1 (𝑃̂̂𝑄) + ( (−𝑃̂ + 𝑎1𝑄) 𝑃̂𝑟 (−𝑎2𝑃̂ + 𝑄)𝑄) , (80)

with the initial data𝑃̂ (0) ≥ 𝑃 (𝑧, 0) ,𝑄 (0) ≥ 𝑄 (𝑧, 𝑡) ,∀𝑧 ∈ R. (81)

Then (𝑃̂, 𝑄) is an upper solution to system (78).
Now we need to prove the convergence of (𝑃̂, 𝑄)(𝑡) to(0, 0) as 𝑡 󳨀→ ∞. The Jacobian matrix 𝐽(0, 0) = 𝐽𝜖1 of system

(80) at the fixed point (0, 0) has two eigenvalues, 𝜆̂2 < 𝜆̂1 < 0.
By the phase plane analysis, there exists 0 < 𝛿 ≤ 1 so that the
flow in the 𝑃̂𝑄−space converges to origin for any initial data(𝑃̂, 𝑄)(0) in the box [0, 1] × [0, 𝛿]. Hence, we conclude that(𝑃̂, 𝑄) = 𝑘̂1 (𝐶1, 𝐶2) 𝑒𝜆̂1𝑡 as 𝑡 󳨀→ ∞, (82)

for positive constant 𝑘̂1 and (𝐶1 𝐶2)𝑇 is the eigenvector of 𝐽𝜖1
corresponding to 𝜆̂1. For the maximal possible choice of the
constant 𝛿 so that we have the convergence result inside the
box [0, 1] × [0, 𝛿]; see Remark 6.

We can choose 𝑘̂1 large and 𝜆1 = min{𝜂1, −𝜆̂1} so that, at
the boundary 𝑧 = 𝑧0, we have(𝑃, 𝑄) (𝑧0, 𝑡) ≤ 𝑘1 (𝜁1, 𝜁2) 𝑒−𝜂1𝑡 ≤ 𝑘̂1 (𝜁1, 𝜁2) 𝑒−𝜆1𝑡. (83)

Hence, by comparison on the domain (−∞, 𝑧0] × [0,∞), see,
e.g., [35, Lemma 3.2],

(𝑃,𝑄) (𝑧, 𝑡) ≤ 𝑘̂1 (𝜁1, 𝜁2) 𝑒−𝜆1𝑡,∀ (𝑧, 𝑡) ∈ (−∞, 𝑧0] ×R
+. (84)

This completes the proof.

Remark 6. The maximal possible value of the constant 𝛿,
which could be 1, depends on the location of the fourth fixed
point to the system (80) near or inside the box [0, 1] × [0, 1].
See Figure 1 for all possible different cases. In Figure 1(a), the
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positive fixed point is far away from the box [0, 1] × [0, 1]
and does not affect the flow. This happens when 𝑎2 > 2.
Hence we set 𝛿 = 1. Figure 1(b) shows the effect of the
positive fixed point on the flow, which still outside the box.
The maximal choice of 𝛿 for this case exists in the interval(𝑎2 − 1 − 𝜖1/𝑟, 1). The number 𝑎2 − 1 − 𝜖1/𝑟 is the positive 𝑄-
intercept of the nullcline 𝑄𝑡 = 0. A fixed point exists inside
the box [0, 1] × [0, 1] in Figure 1(c), where 𝛿 becomes close
to the value 𝑎2 − 1 − 𝜖1/𝑟.
Lemma 7. Under the conditions in Theorem 4, (𝑈−, 𝑉−)(𝑧, 𝑡)
converges to (𝑈, 𝑉)(𝑧).
Proof. For (𝑧, 𝑡) ∈ R ×R+, define𝑅 (𝑧, 𝑡) = 𝑈 (𝑧) − 𝑈− (𝑧, 𝑡)

and 𝑆 (𝑧, 𝑡) = 𝑉 (𝑧) − 𝑉− (𝑧, 𝑡) . (85)

These functions, 𝑅 and 𝑆, satisfy the initial value conditions𝑅 (𝑧, 0) = 𝑈 (𝑧) − 𝑈−0 (𝑧)
and 𝑆 (𝑧, 0) = 𝑉 (𝑧) − 𝑉−0 (𝑧) . (86)

From (65) and (67), for all 𝑧 ∈ R and 𝑡 ≥ 0, we have(0, 0) ≤ (𝑅, 𝑆) (𝑧, 𝑡) ≤ (1, 1) . (87)

From (8) and (66), 𝑅 and 𝑆 satisfy the system
(𝑅𝑆)
𝑡

= 𝐷(𝑅𝑆)
𝑧𝑧

+ 𝑐(𝑅𝑆)
𝑧

+ 𝐽 (𝑧)(𝑅𝑆)
− ( (−𝑅 + 𝑎1𝑆) 𝑅𝑟 (−𝑎2𝑅 + 𝑆) 𝑆) ,

(88)

with 𝐽(𝑧) defined in (38). By condition (C2), we have𝑅𝑡 ≤ 𝑅𝑧𝑧 + 𝑐𝑅𝑧 + (1 − 𝑎1) 𝑅 + (𝑅 − 𝑈) (𝑅 − 𝑎1𝑆) ,𝑆𝑡 ≤ 𝑑𝑆𝑧𝑧 + 𝑐𝑆𝑧 + 𝑟 (𝑎2𝑅 − 𝑆) + 𝑟 (𝑆 − 𝑉) (𝑎2𝑅 − 𝑆) . (89)

Similar to the previous analysis in the proof of Lemma 5, and
making a use of the facts 𝑅 < 𝑈 and 𝑆 < 𝑉, we can prove that
there exist 𝜂2 > 0 and

𝑘2 ≥ 𝑒𝛼(𝑧−𝑧0)max
𝑧∈R

{𝑅 (𝑧, 0)𝜁1 , 𝑆 (𝑧, 0)𝜁2 } (90)

so that(𝑅, 𝑆) (𝑧, 𝑡) ≤ 𝑘2 (𝜁1, 𝜁2) 𝑒−𝜂2𝑡, ∀ (𝑧, 𝑡) ∈ R ×R
+. (91)

For the choice of 𝑧0 in proof of Lemma 5, we study the
stability in theweighted space𝐿∞𝑤 . To this end, define (𝑅̂, 𝑆)(𝑡)
as the solution of the system

(𝑅̂̂𝑆)
𝑡

= 𝐽𝜖1 (𝑅̂̂𝑆) − 𝑤1( (−𝑅̂ + 𝑎1𝑆) 𝑅̂𝑟 (−𝑎2𝑅̂ + 𝑆) 𝑆) , (92)

with the initial data𝑅̂ (0) ≥ 𝑅 (𝑧, 0) ,𝑆 (0) ≥ 𝑆 (𝑧, 0) , ∀𝑧 ∈ R. (93)

It is easy to see that (𝑅̂, 𝑆) is an upper solution to the system
(88). The phase plane analysis shows that (𝑅̂, 𝑆)(𝑡) converges
to origin for any initial data in the region [0, 1] × [0, 1] except
the point (1, 1). Similar to the previous lemma,(𝑅, 𝑆) (𝑧, 𝑡) ≤ 𝑘̂2 (𝜁1, 𝜁2) 𝑒−𝜆2𝑡,∀ (𝑧, 𝑡) ∈ (−∞, 𝑧0] ×R

+. (94)

for some positive constants 𝑘̂2 and 𝜆2. This completes the
proof.

Now, we are ready to give the proof of Theorem 4.

Proof ofTheorem 4. From (67), for all (𝑧, 𝑡) ∈ R×R+, we have|𝑅 (𝑧, 𝑡)| ≤ 󵄨󵄨󵄨󵄨󵄨𝑈 (𝑧, 𝑡) − 𝑈 (𝑧)󵄨󵄨󵄨󵄨󵄨 ≤ |𝑃 (𝑧, 𝑡)| ,|𝑆 (𝑧, 𝑡)| ≤ 󵄨󵄨󵄨󵄨󵄨𝑉 (𝑧, 𝑡) − 𝑉 (𝑧)󵄨󵄨󵄨󵄨󵄨 ≤ |𝑄 (𝑧, 𝑡)| . (95)

By Lemmas 5 and 7 and the squeezing theorem, it follows that
there exist 𝑘 > 0 and 𝜂 > 0 so that󵄨󵄨󵄨󵄨󵄨𝑈 (𝑧, 𝑡) − 𝑈 (𝑧)󵄨󵄨󵄨󵄨󵄨 ≤ 𝑘𝑒−𝜂𝑡,󵄨󵄨󵄨󵄨󵄨𝑉 (𝑧, 𝑡) − 𝑉 (𝑧)󵄨󵄨󵄨󵄨󵄨 ≤ 𝑘𝑒−𝜂𝑡, (96)

for all (𝑧, 𝑡) ∈ R ×R+. This proves the desired result.

Condition (C2) is used in the previous analysis to con-
struct the upper solutions in the proof of Lemmas 5 and 7. It
implies that, at 𝑐 = 𝑐0 and 𝑧 󳨀→ +∞,𝜁2 (𝜇1)𝜁1 (𝜇1) ≤ min{𝑎2, 1𝑎1} , (97)

and it can be guaranteed by𝑑 ≤ 2,(𝑎1𝑎2 − 1) 𝑟 ≤ (2 − 𝑑) (1 − 𝑎1) . (98)

This condition arose in the linear speed selection studies; see
[36]. To see that the condition (C2) can be realized for all 𝑧 ∈
R, we prove the following claim.

Claim 8. 𝑑 = 0 and 𝑎1𝑎2 ≤ 1 imply (C2).
Proof. In the case when 𝑑 = 0, the𝑉−equation can be written
in the form 𝑉󸀠 = 𝑟𝑐 (1 − 𝑉) (𝑉 − 𝑎2𝑈) ,𝑉 (−∞) = 1,𝑉 (+∞) = 0.

(99)
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Since 𝑎1𝑎2 ≤ 1, we need to prove 𝑉(𝑧) ≤ 𝑎2𝑈(𝑧) for all 𝑧 ∈
R. Assume, for contrary, this is not true for some 𝑧 ∈ R. By
(99), 𝑉 is increasing at the neighborhood of 𝑧. Since 𝑈(𝑧) is
a decreasing function, we have 𝑉(𝑧 + 𝛿) > 𝑉(𝑧) > 𝑎2𝑈(𝑧) >𝑎2𝑈(𝑧+𝛿), for some 𝛿 > 0. Similarly, we can show that𝑉(𝑧) is
increasing for all 𝑧 ≥ 𝑧, which contradicts the fact 𝑉(+∞) =0. This implies that condition (C2) holds true.
5. Conclusions

The local and the global stability of traveling waves to the
two-species Lotka-Volterra competition model (5) under the
condition (C1) are investigated. Using the linearization and
the essential spectrum analysis in [32], we find that the
traveling wavefront is stable in some weighted functional
space; seeTheorem 3.Many choices of the exponential weight
functions are valid; see Algorithm 2.

Under some further condition (C2), we apply the upper-
lower solution method to obtain a global stability result.
Indeed, we prove that both the upper and the lower solutions
tend to the wavefront. Our main results are presented in
Theorem 4.
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