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In this paper, a finance system with delay is considered. By analyzing the corresponding characteristic equations, the local stability
of equilibrium is established. The existence of Hopf bifurcations at the equilibrium is also discussed. Furthermore, formulas for
determining the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are derived by applying the
normal form method and center manifold theorem. Finally, numerical simulation results are presented to validate the
theoretical analysis. Numerical simulation results show that delay can lead a stable system into a chaotic state.

1. Introduction

Ever since economist Stutzer first revealed the chaotic phe-
nomena in an economic system in 1980, chaotic dynamics
which supports an endogenous explanation of the complex-
ity observed in economic series has become a hot topic, and
many economic models have been proposed, e.g., Goodwin’s
nonlinear accelerator model [1, 2], the van der Pol model on
business cycle [3–5], the IS-LM model [6, 7], and nonlinear
dynamical model on finance system [8–11]. In [8, 9], Ma
and Chen proposed a simplified financial model as follows:

x = y − a x + z,
y = 1 − by − x2,
z = −x − cz,

1

where x is the interest rate, y is the investment demand, z is
the price index, a > 0 denotes saving amount, b > 0 denotes
cost per investment, and c > 0 denotes elasticity of demand
of commercial markets. The variation of x is not only influ-
enced by the surplus between investment and saving but also
structurally adjusted by the price. The changing rate of y is
proportional to the rate of investment and inversely propor-
tional to the cost of investment and interest rate. The varia-
tion of z is influenced by the contradiction between supply

and demand in commercial markets and affected by the infla-
tion rates. The authors studied the focus on bifurcation and
topological horseshoe of chaotic financial system (1). Some
delay feedback control strategies [12–15] have also been con-
sidered for system (1).

It is well known that delays are extensively encountered
in many fields such as biology [16–18], chemistry [19, 20],
and engineering [21–23]. Also, delay is inevitable in economic
activities. For example, changes in the money supply do not
cause immediate changes in the economy; there is always a
lag period. The production cycle has both long and short
phases. Price change always has a delay. Therefore, delay
differential equations (DDEs) support a realistic economic
mathematical modeling than ordinary differential equations
(ODEs) [6, 7].

In [24], Wang et al. proposed a delayed fractional order
financial system as follows:

Dα1
t x = y t − τ − a x + z,

Dα2
t y = 1 − by − x2 t − τ ,

Dα3
t z = −x t − τ − cz,

2

where τ ≥ 0 is the time delay. The authors studied its
dynamic behaviors, such as single-periodic, multiple-peri-
odic, and chaotic motions.
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Based on [24], Chen et al. [25] studied the following
delayed financial system:

x = y t − τ − a x + z,
y = 1 − by − x2 t − τ ,
z = −x t − τ − cz

3

The authors have studied the asymptotic stability and
Hopf bifurcations of the unique equilibrium, and the direc-
tion of Hopf bifurcation and the stability of the bifurcating
periodic solutions were also considered.

According to the above discussions, we consider a
delayed finance system as follows:

x = y − a x + z t − τ ,
y = 1 − by − x2,
z = −x − cz,

4

where τ denotes price change delay, for price change does
not immediately affect the interest rate, and it often has a
lag period.

The main purpose of this paper is to investigate the sta-
bility and Hopf bifurcation for system (4) with delay τ as
the bifurcation parameter.

The structure of this paper is arranged as follows. In
Section 2, we study the local stability and the existence of
Hopf bifurcation. In Section 3, we give the formula determin-
ing the direction of Hopf bifurcation and the stability of
bifurcating periodic solutions. Finally, to support our theo-
retical predictions, some numerical simulations are given
which support the analysis of Sections 2–3.

2. Stability and Hopf Bifurcation

2.1. The Existence of Equilibria. In this section, we consider
the stability and Hopf bifurcation of the equilibria of system
(4). First, we find all possible equilibria of system (4). We
make the following hypothesis:

(H1)

c − abc − b > 0 5

According to system (4), equilibria should satisfy

y − a x + z = 0,
1 − by − x2 = 0,
−x − cz = 0

6

Obviously, system (4) has an equilibrium P0 = 0, 1/b, 0 .
For other equilibria, solving for the second and third equa-
tions of (6), we have

y = 1 − x2

b
,

z = −
x
c

7

Substitute (7) into the first equation of (6), we obtain

x = ± c − abc − b
c

8

So, we have following results.

Lemma 1. If (H1) holds, then system (4) has two other equilib-
ria P1 and P2, where

P1 =
c − abc − b

c
, ac + 1

c
, − 1

c
c − abc − b

c
,

P2 = −
c − abc − b

c
, ac + 1

c
, 1
c

c − abc − b
c

9

In the following, we consider the stability of the equi-
libria of system (4) by analyzing the corresponding char-
acteristic equations. Assume that P∗ = x∗, y∗, z∗ denotes
an arbitrary equilibrium of system (4), then let x = x − x∗,
y = y − y∗, and z = z − z∗ and drop the bars for the simplic-
ity of notations. Then by linearizing system (4) around P∗,
we have

x = y∗ − a x + x∗y + z t − τ ,
y = −2x∗x − by,
z = −x − cz

10

The characteristic equation associated with system
(10) is

λ3 + b1λ
2 + b2λ + b3 + λ + b4 e−λτ = 0, 11

where

b1 = b + c + a − y∗,
b2 = a − y∗ b + c + bc + 2x2,
b3 = a − y∗ bc + 2x2c,
b4 = b

12

2.2. Stability and Hopf Bifurcation of Equilibrium P0. Obvi-
ously, the characteristic equation of system (4) at the equilib-
rium P0 = 0, 1/b, 0 has the following form:

λ + b λ2 + a + c −
1
b

λ + a −
1
b

c + e−λτ = 0 13
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Clearly, λ = −b is negative; we only need to consider the
following equation:

λ2 + a + c −
1
b

λ + a −
1
b

c + e−λτ = 0 14

For further discussion, we make following hypotheses:

(H2)

1 − ab − bc < 0, 15

(H3)

abc − c + b > 0, 16

As τ = 0, (14) is equivalent to the following equation:

λ2 + a + c −
1
b

λ + a −
1
b

c + 1 = 0 17

Obviously, λ = 0 is not a root of (17).

Lemma 2. If (H2) and (H3) hold, then equilibrium P0 of sys-
tem (4) is locally asymptotically stable with τ = 0.

Proof. Let λ1 and λ2 be two roots of (17). Clearly, if (H2) and
(H3) hold, then we have

λ1 + λ2 = − a −
1
b
+ c < 0,

λ1λ2 = a −
1
b

c + 1 > 0
18

It means that all the roots of (17) have negative real parts.
So, equilibrium P0 of system (4) with τ = 0 is locally asymp-
totically stable.

Now we discuss the effect of delay τ on the stability of the
equilibrium P0 of system (4). Assume that iω ω > 0 is a root
of (11). Then ω should satisfy the following equation:

−ω2 + iω a −
1
b
+ c + a −

1
b

c

+ cos ωτ − i sin ωτ = 0,
19

which implies that

−ω2 + a −
1
b

c = −cos ωτ ,

ω a −
1
b
+ c = sin ωτ

20

From (20), adding the squared terms for both equa-
tions yields

ω4 + a −
1
b
+ c

2
− 2 a −

1
b

c ω2 + a −
1
b

2
c2 − 1 = 0

21

Make the following assumptions:

(H4)

abc − c − b > 0, 22

(H5)

abc − c − b < 0, 23

Theorem 1. If (H2) and (H4) hold, then the equilibrium P0 of
system (4) is locally asymptotically stable for all τ ≥ 0.

Proof. Clearly, if (H4) holds, then we have

a −
1
b
+ c

2
− 2 a −

1
b

c = a −
1
b

2
+ c2 > 0,

a −
1
b

2
c2 − 1 = a −

1
b

c + 1 a −
1
b

c − 1 > 0,

24

which means that (21) has no positive roots. That is to say, all
roots of (14) have negative real parts. Combining with
Lemma 2, it thus follows from the Routh-Hurwitz criterion
that the equilibrium P0 of system (4) is locally asymptotically
stable for all τ ≥ 0.

Lemma 3. If (H5) holds, then (21) has a unique positive root.

Proof. (H5) holds, so we have

a −
1
b
+ c

2
− 2 a −

1
b

c = a −
1
b

2
+ c2 > 0,

a −
1
b

2
c2 − 1 = a −

1
b
+ 1 a −

1
b
− 1 < 0

25

Hence, (21) has a unique positive root as follows:

ω0 =
− a − 1/b 2 − c2 + a − 1/b 2 − c2 2 + 4

2 26

According to Lemma 3, (21) has a unique positive root
ω0. By (20), we have

cos ω0τ = ω2
0 − a −

1
b

c 27
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Thus, if we denote

τj0 =
1
ω0

arccos ω2
0 − a −

1
b

c + 2jπ , j = 0, 1, 2,… ,

28

then ±iω0 is a pair of purely imaginary roots of (14) with

τ = τ j0. Clearly, sequence τj0
∞
j=0 is increasing and

lim
j→+∞

τj0 = +∞ 29

Thus, we can define

τ0 = τ00 = min τj0 30

Lemma 4. Let λ τ = α τ ± iω τ be the root of (14) near
τ = τ j0 satisfying α τj0 = 0 for ω τj0 = ω0. Then the following
transversal condition holds:

α′ τ
−1

τ=τ j0
> 0, j = 0, 1, 2,… 31

Proof. Differentiating the two sides of (14) with respect to
τ yields

dλ
dτ

2λ + a −
1
b
+ c − τe−λτ = λe−λτ 32

Hence,

dλ
dτ

−1
= 2λ + a − 1/b + c − τe−λτ

λe−λτ
= 2eλτ + a − 1/b + c

λ
eλτ −

τ

λ

33

Substituting τj0 into the above equation, we obtain

α′ τ
−1

τ=τ j0
= Re dλ

dτ

−1

τ=τ j0
= 2 cos ω0τ

j
0

+
a − 1/b + c sin ωτj0

ω0

34

Since cos ω0τ
j
0 = ω2

0 − a − 1/b c and sin ω0τ
j
0 = a −

1/b + c ω0, then we have

α′ τ
−1

τ=τ j0
= Re dλ

dτ

−1

τ=τ j0
= 2ω2

0 − 2 a −
1
b

c

+ a −
1
b
+ c

2
35

By (26), we have

αn′ τ
−1
= Re dλ

dτ

−1

τ=τ j0
= a −

1
b

2
− c2

2
+ 4 > 0

36

On the basis of Lemmas 2–4, we have the following result:

Theorem 2. If (H2), (H3), and (H5) hold, then the following
statements are true:

(i) When τ ∈ 0, τ0 , the equilibrium P0 of (4) is asymp-
totically stable

(ii) The Hopf bifurcation occurs at τ = τ0. That is, system
(4) has a branch of periodic solutions bifurcating from
P0 near τ = τ0

2.3. Stability and Hopf Bifurcation of Equilibrium P1 and P2.
In this section, we consider stability and Hopf bifurcation of
equilibria P1 and P2. At the equilibria P1 and P2, the charac-
teristic (11) takes the following form:

λ3 + b1λ
2 + b2λ + b3 + λ + b4 e−λτ = 0, 37

where

b1 = b + c −
1
c
,

b2 = bc + 2 1 − b a + 1
c

−
b
c
− 1,

b3 = 2 1 − b a + 1
c

c − b,

b4 = b

38

As τ = 0, (37) becomes

λ3 + b1λ
2 + b2 + 1 λ + b3 + b4 = 0 39

Make the following assumptions:

(H6)

1
c
<min b, c , 40

(H7)

c − abc − 2b < 0 41

Lemma 5. Based on Lemma 1, if (H6) holds, then equilibria P1
and P2 are both locally asymptotically stable with τ = 0.
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Proof. As (H1) and (H6) hold, we have

b1 = b + c −
1
c
> 0,

b3 = 2c − 2abc − 2b > 0,

b1 b2 + 1 − b3 = b b −
1
c

c −
1
c

+ 2x∗2 + bc c −
1
c

> 0

42

By the Routh-Hurwitz criteria, all the roots of (39) have
negative real parts. Therefore, P1 and P2 are both locally
asymptotically stable with τ = 0.

Now we discuss the effect of delay τ on the stability of the
equilibria P1 and P2 of system (4). Assume that iω ω > 0 is a
root of (37). Then ω should satisfy the following equation:

−iω3 − b1ω
2 + ib2ω + b3 + iω + b4 cos ωτ − i sin ωτ = 0,

43

which implies that

−ω3 + b2ω = b4 sin ωτ − ω cos ωτ ,
−b1ω

2 + b3 = −ω sin ωτ − b4 cos ωτ
44

From (44), adding up the squares of both equations, we
have

ω6 + b21 − 2b2 ω4 + b22 − 2b1b3 − 1 ω2 + b23 − b24 = 0 45

Let z = ω2, then (45) can be rewritten into the following
form:

z3 + b21 − 2b2 z2 + b22 − 2b1b3 − 1 z + b23 − b24 = 0 46

Denote

h z = z3 + R0z
2 +Q0z +V0 47

Lemma 6. If (H7) holds, then (46) has at least a root.

Proof. Obviously,

b23 − b24 = b3 − b4 b3 + b4 = 2 c − abc − 2b c − abc − b < 0
48

Therefore, (46) has at least a positive root.

According to Lemma 6, (46) has a positive root, denoted
by z0, and thus, (45) has a positive root ω0 = z0. By (44),
we have

cos ω0τ = ω3
0 − b2ω0 ω0 − −ω2

0b1 + b3 b4
ω2
0 + b24

49

Thus, if we denote

τj0 =
1
ω0

arccos ω3
0 − b2ω0 ω0 − −ω2

0b1 + b3 b4
ω2
0 + b24

+ 2jπ , j = 0, 1, 2,… ,
50

then ±iω0 is a pair of purely imaginary roots of (21) with

τ = τj0. Clearly, sequence τj0
∞
j=0 is increasing and

lim
j→+∞

τj0 = +∞ 51

Thus, we can define

τ0 = τ00 = min τj0 52

Lemma 7. Let λ τ = α τ ± iω τ be the root of (37) near
τ = τj0 satisfying α τj0 = 0, ω τj0 = ω0. Suppose that h′ z0 ≠
0, where h z is defined by (47). Then the following transversal
condition holds:

d Reλ τ

dτ τ=τ j0
≠ 0, 53

and the sign of d Reλ τ /dτ∣τ=τ j0 is consistent with that of

h′ z0 .

Proof. Denote

R λ = λ3 + b1λ
2 + b2λ + b3,

Q λ = λ + b4
54

Then (37) can be written as

R λ +Q λ e−λτ = 0, 55

and (45) can be transformed into the following form:

R iω R iω −Q iω Q iω = 0 56

Thus, together with (46) and (47), we have

h ω2 = R iω R iω −Q iω Q iω 57

Differentiating both sides of (57) with respect to ω,
we obtain

2ωh′ ω2 = i R′ iω R iω + R iω R′ iω −Q′ iω Q iω

+Q iω Q′ iω

58
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If iω0 is not simple, then ω0 must satisfy

d
dλ

R λ +Q λ e−λτ0
λ=iω0

= 0, 59

that is, ω0 must satisfy

R′ iω +Q′ iω e−iω0τ0 − τ0Q iω0 e−iω0τ0 = 0 60

With (55), we have

τ0 =
Q′ iω0
Q iω0

−
R′ iω0
R iω0

61

Thus, by (56) and (57), we obtain

Since τ0 is real, i.e., Im τ0 = 0, we have h′ ω2
0 = 0. We

get a contradiction to the condition h′ ω2
0 ≠ 0. This proves

the first conclusion. Differentiating both sides of (55) with
respect to τ, we obtain

R′ λ +Q′ λ e−λτ − τQ λ e−λτ
dλ
dτ − λQ λ e−λτ = 0, 63

which implies

dλ
dτ

= λQ λ

R′ λ eλτ +Q′ λ − τQ λ

=
λQ λ R′ λ eλτ +Q′ λ − τQ λ

R′ λ eλτ +Q′ λ − τQ λ
2

=
λ −R λ R′ λ eλτ +Q λ Q′ λ − τ Q λ 2

R′ λ eλτ +Q′ λ − τQ λ
2

64

It follows together with (58) that

Clearly, the sign of d Reλ τ /dτ∣τ=τ0 is determined by

that of h′ z0 .

On the basis of Lemma 1 and Lemma 5–Lemma 7, we
have the following result.

Theorem 3. If (H1), (H6), and (H7) hold, and h′ z0 > 0, then
the following statements are true:

(i) When τ ∈ 0, τ0 , the equilibria P1 and P2 of system
(4) are both locally asymptotically stable

(ii) The Hopf bifurcation occurs at τ = τ0, i.e., system (4)
has a branch of periodic solutions that bifurcates from
P1 and P2 near τ = τ0, respectively

3. Direction and Stability of Hopf Bifurcation

In theprevious section,wehave shown that system(4) admits a
series of periodic solutions bifurcating from the equilibrium at
the critical value τj0 j ∈N0 . In this section, we derive explicit
formulae to determine the properties of the Hopf bifurcation

Im τ0 = Im Q′ iω0
Q iω0

−
R′ iω0
R iω0

= Im Q′ iω0 Q iω0
Q iω0 Q iω0

−
R′ iω0 R iω0
R iω0 R iω0

= Im Q′ iω0 Q iω0 − R′ iω0 R iω0
R iω0 R iω0

=
−i Q′ iω0 Q iω0 − R′ iω0 R iω0 +Q′ iω0 Q iω0 + R′ iω0 R iω0

2R iω0 R iω0
= ω0h′ ω2

0
R iω0

2

62

d Reλ τ

dτ τ=τ0,λ=iω0

=
Re λ −R λ R′ λ eλτ +Q λ Q′ λ − τ Q λ 2

τ=τ0,λ=iω0

R′ λ eλτ +Q′ λ − τQ λ
2

=
iω0 −R iω0 R′ iω0 +Q iω0 Q′ iω0 + R′ iω0 R iω0 −Q′ iω0 Q iω0

R′ λ eλτ +Q′ λ − τQ λ
2

= ω2
0h′ ω2

0

R′ λ eλτ +Q′ λ − τQ λ
2 = ω2

0h′ z0
R′ λ eλτ +Q′ λ − τQ λ

2 ≠ 0

65
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at the critical value τj0 by using the normal form theory and
center manifold reduction developed by [26].

Denote τj0 by τ∗ and introduce the new parameter μ =
τ − τ∗. Normalizing the delay τ by the time-scaling t→ t/τ,
(4) can then be rewritten as

dU t
dt

= L τ∗ Ut + F Ut , μ , 66

where

L μ φ = μ

y∗ − a φ1 0 + φ3 −1
−2x∗φ1 0 − bφ2 0
−φ1 0 − cφ3 0

,

F φ, μ = L μ φ + f φ, μ ,

67

f φ, μ = τ∗ + μ

φ1 0 φ2 0
φ2
1 0
0

+ h o t , 68

for φ = φ1, φ2, φ3
T ∈C .

Then the linearized system of (66) at 0, 0, 0 is

dU t
dt

= L τ∗ Ut 69

Based on the discussion in Section 2, we can easily know
that for τ = τ∗, the characteristic equation of (11) has a pair of
simple purely imaginary eigenvalues Λ0 = iω0τ

∗, −iω0τ
∗ .

Let C ≔ C −1, 0 ,ℝ3 , considering the following FDE
on C :

z = L τ∗ zt 70

Obviously, L τ∗ is a continuous linear function map-
ping C −1, 0 ,ℝ3 into ℝ3. By the Riesz representation the-
orem, there exists a 3 × 3 matrix function θ, τ −1 ≤ θ ≤ 0 ,
whose elements are of bounded variation such that

L τ∗ φ =
0

−1
dη θ, τ∗ φ θ ,  forφ ∈ C 71

In fact, we can choose

η θ, τ∗ = τ∗

y∗ − a x∗ 0

−2x∗ −b 0

−1 0 −c

δ θ

− τ∗

0 0 1

0 0 0

0 0 0

δ θ + 1 ,

72

where δ is the Dirac delta function.

Let A τ∗ denote the infinitesimal generator of the semi-
group induced by the solutions of (70) and A∗ be the formal
adjoint of A τ∗ under the bilinear pairing

ψ, ϕ = ψ 0 , ϕ 0 −
0

−1

θ

ξ=0
ψ ξ − θ dη θ ϕ ξ dξ

= ψ 0 , ϕ 0 + τ∗
0

−1
ψ θ + 1

0 0 1

0 0 0

0 0 0

ϕ θ dθ,

73

for ϕ ∈ C and ψ ∈ C∗ = C 0, 1 , R3 . Then A τ∗ and A∗ are a
pair of adjoint operators. From the discussion in Section 2,
we know that A τ∗ has a pair of simple purely imaginary
eigenvalues ±iω0τ

∗, and they are also eigenvalues of A∗ since
A τ∗ and A∗ are a pair of adjoint operators. Let P and P∗

be the center spaces, that is, the generalized eigenspaces of
A τ∗ and A∗, respectively, associated withΛ0. Then P

∗ is the
adjoint space of P and dim P = dim P∗ = 2. Direct computa-
tions give the following results.

Lemma 8. Let

α = −
−2x∗
iω0 + b

,

β = −
1

iω0 + c
,

α∗ = x∗

iω0 + b
,

β∗ = 1
iω0 + c

74

Then,

p1 θ = eiω0τ
∗θ 1, α, β T ,

p2 θ = p1 θ ,
  − 1 ≤ θ ≤ 0,

75

is a basis of P associated with Λ0 and

q1 s = 1, α∗, β∗ e−iω0τ
∗s,

q2 s = q1 s ,
 0 ≤ s ≤ 1,

76

is a basis of Q associated with Λ0.
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Let Φ = Φ1,Φ2 and Ψ∗ = Ψ∗
1 ,Ψ∗

2
T with

Φ1 θ = p1 θ + p2 θ

2 =

Re eiω0τ
∗θ

Re αeiω0τ
∗θ

Re βeiω0τ
∗θ

=

cos ω0τ
∗θ

−2x∗ b cos ω0τ
∗θ + ω0 sin ω0τ

∗θ

b2 + ω2
0

−ω0 sin ω0τ
∗θ − c cos ω0τ

∗θ

c2 + ω2
0

,

Φ2 θ = p1 θ − p2 θ

2i =

Im eiω0τ
∗θ

Im αeiω0τ
∗θ

Im βeiω0τ
∗θ

=

sin ω0τ
∗θ

2x∗ ω0 cos ω0τ
∗θ − b sin ω0τ

∗θ

b2 + ω2
0

ω0 cos ω0τ
∗θ − c sin ω0τ

∗θ

c2 + ω2
0

,

77

for θ ∈ −1, 0 , and

Ψ∗
1 s = q1 s + q2 s

2 =

Re e−iω0τ
∗s

Re α∗e−iω0τ
∗s

Re β∗e−iω0τ
∗s

=

cos ω0τ
∗s

−
x∗ b cos sτω0 + ω0 sin sτω0

b2 + ω2
0

−
c cos sτω0 + ω0 sin sτω0

c2 + ω2
0

,

Ψ∗
2 s = q1 s − q2 s

2i =

Im e−iω0τ
∗s

Im αe−iω0τ
∗s

Im βeiω0τ
∗s

=

−sin ω0τ
∗s

−b sin sτω0 − ω0 cos τω0s

b2 + ω2
0

−c sin sτω0 − ω0 cos τω0s
c2 + ω2

0

,

78

for s ∈ 0, 1 . From (73), we can obtain Ψ∗
1 ,Φ1 and Ψ∗

1 ,Φ2 ,
noting that

q1, p1 = Ψ∗
1 ,Φ1 − Ψ∗

2 ,Φ2 + i Ψ∗
1 ,Φ2 + Ψ∗

2 ,Φ1 ,
79

q1, p1 = 1 + αα∗ + ββ∗ − ββ∗τ∗e−iω0τ
∗
≔D∗ 80

Therefore, we have

Ψ∗
1 ,Φ1 − Ψ∗

2 ,Φ2 = Re D∗ ,
Ψ∗

1 ,Φ2 + Ψ∗
2 ,Φ1 = Im D∗

81

Now, we define Ψ∗,Φ = Ψ∗
j ,Φk j, k = 1, 2 and con-

struct a new basis ψ for Q by

Ψ = Ψ1,Ψ2
T = Ψ∗,Φ −1Ψ∗ 82

Obviously, Ψ,Φ = I2×2, the second-order identity
matrix. In addition, define f0 = ξ10, ξ20, ξ30 , where

ξ10 =
1
0
0

,

ξ20 =
0
1
0

,

ξ20 =
0
0
1

83

Let c · f0 be defined by

c · f0 = c1ξ
1
0 + c2ξ

2
0 + c3ξ

3
0, 84

for c = c1, c2, c3 T and cj ∈ R j = 1, 2, 3 .
Then the center space of linear Equation (69) is given by

PCNC , where

PCNφ =Φ Ψ, φ, f0 · f0, φ ∈ c, 85

and C = PCNC ⊕ PSC ; here PSC denotes the complementary
subspace of PCNC .

Let Aτ∗ be defined by

Aτ∗φ θ = φ θ + X0 θ L τ∗ φ θ − φ 0 , φ ∈ BC ,
86
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where X0 −1, 0 → B X, X is given by

X0 θ =
0,   − 1 ≤ θ < 0,
I,  θ = 0

87

Then Aτ∗ is the infinitesimal generator induced by the
solution of (69) and (66) and can be rewritten as the follow-
ing operator differential equation:

Ut = Aτ∗Ut + X0F Ut , μ 88

Using the decomposition C = PCNC ⊕ PSC and (85), the
solution of (66) can be rewritten as

Ut =Φ
x1 t

x2 t
· f0 + h x1, x2, μ , 89

where

x1 t

x2 t
= Ψ, <Ut , f0 > , 90

and h x1, x2, μ ∈ Psc with h 0, 0, 0 =Dh 0, 0, 0 = 0. In par-
ticular, the solution of (66) on the center manifold is given by

U∗
t =Φ

x1 t

x2 t
· f0 + h x1, x2, 0 91

Setting z = x1 − ix2 and noticing that p1 =Φ1 + iΦ2, then
(91) can be rewritten as

U∗
t =

1
2Φ

z + z

i z − z
· f0 +w z, z = 1

2 p1z + p1z · f0 +W z, z ,

92

where W z, z = h z + z /2, − z − z /2i, 0 . Moreover, by
[26], z satisfies

z = iω0τ
∗z + g z, z , 93

where

g z, z = Ψ1 0 − iΨ2 0 < F U∗
t , 0 , f0 > 94

Let

W z, z =W20
z2

2 +W11zz +W02
z2

2 +⋯, 95

g z, z = g20
z2

2 + g11zz + g02
z2

2 +⋯ 96

From (92), we have

<F U∗
t , 0 , f0 >

= τ∗z2

4

1

α

0

+ τ∗zz
4

2

α + α

0

+ τ∗z2

4

1

α2

0

+ τ∗

4

4w 1
11 0 + 2w 1

20 0 , 1

2w 2
11 0 +w 2

20 0 + 2αw 1
11 0 + αw 1

20 0 , 1

0

z2z

+⋯,
97

where

<Wn
ij θ , 1 > = 1

π

π

0
Wn

ij θ x dx, i + j = 2, n ∈ℕ 98

Let ψ1, ψ2, ψ3 =Ψ1 0 − iΨ2 0 . Then by (94), (95), and
(96), we can obtain the following quantities:

g20 =
τ∗

2 ψ1 + αψ2 ,

g11 =
τ∗

4 2ψ1 + α + α ψ2 ,

g02 =
τ∗

2 ψ1 + α2ψ2 ,

g21 =
τ∗

2 4w 1
11 0 + 2w 1

20 0 , 1 ψ1

+ 2w 2
11 0 +w 2

20 0 + 2αw 1
11 0 + αw 1

20 0 , 1 ψ2

99

SinceW20 θ andW11 θ for θ ∈ −1, 0 appear in g21, we
still need to compute them. It follows easily from (95) that

W z, z =W20zz +W11 zz + zz +W02zz +⋯, 100

Aτ∗W = Aτ∗W20
z2

2 + Aτ∗W11zz + Aτ∗W02
z2

2 +⋯

101

In addition, by [26], W z t and z t satisfy

W = Aτ∗W +H z, z , 102

where

H z, z =H20
z2

2 +H11zz +H02
z2

2 +⋯ = X0F U∗
t , 0

−Φ Ψ, <X0F U∗
t , 0 , f0 > · f0,

103
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with Hij ∈ PSC , i + j = 2. Thus, from (92), (100), (101), and
(102), we can obtain that

2iω0τ
∗ − Aτ∗ W20 =H20,

−Aτ∗W11 =H11
104

Noticing that Aτ∗ has only two eigenvalues ±iω0τ
∗

with zero real parts, (102), therefore, has a unique solution
Wij i + j = 2 in PSC given by

W20 = 2iω0τ
∗ − Aτ∗

−1H20,
W11 = −A−1

τ∗H11
105

From (103), we know that for −1 ≤ θ < 0,

H z, z = −Φ θ Ψ 0 < F U∗
t , 0 , f0 > ·f0

= −
p1 θ + p2 θ

2 , p1 θ − p2 θ

2i Ψ1 0 Ψ2 0

× <F U∗
t , 0 , f0 > ·f0 = −

1
2 p1 θ Ψ1 0 − iΨ2 0

+ p2 θ Ψ1 0 + iΨ2 0 × <F U∗
t , 0 , f0 > ·f0

= −
1
4 g20p1 θ + g02p2 θ z2 · f0 −

1
2 g11p1 θ

+ g11p2 θ zz · f0 +⋯
106

Therefore, for −1 ≤ θ < 0,

H20 θ = −
1
2 g20p1 θ + g02p2 θ · f0, 107

H11 θ = −
1
2 g11p1 θ + g11p2 θ · f0, 108

H z, z 0 = F U∗
t , 0 −Φ Ψ, <F U∗

t , 0 , f0 > · f0,

H20 0 = τ∗

2

1
α

0
−
1
2 g20p1 0 + g02p2 0 · f0,

H11 0 = τ∗

4

2
α + α

0
−
1
2 g11p1 0 + g11p2 0 · f0

109

By the definition of Aτ∗ , we get from (105) that

W20 θ = 2iω0τ
∗W20 θ

+ 1
2 g20p1 θ + g02p2 θ · f0,  − 1 ≤ θ < 0

110

Noting that p1 θ = p1 0 eiω0τ
∗
, −1 ≤ θ ≤ 0 Hence,

W20 θ = i
2

g20
ω0τ

∗ p1 θ + g02
3ω0τ

∗ p2 θ · f0 + Ee2iω0τ
∗θ,

111

E =W20 0 −
i
2

g20
ω0τ

∗ p1 0 + g02
3ω0τ

∗ p2 0 · f0

112

Using the definition of Aτ∗ and combining (105) and
(112) we get

2iω0τ
∗ ig20
2ω0τ

∗ p1 0 · f0 +
ig02
6ω0τ

∗ p2 0 · f0 + E

− L τ∗
ig20
2ω0τ

∗ p1 θ · f0 +
ig02
6ω0τ

∗ p2 θ · f0 + Ee2iω0τ
∗θ

= τ∗

2

1

α

0

−
1
2 g20p1 0 + g02p2 0 · f0

113

Notice that

L τ∗ p1 θ · f0 = iω0τ
∗p1 0 · f0,

L τ∗ p2 θ · f0 = −iω0τ
∗p2 0 · f0

114

Then, we have

2iω0τ
∗E − τ∗DΔE − L τ∗ Ee2iω0τ

∗θ = τ∗

2

1
α

0
115

From the above expression, we can see easily that

E = 1
2

2iω0 − y∗ + a −x∗ e−2iω0τ
∗

2x∗ 2iω0 + b 0
1 0 2iω0 + c

−1

×
1
α

0
116

By the similar way, we have

W11 θ = 1
2 g11p1 θ + g11p2 θ · f0,  − 1 ≤ θ < 0, 117

W11 θ = i
2ω0τ

∗ −g11p1 θ + g11p2 θ · f0 + F 118
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Similar to the above, we can obtain that

F = 1
4

a − y∗ −x∗ 1
2x∗ b 0
1 0 c

−1

×
2

α + α

0

119

So far, W20 θ and W11 θ have been expressed by the
parameters of system (4). Therefore, g21 can be expressed
explicitly.

Theorem 4. System (4) has the following Poincaré normal
form

ξ = iω0τ
∗ξ + c1 0 ξ ξ 2 + o ξ 5 , 120

where

c1 0 = i
2ω0τ

∗ g20g11 − 2 g11
2 −

g02
2

3 + g21
2 , 121

so we can compute the following results:

σ2 = −
Re c1 0
Re λ′ τ∗

,

β2 = 2 Re c1 0 ,

T2 = −
Im c1 0 + σ2 Im λ′ τ∗

ω0τ
∗ ,

122
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which determine the properties of bifurcating periodic solu-
tions at the critical values τ∗, i.e., σ2 determines the direc-
tions of the Hopf bifurcation: if σ2 > 0 σ2 < 0 , then the
Hopf bifurcation is supercritical (subcritical) and the bifur-
cating periodic solutions exist for τ > τ∗; β2 determines the
stability of the bifurcating periodic solutions: the bifurcating
periodic solutions on the center manifold are stable (unsta-
ble), if β2 < 0 β2 > 0 ; and T2 determines the period of the
bifurcating periodic solutions: the periodic increase (decrease),
if T2 > 0 T2 < 0 .

4. Numerical Simulation

In this section, we present numerical simulations of some
examples to illustrate our theoretical results.

4.1. Stability of Equilibrium P0 for All τ ≥ 0. Consider sys-
tem (4) with the following parameters: a = 3, b = 0 7, and
c = 0 9. By a direct calculation, we obtain that system (4)

c
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Figure 6: Lyapunov exponent spectrum of system (4) when the
parameter value of c is changed continuously with τ = 0.
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Figure 7: Bifurcation diagrams of system (4) when the parameter
value of c is changed continuously with τ = 0.
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has only an equilibrium P0 = 0,1 4286,0 and the parame-
ters satisfy the conditions of (H2)–(H4). According to
Theorem 1, the system is locally asymptotically stable at P0
for all τ ≥ 0; see Figure 1. However, in this case, the interest
rate and the price index are all zero; this is impractical.

4.2. Hopf Bifurcation at Equilibrium P0. Consider system (4)
with the following parameters: a = 0 5, b = 0 8, and c = 0 8.
By a simple calculation, we obtain that system (4) has only
an equilibrium P0 = 0,1 25,0 . Obviously, (H2), (H3), and
(H5) are satisfied. By (28), we obtain τ0 = 0 05. According

to Theorem 2, system (4) is locally asymptotically stable at
P0 for τ = 0 03 ∈ 0, τ0 (see Figure 2) and Hopf bifurcation
occurs at τ = 0 06 > τ0, as shown in Figure 3.

When τ = τ0 = 0 05, we can compute c1 0 = −0 0023 +
0 0042i, σ2 = −Re c1 0 /Re λ′ τ∗ = 0 0047 > 0, and β2 =
2 Re c1 0 = −0 0047 < 0. Therefore, from the discussions
in Section 3, we know that the bifurcated periodic solu-
tions are orbitally asymptotically stable on the center mani-
fold. In addition, from Theorem 4, we know that system (4)
has a stable center manifold near the equilibrium P0 for τ
near τ0 = 0 05. Therefore, the center manifold theory implies
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Figure 11: Phase diagrams showing chaos disappearing via inverse period-doubling: (a) τ = 0 4; (b) τ = 0 44; (c) τ = 0 45; (d) τ = 0 5; (e)
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that the bifurcated periodic solutions of system (4) when
τ0 = 0 05 in the whole phase space are orbitally asymptot-
ically stable, and the Hopf bifurcation is supercritical for
σ2 > 0.

4.3. Hopf Bifurcation at Equilibria P1 and P2. Choose the
parameters of system (4) as a = 0 5, b = 0 8, and c = 1 5. By
a simple calculation, it is easy to obtain that P1 = 0 25 82,1
1667, −0 1721 and P2 = −0 2582,1 1667,0 1721 . Obvi-
ously, the parameters satisfy (H6) and (H7). By (50), we
obtain the critical value τ0 = 0 7307. According to Theorem
3, P1 and P2 are both stable with τ = 0 68 ∈ 0τ0 , and with
τ = 0 71 > τ0, two limit cycles emerge from the equilibria P1
and P2, as shown in Figure 4.

In addition, when τ = τ0 = 0 7307, at equilibrium P1, we
get c1 0 = −0 0316 + 0 056i, σ2 = −Re c1 0 /Re λ′ τ∗ =
0 0898 > 0, and β2 = 2 Re c1 0 = −0 0632 < 0. At equilib-
rium P2, we get c1 0 = −0 0366 + 0 0675i, σ2 = −Re c1 0 /
Re λ′ τ∗ = 0 0104 > 0, and β2 = 2 Re c1 0 = −0 0733 <
0. According to Theorem 4 in Section 3, the bifurcated peri-
odic solutions of system (4) when τ0 = 0 7307 in the whole
phase space are both orbitally asymptotically stable, and the
Hopf bifurcations are supercritical for σ2 > 0.

However, with increasing delay τ, the two limit cycles
emerging form the equilibria P1 and P2 and appear to
overlap, as shown in Figure 5. Figure 5(a) shows that the
maximum and minimum of x varies with τ under two
groups of different initial values. It shows that two lines
about maxima and minima appear to overlap with increas-
ing delay τ, which mean that two limit cycles overlap; see
Figure 5(b).

4.4. Chaos Vanishes by Delay τ.According to [10, 15, 27], sys-
tem (4) is chaotic for appropriate parameters. Figure 6 shows
the Lyapunov exponents’ spectrum of system (4) with the
increasing of parameter c, where a = 2 and b = 0 1. Figure 7
shows the bifurcation diagram of system (4) in the c − y
plane. Let c = 1 1, and the chaotic attractor of system (4) is
shown in Figure 8.

In the following, in order to investigate the effect of delay
τ on system (4), we fix a = 2, b = 0 1, and c = 1 1, and choos-
ing τ as a parameter, the Lyapunov exponent spectrum and
the detailed bifurcation scenarios of system (4) are shown
in Figures 9 and 10. It can be seen that chaos disappears
through a cascade of inverse period-doubling; see Figure 11.
This observation indicates that the delay is a sensitive factor
for system bifurcation and chaos and that chaos can be sup-
pressed by delay τ.

4.5. Chaos Induced by Delay τ. Consider system (4) with the
following parameters a = 3, b = 0 2, and c = 6. Obviously,
parameters satisfy condition (H6). Therefore, according to
Lemma 5, P1,2 = ±0 6055,3 1667, ∓0 1009 are both locally
stable with τ = 0. However, with increasing delay τ, system
(4) presents strong nonlinear phenomena such as periodic
motion, double-periodic motion, and chaotic motion and
the bifurcation diagram of system (4) with increasing delay
τ, which can be seen from the bifurcation diagram and
maximum Lyapunov exponent with the parameter value

of τ changed continuously, as shown in Figures 12 and
13. We list dynamic behaviors of system (4) corresponding
to different delays in Table 1 and Figure 14. The route to
chaos in finance system (4) was shown to be via classical
period-doubling bifurcations (see Figures 14(e)–14(i)).
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Figure 12: Bifurcation diagram of system (4) with the parameter
value of τ is changed continuously.
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Table 1: The dynamic behaviors of system (4) for different τ

τ Dynamics of system (4) Figure

[0, 1.52) P1 and P2 are both stable Figure 14(a)

(1.52, 3.18] System (4) is chaotic Figure 14(b)

(3.18, 5.52] System (4) exhibits period 1 motion Figure 14(c)

(5.52, 5.61] System (4) is chaotic Figure 14(d)

(5.61, 8.32] P1 and P2 are both stable Figure 14(e)

(8.32, 9.46] System (4) exhibits period 1 motion Figure 14(f)

(9.46, 9.68] System (4) exhibits period 2 motion Figure 14(g)

(9.68, 9.71] System (4) exhibits period 4 motion Figure 14(h)

(9.71, 12] System (4) is chaotic Figure 14(i)
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5. Conclusions

In this study, we have investigated dynamical behaviors
such as stability, Hopf bifurcation, and chaos for a delayed
finance system.

Firstly, we took delay τ as the bifurcation parameters to
study the Hopf bifurcation of system (4). We have proved
theoretically that the discrete delay is responsible for the sta-
bility switch of the model and that a Hopf bifurcation occurs
as the delays increase through a certain threshold.

Secondly, by the normal form method and center mani-
fold theorem, we have derived the normal forms of Hopf
bifurcation.

Finally, by numerical simulations, we have given the
Hopf bifurcation (Figures 3 and 4) that was induced by delay.
We have also given the bifurcation diagram (Figures 10 and
12) and the corresponding Lyapunov exponents’ spectrum
(Figures 6 and 13). All these show that delay τ can cause
the system to exhibit strong nonlinear phenomena such as
periodic motion, double-periodic motion, and chaotic
motion (Figure 14).

The study will help in understanding the role of financial
policies and interpreting economics phenomena in theory.
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