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We seek to quantify the extent of similarity among nodes in a complex network with respect to two or more node-level metrics
(like centrality metrics). In this pursuit, we propose the following unit disk graph-based approach: we first normalize the values
for the node-level metrics (using the sum of the squares approach) and construct a unit disk graph of the network in a coordinate
system based on the normalized values of the node-level metrics. There exists an edge between two vertices in the unit disk graph
if the Euclidean distance between the two vertices in the normalized coordinate system is within a threshold value (ranging from
0 to√𝑘, where k is the number of node-level metrics considered). We run a binary search algorithm to determine the minimum
value for the threshold distance that would yield a connected unit disk graph of the vertices. We refer to “1 − (minimum threshold
distance/√𝑘)” as the node similarity index (NSI; ranging from 0 to 1) for the complex network with respect to the k node-level
metrics considered. We evaluate the NSI values for a suite of 60 real-world networks with respect to both neighborhood-based
centrality metrics (degree centrality and eigenvector centrality) and shortest path-based centrality metrics (betweenness centrality
and closeness centrality).

1. Introduction

The weights assigned to nodes (a.k.a. vertices) in a complex
network are either topology-based or domain-based or a
combination of both. Centrality metrics quantify the topo-
logical importance of the nodes in a network [1]. There exist
several centrality metrics, each proposed to capture a partic-
ular topological aspect; the four commonly studied centrality
metrics are degree centrality (DEG), eigenvector centrality
(EVC), betweenness centrality (BWC), and closeness cen-
trality (CLC). While DEG and EVC could be categorized as
neighborhood-based centralitymetrics, BWCandCLC could
be categorized as shortest path-based centralitymetrics.More
detailed information about these four centrality metrics and
the procedures to individually compute them is available
in [1]. Some of the examples for domain-based metrics are
age, height, and weight of a patient (health information
networks), number of publications and h-index of an author
(citation networks), the processing capacity and the number
of ports available for a router (communication networks),

etc. Throughout the paper, the terms 'node' and 'vertex', 'link'
and 'edge', and 'network' and 'graph' are used interchangeably.
They mean the same.
Similarity assessment of nodes in complex networks has

been so far conducted only at the node-level (e.g., [2–9]) and
not at the network-level. To the best of our knowledge, all
the similarity measures available in the literature quantify the
extent of similarity between two nodes (like cosine similarity
[10], matching index [11], etc.) or a set of nodes (the notion
of equivalence classes [1], Rich club coefficient [12], etc.),
but not among all the nodes in a network. It would not be
appropriate to quantify the similarity among all the nodes in
a network as a statistical function (like average or median)
of the pair-wise similarity metric values. Also, the currently
available similarity measures (like assortative index [11, 13])
use just one node-level metric (typically, the degree centrality
metric) to assess the similarity between two vertices or a
set of vertices. There is currently no quantitative measure
available to rate the extent of similarity among all the vertices
in a network with respect to a combination of node-level
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metrics (topological metrics and/or domain-based metrics).
In this paper, we seek to develop a “network-level” node
similarity index (NSI) to comprehensively quantify the extent
of similarity (in a scale of 0 to 1) among “all” the nodes in a
network with respect to a set of node-level metrics.
We propose that two vertices are to be considered

“similar” with respect to a set of node-level metrics if the
vertices are “closer” on the basis of the Euclidean distance
between their coordinates (represented by the normalized
values of the node-level metrics for the vertices in the
network). For example, let BWC and CLC be the two node-
level metrics considered. Let there be four vertices v1, v2,
v3 and v4 in the network whose normalized BWC values
are 0.49, 0.62, 0.11, and 0.79, respectively, and normalized
CLC values are 0.38, 0.42, 0.87, and 0.48, respectively. Then,
the coordinates of the vertices v1, v2, v3, and v4 are given
by (0.49, 0.38), (0.62, 0.42), (0.11, 0.87), and (0.79, 0.48),
respectively, wherein the first entry in the coordinate tuples
represents the normalized BWC values of the vertices and
the second entry in the coordinate tuples represents the
normalized CLC values. The Euclidean distance between
vertices v1 and v2 is √(0.49 − 0.62)2 + (0.38 − 0.42)2 = 0.136
and the Euclidean distance between vertices v3 and v4 is
√(0.11 − 0.79)2 + (0.87 − 0.48)2 = 0.784. According to our
notion of similarity, vertices v1 and v2 are relatively more
similar to each other, compared to vertices v3 and v4 with
respect to BWC and CLC.
Our approach to determine the NSI for a network is

briefly summarized below (more details are in Section 2).
Given a network of nodes and edges and a set of node-
level metrics of interest (let k be the number of node-level
metrics considered), we first determine the raw values for the
nodes with respect to each of the k node-level metrics and
individually normalize them (using the sum of the squares
approach).We then distribute the vertices in a k-dimensional
coordinate systemwherein the coordinate of a vertex is a tuple
represented by the normalized values for the k node-level
metrics. We seek to construct a unit disk graph of the vertices
in the k-dimensional normalized coordinate system (the
range of coordinate values for any dimension is 0 to 1) such
that two vertices are connected with an edge if the Euclidean
distance between them is within a threshold value. We run
a binary search algorithm to determine the minimum value
for this threshold distance so that the unit disk graph of the
vertices in the k-dimensional normalized coordinate system
is connected. Our hypothesis is that the closer the vertices in
this coordinate system (i.e., more similar the vertices based
on the node-level metric values), the smaller the value for the
minimum threshold distance to obtain a connected unit disk
graph. We hence propose the value for the node similarity
index (NSI) to be 1 − (minimum threshold distance/√𝑘),
where√𝑘 is the maximum distance between any two vertices
in a coordinate system based on the normalized values of the
k node-level metrics considered for similarity assessment.
Some of the applications we envision for the proposed

NSI measure and the normalized coordinate system of the
node-level metrics used to compute the measure are as
follows: a communication network with a smaller NSI value

is more likely to have a single point of failure (one or few
routers would have more connections and through which
more traffic flows compared to the rest) and is also more
vulnerable for security attacks. A social network with a larger
NSI value could be considered to comprise of users who are
more peers/similar to each other. Health professionals may
decide on coming up with a single treatment plan or different
treatment plans for the patients depending on the NSI value
(with respect to a set of node-level metrics) for a health
information network; if the values for the health metrics for
all the patients are similar (a larger NSI value), then a single
treatment plan for all the patientsmight be a good choice to at
least begin with. Further, we could run clustering algorithms
on the unit disk graph corresponding to the NSI value for
a network and determine clusters of “similar” vertices that
need not be directly connected to each other. For example,
we could identify the cluster/set of vertices that have similar
values for the health parameters physically spread (but need
not be connected) over a health information network. Finally,
the proposed model of unit disk graph-based node similarity
index could be applied for outlier detection: for any unlabeled
dataset of features and their normalized values, we could
construct a unit disk graph (to represent the dataset) wherein
the vertices are the data points (rows) in the dataset with
coordinates corresponding to the normalized feature values
and two vertices are connected if the Euclidean distance
between the two vertices is within a threshold distance. The
NSI value for such a dataset would quantify the extent of
similarity among the data points with respect to the feature
values. Any vertex with a degree of one in the unit disk graph
(especially with a larger NSI value) is a potential candidate for
being classified as an outlier.
In Sections 3 and 4, we consider a total of 60 real-

world networks for similarity assessment and determine their
NSI values with respect to a combination of node-level
metrics. Since these networks belong to different domains,
we do not consider the domain-based metrics as node-level
metrics in our assessment calculations. We consider only the
topology-based centrality metrics (DEG, EVC, BWC, and
CLC) as the node-level metrics for the similarity assessment
tests conducted in this paper. The rationale behind the
choice of the above four centrality metrics is that they are
widely considered as representatives of neighborhood-based
(DEG and EVC) and shortest path-based (BWC and CLC)
centrality metrics as well as are considered “prototypical”
metrics representing three of the four classes of centrality
metrics (radial versus medial metrics and volume versus
length-based metrics) [14]. The DEG and EVC metrics are
radial metrics that capture the volume (number) of walks
originating or terminating at a node. The BWC metric is a
medial metric capturing the volume of walks passing through
a node and the CLC metric is a radial metric capturing
the length of the walks originating or terminating at a
node. Nevertheless, the NSI measure could be computed
for any combination and any number of domain-based
and/or topology-based node-level metrics for a complex
network.
The rest of the paper is organized as follows: Section 2

describes the proposed procedure to construct the unit disk
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graph of the vertices based on a coordinate systemcomprising
of the normalized values for the node-level metrics as well as
explains the use of the binary search algorithm to determine
the minimum threshold distance value that is required to
obtain a connected unit disk graph; the section also analyzes
the time complexity and memory space requirements of
the binary search algorithm as well as illustrates the whole
process using a toy network of eight vertices. Section 3
provides a brief overview of the 60 real-world networks
used to evaluate the proposed unit disk graph-based NSI
measure. Section 4 tabulates the results obtained for the
NSI measure for the 60 real-world networks with respect
to neighborhood-based centrality metrics and shortest path-
based centrality metrics, considered separately as well as
together. Section 4 compares the DEG-EVC NSI values
and the BWC-CLC NSI values obtained for the real-world
networks with that of the Pearson's correlation coefficient
between these centrality metrics. Section 4 also compares the
NSI values for the real-world networks based on a coordinate
system of all the four centrality metrics with those of the
NSI values of random networks with the same number of
nodes and edges (generated using the well-known Erdos-
Renyi model [15] and the Configuration model [16]); the
purpose of this comparison is to highlight that the notion
of node similarity captured by the unit disk graph-based
NSI values is not a random phenomenon (unless the nodes
in the real-world network are connected using randomly
generated edges). Finally, we evaluate the correlation between
the proposed NSI measure with that of recently proposed
network-level measures (such as randomness index and
spectral radius ratio for node degree) as well as classical
network-level measures (such as assortative index and ratio
of standard deviation to average path length) to showcase its
uniqueness. Section 5 reviews the related work on similarity
assessment in complex networks. Section 6 concludes the
paper.

2. Node Similarity Index (NSI)

In this section, we describe the methodology to compute the
proposed node similarity index (NSI) for a complex network.
TheNSI is a quantitativemeasure of the extent of similarity of
the nodes in a complex network with respect to two or more
node-level metrics. Let k be the number of node-level metrics
considered for the similarity assessment. The sequence of
steps to compute the NSI measure is first outlined below and
then explained in detail. We use the graph shown in Figure 1
as a running example graph to illustrate the different steps in
the procedure to compute the NSI measure.
(i) Compute the raw values of the k node-level metrics.
(ii) Normalize the values for each of the k node-level

metrics using the sum of the squares approach.
(iii) Distribute the vertices in a k-dimensional coordinate

system based on the normalized values for the node-level
metrics.
(iv) Run a binary search algorithm to determine the

minimum threshold distance that would be needed to obtain
a connected unit disk graph of the vertices.

2.1. Raw Values for the Node-Level Metrics. As mentioned
earlier, we use the centrality metrics as the basis to illustrate
the procedure to compute the NSI for a network. Depending
on the centrality metrics considered, we would need to use
the appropriate algorithms to compute the (raw) values for
each of these metrics for the vertices. In this paper, we
consider the degree centrality (DEG), eigenvector centrality
(EVC; [17]), betweenness centrality (BWC; [18, 19]), and
closeness centrality (CLC; [20, 21]) for similarity assessment.
The procedures to compute these metrics are available in
several sources in the literature (e.g., [1]).
Here, we briefly outline the procedures, assuming the

networks analyzed are modeled as undirected graphs and the
edges are of unit weights:

(i) The DEG value for a vertex is simply the number of
edges incident on the vertex.

(ii) The EVC of a vertex is computed using the power-
iteration method [17] according to which we start
with a unit vector (all 1s) as the tentative principal
eigenvector (that eventually has all the EVC values)
and go through a series of iterations by multiplying
(in each iteration) the adjacency matrix of the graph
with the tentative principal eigenvector obtained in
the previous iteration. At the end of an iteration, we
normalize the entries in the resulting product vector
(using the sum of the squares approach, see Sec-
tion 2.2 for an example that illustrates this approach)
and use the vector of normalized values as the
tentative principal eigenvector for the next iteration.
We stop the iterations when the values for the entries
in the tentative principal eigenvector between two
successive iterations converge to a certain level of
precision.

(iii) The BWC of a vertex is obtained by running the
Breadth First Search (BFS [21])-based version of the
Brandes' algorithm [19]: we run the BFS algorithm at
each vertex to determine the number of shortest paths
from the vertex to every other vertex in the graph.
Using this information, for each vertex, we determine
the fractions of the number of shortest paths between
any two vertices that go through the vertex and the
sum of all these fractions is the BWC of the vertex.

(iv) The CLC of a vertex is basically the inverse of the sum
of the shortest paths lengths (number of hops) from
the vertex to every other vertex in the graph and is
computed using the BFS algorithm.

2.2. Normalization of the Raw Values for the Node-Level
Metrics. For each node-level metric, we normalize the raw
values for the vertices and transform the values to a scale
of 0 to 1. We use the sum of the squares approach for the
normalization. As part of this process, we first obtain the
square root of the sum of the squares of the raw node-level
metric values of the vertices and then divide each of the raw
values by this square root value.
For example, to obtain the normalized DEG values of

the vertices in Figure 1, we first obtain the square root
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Figure 1: Example graph and the “raw” centrality values for the vertices.

of the sum of the squares of the raw DEG values, which
is √22 + 32 + 42 + 32 + 52 + 52 + 32 + 32 = 10.29. We then
divide each of the raw DEG values by 10.29 to obtain the
normalized DEG values of the vertices. Figure 2 displays the
normalized centrality values of the vertices in the example
graph.

2.3. Distribution of the Vertices in a Coordinate System of
the Normalized Node-Level Metric Values. We now distribute
the vertices in a coordinate system of the normalized values
for the node-level metrics. Each node-level metric is con-
sidered as a dimension. If the number of node-level metrics
considered is k, we basically distribute the vertices in a
k-dimensional coordinate system of the normalized values
for the node-level metrics. The coordinate for a vertex is
represented as a tuple comprising of the normalized values
for the k node-level metrics, which are centrality metrics in
this paper.
For example, if all the four centrality metrics (DEG, EVC,

BWC, CLC) are considered to form the coordinate system,
the coordinate for vertex 0 in the example graph of Figures
1 and 2 would be (0.1943, 0.1535, 0.0000, 0.2696). For ease of
presentation and visualization, we show the distribution of
the vertices in the example graph using two dimensions at a
time (see Figure 3): the neighborhood-based DEG and EVC
metrics and the shortest path-based BWC and CLC metrics.
As we can see, the distribution of the vertices is different in
both the coordinate systems. Sometimes, it is possible that
two or more vertices may be located at the same coordinate
(like V6 and V7 in both the coordinate systems).
Just with a cursory look at the distributions of the vertices

in the two coordinate systems of Figure 3, we could conclude
that the vertices are more similar to each other with respect
to DEG-EVC rather than BWC-CLC. We could also infer
that vertices V3, V6, and V7 are more similar with respect
to both DEG-EVC as well as BWC-CLC, even though V3 is
not directly connected to V6 and V7. We could as well run
some clustering algorithm to find clusters of similar vertices
with respect to two or more centrality metrics.

2.4. Binary Search Algorithm toObtain aUnit Disk Graphwith
Minimum Threshold Distance. We now seek to construct a
unit disk graph that could capture the similarity among the
vertices in the coordinate system of the normalized values for
the node-level metrics. In a k-dimensional coordinate system
of the normalized values (in the range of 0 to 1), themaximum

value for the distance between any two vertices is √𝑘 (for
example, the maximum distance between any two points in
a unit square is √2) and the minimum value for the distance
is of course 0. The binary search algorithm maintains three
auxiliary variables: a left index, a right index, and a middle
index. For any iteration, the middle index is the average of
the left index and right index values at the beginning of
the iteration and is more appropriately called the threshold
distance for that iteration. During each iteration, we construct
a unit disk graph of the vertices such that there exists an edge
between two vertices if the Euclidean distance between the
two vertices is less than or equal to the value of the threshold
distance for the particular iteration. During any iteration, we
maintain the invariant that the unit disk graph is guaranteed
to be connected when the right index is used as the threshold
distance and not connected when the left index is used as
the threshold distance (unless all the vertices are colocated
at the same coordinate). The procedural details of the binary
search algorithm (see Algorithm 1 for the pseudo code) are
as follows:

(i) To begin with, the left index is 0 and the right index
is√𝑘. We go through a sequence of iterations (during
which the left index and right index approach each
other) until the difference between the right index and
left index is greater than or equal to 𝜀; in this paper, we
use 𝜀 = 0.001. In a particular iteration, either the left
indexmoves to the right (i.e., is increased) or the right
index moves to the left (i.e., is decreased).

(ii) At the beginning of each iteration, we compute the
value for the middle index (threshold distance) as
the average of the left index and right index that are
updated at the end of the previous iteration.

(iii) As part of the iteration, we construct a unit disk graph
of the vertices such that there exists an edge between
two vertices if the Euclidean distance between the two
vertices is less than or equal to the threshold distance.
After constructing such a unit disk graph, we run the
Breadth First Search (BFS) algorithm on the graph to
check if it is connected or not.

(a) If the unit disk graph constructed on the basis
of the threshold distance for an iteration is
connected, the final value for the minimum
threshold distance should be greater than the
left index, but less than or equal to the current
threshold distance (middle index); accordingly,
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Figure 2: Example graph and the “normalized” centrality values for the vertices.
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Figure 3: Distribution of the vertices (in the example graph of Figures 1 and 2) in a 2-dimensional coordinate system of the normalized
centrality values (DEG-EVC and BWC-CLC).

we update (decrease) the value for the right
index to be the current value of the middle
index.

(b) If the unit disk graph constructed on the basis
of the threshold distance for an iteration is not
connected, the final value for the minimum
threshold distance should be greater than the
current threshold distance (middle index), but
less than or equal to the right index; accordingly,
we update (increase) the value for the left index
to be the current value of the middle index.

(c) When the difference between the right index
and left index becomes less than 𝜀, we stop
the iterations and consider the value for the
right index during the last iteration as the value
for the minimum threshold distance (since we
always maintain the invariant that the unit
disk graph for any iteration is connected when
the right index is used as the threshold dis-
tance). The NSI value for the network is then
simply computed as “1 − (minimum threshold
distance/√𝑘)”.
(1) In a coordinate system based on the nor-
malized values of k node-level metrics,
the largest possible value for the mini-
mum threshold distance will be √𝑘 (when
the vertices are the most dissimilar from
each other) and the smallest possible value
would be slightly above 0 (unless all the ver-
tices are colocated/exactly similar). Hence,
the above formulation of 1 − (minimum
threshold distance/√𝑘) would restrict the
NSI values to a range of 0...1 such that larger
the NSI value, the more similar are the

vertices with respect to the metrics con-
sidered. Also, the division of the minimum
threshold distance by √𝑘 (where k is the
number of dimensions: node-level metrics
considered) would negate the impact of the
number of node-level metrics considered
for similarity assessment and capture the
impact of the actual node-level metrics
considered in their entirety. For example,
with the above formulation, it is possible
that the NSI value for a network with
respect to (DEG, EVC, BWC, CLC) could
end up being larger than the NSI value
for a network with respect to (BWC, CLC)
and be smaller than the NSI value for
a network with respect to (DEG, EVC).
That is, the significantly larger similarity
among the vertices with respect to DEG
and EVC could contribute to increasing the
similarity among the vertices with respect
to all the four centrality metrics and offset
the relatively lower similarity among the
vertices with respect to BWC and CLC.

(2) Note that we do not consider the value
of the threshold distance (middle index)
for the last iteration as the value for the
minimum threshold distance because it
might be the case that the unit disk graph of
the last iteration was not connected for the
threshold distance (middle index) of that
iteration (see Table 1 for such a scenario).

2.5. Example to Illustrate the Working of the Proposed Binary
Search Algorithm. Figure 4 illustrates the sequence of itera-
tions of the binary search algorithm executed on the example
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graph of Figures 1 and 2 with the coordinates of the vertices
represented by the normalized values of DEG and EVC. As
it is a 2-dimensional coordinate system, the initial value for
the right index is √2 = 1.414. With the initial left index of
0, the initial value for the middle index is (0 + 1.414) / 2 =
0.707.The unit disk graph for the first iteration is constructed
with 0.707 as the threshold distance and we notice the graph
to be a connected graph (in this example, we actually see a
complete graph wherein each vertex is connected to every
other vertex). Hence, for the second iteration, we set the right
index to be 0.707 and retain the left index as 0, leading to a
new middle index value of (0 + 0.707) / 2 = 0.3535. The unit
disk graph for this threshold distance (0.3535) value is also
connected and we further reduce the search range by setting
the right index to 0.3535. We continue the iterations by either
increasing the left index or decreasing the right index. During
the 12th iteration, we observe the difference between the right
index and left index to be less than 0.001 (𝜀), and we finalize
the value for the minimum threshold distance to correspond
to the value for the right index during the 12th iteration. We
use a precision of at most 6 decimal digits (if needed) for the
threshold distance.
In Figure 4, along with the iteration #, we indicate the

threshold distance (referred to as TD) used to obtain the unit
disk graph for that iteration. Table 1 lists the values for the
left index, right index and middle index (threshold distance)
for each iteration as well as the difference between the values
for the right index and left index and whether the unit disk
graph for each iteration is connected or not. At the end of
the 11th iteration, we notice that the difference between the
right index and left index is less than 0.001 and we stop the
iterations and conclude the value of the right index at the
beginning of the iteration as theminimum threshold distance
(0.172607) for the network under study. The NSI value for
the network is then 1 − 0.172607 / √2 = 0.877948, where
√2 corresponds to the number of node-level metrics (DEG,
EVC) considered for the analysis. With a cursory look at
the unit disk graph for the minimum threshold distance of
0.172607 (see It # 10 in Figure 4), one could conclude that
there are three clusters of similar vertices with respect to
DEG-EVC: V1, V2, V3, V6, and V7 form the largest cluster
(actually a clique); V4 and V5 form another cluster, and V0 is
on its own cluster.

2.6. Number of Iterations, Time Complexity, and Space Com-
plexity. An interesting property of the binary search algo-
rithm applied in the search space of (0, ..., √𝑘] is that the
number of iterations of the algorithm for any real-world
network just depends on the value of k (the number of node-
level metrics/coordinates) and the parameter 𝜀 (we stop the
algorithm if the difference between the right index and left
index is less than 𝜀) and does not depend on the actual
number of nodes and edges as well as not on the actual values
of the centrality/node-level metrics involved. Even if the
range of searchable values in each iteration would vary with
the real-world network and the centrality/node-level metrics
involved, the size of the search space reduces by half in each
iteration (a characteristic of the binary search approach). For

example if 𝑘 = 2: at the end of the first iteration, the search
space is either (0, ..., 0.707] or (0.707, ..., 1.414]; in either case,
the size of the search space is 0.707. In a similar vein, at
the end of the second iteration, the search space is either
(0, ..., 0.3535] or (0.3535, ..., 0.707] or (0.707, ..., 1.0605] or
(1.0605, ..., 1.414]: the size of each of these search spaces is
0.3535. The size of the search space for the third iteration will
be half of 0.3535 = 0.17675 and so on. With the size of the
search space reducing by half in each iteration, the number
of iterations needed for the search space to reduce from √𝑘
to a value less than 𝜀 would be simply log√𝑘/∈2 and will be
independent of the centrality metrics and their values as well
as independent of the actual number of nodes and edges in
the real-world network analyzed.
The time complexity of the algorithm is dominated by

the time to construct the logical graph 𝐺𝐿 (based on the
normalized centrality values of the vertices as coordinates)
for each iteration, which would be of complexity O(𝑉2) for
a real-world network of V nodes. The possibility of an edge
between any two vertices in the real-world network needs to
be evaluated, and hence the time complexity to construct the
logical graph 𝐺𝐿 will be O(𝑉2). After the logical graph 𝐺𝐿 is
constructed during an iteration, we would need to check for
its connectivity to decide whether to change the left index or
right index for the next iteration.The Breadth First Search or
Depth First Search algorithms of time complexity O(𝑉 + 𝐸)
could be used for this purpose. Putting together the number
of iterations and the time complexity for each iteration,
the overall time complexity of the proposed binary search
algorithm(run for k node-level metrics with a terminating
search space size of 𝜀) for a given graph of V vertices is
O(𝑉2 ∗ log√𝑘/∈2 ).
With regard to space complexity, for each iteration, the

algorithm constructs a logical graph GL (a data structure)
and checks for its connectivity. As mentioned above, the
number of edges in GL would be O(𝑉2), where V is the
number of vertices in the graph 𝐺𝐿. Note that the logical
graph constructed during an iteration could be cleared from
memory at the end of the iteration. Also, the number of
auxiliary variables used remains the same irrespective of the
size of the real-world network graph analyzed. Hence, the
memory requirements of the algorithm is O(𝑉2), where V is
the number of vertices in the real-world network graph𝐺𝑅 as
well.

3. Overview of the Real-World Networks
Used for Analysis

In this section, we provide a brief overview of the 60 real-
world networks that are analyzed for the proposed node
similarity index (NSI) measure. The real-world networks are
spread over several domains, such as (listed below along
with the number of networks considered for each domain):
acquaintance network (12), friendship network (9), biological
network (8), coappearance network (8), citation network
(4), employment network (4), collaboration network (3),
literature network (3), political network (3), communication
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Figure 4: Unit disk graphs constructed during the iterations of the binary search algorithm for the example graph of Figures 1 and 2 and the
normalized coordinate system of (DEG, EVC).

network (2), game network (2), and transportation network
(2). We now briefly describe these networks: an acquaintance
network is a social network comprising of people who are
not close to each other, but slightly know each other (like an
acquaintance) that is typically learnt during an observation
period. A friendship network is a social network in which the
participant nodes closely know each other, and no observa-
tion period is typically used to learn about the friendships. A
biological network is a network that models the interactions
involving genes, proteins and the associated transcriptions
as well as models the interactions between animals of a
species, etc. A coappearance network is a network based
on the appearance of characters or words (extracted from
novels/books/dictionary) alongside each other. A citation
network is a network in which there exists a link between two
nodes (papers) if one of the two papers has cited the other
paper as reference. An employment network is a network in
which the interactions between employees (nodes) are due to
the job requirements and not due to any personal liking. A
collaboration network is a network of authors who are linked

if two authors share at least one publication. A literature
network is a network of books/papers/terminologies/authors
(other than citation, collaboration or coauthorship) in a
particular area of literature. A political network is a network
of entities (typically politicians) involved in politics. A com-
munication network is a network of entities that communicate
in an organizational setting or over a common agenda (e.g.,
email network, criminal network, trade network, etc.). A
game network is a network of teams or players playing
for different teams and their associations. A transportation
network is a network of entities (like airports and their flight
connections) involved in public transportation. In Table 2,
we list the 60 real-world networks, their 3 character-code
acronym used in the paper, the domain of the network as
well as the number of nodes, edges, average degree and
the spectral radius ratio for node degree (a measure of the
variation in node degree, with a minimum value of 1.0; [22]).
In a recent work [23], we had analyzed these 60 real-world
networks for assortativity with respect to the neighborhood
and shortest path-based centrality metrics and observed the
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real-world networks to be more assortative with respect to
EVC and CLC and more disassortative with respect to BWC
and DEG.

4. Node Similarity Index of
the Real-World Networks

In this section, we present the results obtained for the
proposed node similarity index (NSI) measure for the 60
real-world networks with respect to neighborhood-based
centralitymetrics (DEG, EVC), shortest path-based centrality
metrics (BWC, CLC), and both the neighborhood and short-
est path-based centrality metrics (DEG, EVC, BWC, CLC)
forming the coordinate systems. With a ∈ value of 0.001,
the number of iterations incurred (for any complex network)
by the binary search algorithm with two and four centrality
metrics used for the coordinate systems are respectively
|log√2/0.0012 | = 11 and |log√4/0.0012 | = 11. The median of the
NSI values for the (DEG, EVC), (BWC, CLC), and (DEG,
EVC, BWC, CLC)-based coordinate systems is 0.92, 0.89, and
0.89, respectively.
Table 3 presents the numerical NSI values for the real-

world networks with respect to all the three coordinate
systems. For domains that have at least 5 real-world networks
(there are four such domains), we group the networks
together to present the results in Table 3. For each of these
four domains (acquaintance networks, friendship networks,
biological networks, and coappearance networks), we make
the numbers bold for which the NSI value for a particular
coordinate system is greater than or equal to the median
value for all the real-world networks with respect to the
same coordinate system. For example, we make the numbers
bold for a (DEG, EVC) coordinate system if the NSI value
in the cell is greater than or equal to 0.92. Based on this
coloring scheme, we introduce a measure called relative node
similarity score for a network domain that is computed as the
ratio of the bold numbers in the domain divided by the total
number of cells in that domain across all the three coordinate
systems. For example, in the case of acquaintance networks,
there are 21 bold numbers in a total of 36 cells and hence
the relative node similarity score for acquaintance networks
(in comparison to any real-world network; with respect to
any coordinate system) is 21/36 = 0.58. Likewise, the rela-
tive similarity scores of the Friendship networks, Biological
networks and coappearance networks are respectively: 19/27
= 0.70, 11/24 = 0.46 and 5/24 = 0.21. We can thus infer
that the nodes in friendship and acquaintance networks are
more likely to be similar to each other with respect to the
centralitymetrics compared to the nodes in the biological and
coappearance networks. Nodes in a coappearance network
(especially, when it involves the appearance of characters in
the same chapter/scene) are less likely to be similar to each
other with respect to the centrality metrics.
A visual comparison of the NSI values for the three

coordinate systems is presented in Figures 5(a)–5(c). For 43
of the 60 real-world networks (i.e., more than 70% of the
networks), the (DEG, EVC)-based NSI values are greater
than the (BWC, CLC)-based NSI values (see Figure 5(a)).

Hence, nodes in real-world networks are more likely to be
similar with respect to the neighborhood-based (DEG, EVC)
centrality metrics rather than the shortest path-based (BWC,
CLC) centrality metrics. A notable exception to this trend is
the Roget Network (#49: ROG) whose (DEG, EVC)-based
NSI is 0.57 and (BWC, CLC)-based NSI is 0.88. In Figures
5(b) and 5(c), when the (DEG, EVC)-based NSI values and
the (BWC, CLC)-based NSI values are plotted against the
(DEG, EVC, BWC, CLC)-based NSI values, we observe the
(DEG, EVC, BWC, CLC)-based NSI values are lower than
that of the (DEG, EVC)-based NSI values for more than 85%
(i.e., for 52/60) of the real-world networks; on the other hand,
the (DEG, EVC, BWC, CLC)-based NSI values are greater
than that of the (BWC, CLC)-based NSI values for more than
50% (i.e., for 32/60) of the real-world networks.The relatively
larger similarity among the vertices with respect to (DEG,
EVC) contributes to the larger values for the (DEG, EVC,
BWC, CLC)-based NSI measure compared to the (BWC,
CLC)-based NSI measure. As a result, nodes in real-world
networks tend to be more similar to each other when both
the neighborhood-based (DEG, EVC) and shortest path-
based (BWC, CLC) centralitymetrics are considered together
rather than when the shortest path-based (BWC, CLC)
centrality metrics are considered alone. This corroborates
our earlier assertion in Section 2.4 that our formulation for
NSI as “1 − (minimum threshold distance/√𝑘)” negates the
number of node-level metrics (k) considered and captures
the contribution of the node-level metrics in their entirety to
quantify the extent of similarity among the vertices.

4.1. Comparison of NSI Values with the Pearson's Correla-
tion Coefficient of the Centrality Metrics. Correlation studies
involving centrality metrics have been extensively conducted
in the literature (e.g., [70–72]), with the Pearson's correlation
coefficient [73], whose values range from -1 to 1, being
the most commonly used correlation measure. A larger
positive value (or a smaller negative value) for the Pearson's
correlation coefficient between two centrality metrics means
that the two centrality metrics are strongly and positively (or
negatively) related as well as one centrality metric could be
predicted using a linear function of the other centralitymetric
(e.g., [74]). If the Pearson's correlation coefficient between
two centrality metrics is closer to 0, it implies the twometrics
are not linearly related to each other.
In this subsection, we compare the NSI values obtained

for the real-world networks based on the neighborhood
(DEG, EVC)-based centrality metrics and the shortest path
(BWC, CLC)-based centrality metrics with the Pearson's
correlation coefficient values for DEG versus EVC and BWC
versus CLC for these networks (see Figure 6).The purpose of
this comparison is to showcase that the NSI values based on a
coordinate system of a particular combination of centrality
metrics are independent of the correlation between the
corresponding centrality metrics. Thereby, we claim that the
correlation coefficient between two centrality metrics for a
real-world network cannot be construed as a network-level
measure of the extent of similarity among the nodes in the
network.
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Figure 5: Comparison of the NSI values for the real-world networks based on the coordinate systems.

The plots in Figure 6 for both the neighborhood and
shortest path-based centrality metrics indicate that the NSI
values for the real-world networks based on the coordinate
systems of these centrality metrics are independent of the
Pearson's correlation coefficient between the constituent
centrality metrics for the real-world networks. Though the
Pearson's correlation coefficient values range from -1 to 1 (for
DEG, EVC) or from 0 to 1 (for BWC, CLC), the NSI values
for most of the real-world networks are 0.85 or above (for
DEG, EVC) or 0.80 or above (for BWC, CLC). We could not
identify any sort of relationship between the NSI values and
the correlation coefficients.
Numerically, the (DEG, EVC)-based NSI values are

greater than the Pearson's correlation coefficient between
DEG and EVC for about 2/3rds of the real-world networks,
with the median of the difference being 0.12; on the other
hand, for the other 1/3rd of the real-world networks (for
which the Pearson's correlation coefficients between DEG
and EVC are relatively larger than the NSI values for the
networks based on these two metrics), the median of the

difference in the values is only 0.04. Though DEG and
EVC are positively correlated for a majority of the real-
world networks, the Pearson's correlation values between
DEG and EVC are negative (-0.5 or lower) for the follow-
ing four networks: Marvel Universe Network (#33: MUN),
Author Facebook Network (#35: AFB), Yeast Phosphoryla-
tionNetwork (#55: YPN) andNetwork Science Coauthorship
Network (#60: NSC). In the case of (BWC, CLC), the NSI
values are larger than the Pearson's correlation coefficient
between BWC and CLC for more than 85% of the real-world
networks, with the median of the difference being 0.43.Thus,
the (DEG, EVC)-based NSI values are relatively more closer
to the Pearson's correlation coefficients between DEG and
EVC compared to the proximity of the (BWC, CLC)-based
NSI values to the Pearson's correlation coefficients between
BWC and CLC.

4.2. Comparison of the NSI Values for the Real-WorldNetworks
and Random Networks. In this subsection, we compare the
NSI values for the real-world networks with the NSI values
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Inputs
Real-world network graph, 𝐺𝑅
Number of centrality metrics, 𝑘
The normalized 𝑘 centrality values (𝐶1, 𝐶2, . . . , 𝐶𝑘) for each vertex in 𝐺𝑅
// The centrality-based logical coordinates for a vertex 𝑖 is represented as (𝐶𝑖1, 𝐶𝑖2, . . . , 𝐶𝑖𝑘)

Auxiliary Variables
Left Index = 0, Right Index =√𝑘, Middle Index, 𝜀 = 0.001

Begin Binary Search Algorithm
while ( | Right Index - Left Index | > 𝜀) do
Middle Index = (Left Index + Right Index) / 2
Construct Logical Graph 𝐺𝐿 for the vertices using the Middle Index as the threshold distance
/∗ Two vertices 𝑖 and 𝑗 in 𝐺𝑅 are connected with an edge in 𝐺𝐿 if the Euclidean distance
√(𝐶𝑖1 − 𝐶𝑗1)2 + (𝐶𝑖2 − 𝐶𝑗2)2 + ⋅ ⋅ ⋅ + (𝐶𝑖𝑘 − 𝐶𝑗𝑘)2 ≤Middle Index ∗/

if (𝐺𝐿 is connected ) then
Right Index = Middle Index

else
Left Index = Middle Index

end if
end while
return NSI = ( 1 − Right Index ) /√𝑘

End Binary Search Algorithm

Algorithm 1: Pseudo Code for the Binary Search Algorithm to Determine the Node Similarity Index (NSI).
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Figure 6: NSI values versus Pearson's correlation coefficient values for the centrality metrics.

obtained for random networks generated using the well-
known Erdos-Renyi [15] and Configuration [17] models.
For a given real-world network, both the models generate
a random network with the same number of vertices and
edges, but the edges between the vertices are randomly
assigned. The degree distribution of the vertices in the
random network generated using the Configuration model
will be the same as the degree distribution of the vertices
in the corresponding real-world network. On the other
hand, the degree distribution of the vertices in the random
network generated using the Erdos-Renyi model will always
be Poisson in nature, irrespective of the degree distribution
of the vertices in the corresponding real-world network.
We expect relatively less variation in the centrality values
of the nodes in the random network generated using the
Erdos-Renyi model compared to those generated using the
Configuration model. Nevertheless, our hypothesis is that
since the edges are randomly assigned under both these
models, the NSI values of the random networks with respect
to any combination of centrality metrics should be different
from the NSI values of the corresponding real-world net-
works.

For each of the 60 real-world networks, we generated
hundred random networks according to each of the above
two models. For a real-world network with N nodes and L
links, to generate a random network per the Erdos-Renyi
model, we first determine the probability (𝑝𝑙𝑖𝑛𝑘 = 𝐿/(𝑁(𝑁 −
1)/2)) for a link between any two nodes in the random
network; we then consider all possible node pairs of two
different vertices and generate a random number for each
pair. If the random number generated for a node pair is
less than or equal to 𝑝𝑙𝑖𝑛𝑘, there is an edge between the two
nodes in the random network; otherwise, not. To generate
a random network according to the Configuration model,
we first determine the degree sequence of the vertices in the
corresponding real-world network. We set up a list LD that
has the vertex IDs such that the number of times a vertex is
included in this list corresponds to the degree of the vertex
in the real-world network. We then randomly shuffle the
vertices in the list LD ten times (to decrease the chances
of the same vertex ID appearing consecutively). Finally, we
sequentially parse through the shuffled list and connect the
adjacent vertices in the list with an edge. For complex real-
world networks with a larger number of nodes, the average
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number of self-loops and multilinks in the random networks
generated according to the Configurationmodel is a constant
and their density approaches zero as the number of nodes
tends to infinity [75].
After rigorous simulations for a coordinate system based

on all the four major centrality metrics (DEG, EVC, BWC,
CLC), we observe our hypothesis to be indeed true. For
85% and 63% of the real-world networks (i.e., 52 and 38
of the 60 networks), the average of the NSI values for the
random networks generated respectively according to the
Erdos-Renyi model and the Configuration model are greater
than 0.90. Unlike the corresponding random networks, for
only 19 of the 60 real-world networks (i.e., less than 1/3rd of
the real-world networks), the (DEG, EVC, BWC, CLC)-based
NSI values are greater than 0.90. The relatively larger NSI
values for the random networks per the Erdos-Renyi (ER)
model vis-a-vis the Configuration model could be attributed
to the lower variation in the values of the centrality metrics of
the vertices in the ER-randomnetworks that exhibit a Poisson
degree distribution.
Figure 7 shows the distribution of the (DEG, EVC, BWC,

CLC)-based NSI values of the real-world networks and the
average of the (DEG, EVC, BWC, CLC)-based NSI values for
the corresponding random networks generated according to
the Erdos-Renyi model (Figure 7(a)) and the Configuration
model (Figure 7(b)). We do not see any relationship between
the twoNSI values in each of Figures 7(a) and 7(b), indicating
that the NSI values measured for a real-world network are
not random and they do capture the extent of similarity
among the nodes with respect to the centrality metrics
considered. The median of the difference in the NSI values
for a real-world network and the random network generated
per the Configurationmodel is 0.06 and the random network
generated per the Erdos-Renyi model is 0.10.
For only nine of the sixty real-world networks, the NSI

value for the real-world network is greater than the average
of the NSI values for the corresponding random networks
(per the Erdos-Renyimodel).These nine real-world networks
are as follows: Taro Exchange Network (#1: TEN), Friendship
Network in a Hi-Tech Firm (#7: FHT), Windsurfers Beach
Network (#10: WSB), College Dorm Fraternity Network (#13:
CDF), Macaque Dominance Network (#15: MDN), Manu-
facturing Company Employee Network (#22: MCE), World
Trade Metal Network (#23: WTN), US Football Network
(#30: FON), and Primary School Contact Network (#39:
PSN).The values for the spectral radius ratio for node degree
for these nine real-world networks range from 1.01 to 1.57
with a median of 1.12. Real-world networks with such a
low spectral radius ratio for node degree could be indeed
considered to be randomly generated.

4.3. Comparison of the NSI Values with the Values for Other
Network-Level Measures. In this subsection, we compare
the NSI values obtained for the real-world networks with
those of other recently proposed and classical network-level
measures. These measures are (i) spectral radius ratio for
node degree; (ii) randomness index; (iii) assortative index,
and (iv) ratio of the standard deviation to the average path

length. Below, we provide a brief description of each of
these measures and analyze the relationship vis-a-vis the
appropriate coordinate system-based NSI values with which
we compare them:
(i)The spectral radius ratio for node degree [22] quantifies

the extent of variation in node degree in a way that is
independent of the number of nodes and edges in the
network (unlike the classical standard deviation measure
that is dependent on the number of nodes). The spectral
radius ratio for node degree is computed as the ratio of the
principal eigenvalue of the adjacency matrix and the average
node degree. The smallest possible value for the measure is
1.0 and it corresponds to a regular network where there is
no variation in node degree. For random networks that are
characteristic of a smaller variation in the node degree, the
spectral radius ratio for node degree is typically closer to
1.0. For scale-free networks that are characteristic of a larger
variation in node degree, the spectral radius ratio for node
degree is appreciably greater than 1.0. As it is a degree-based
measure, we compare the (DEG, EVC)-based NSI values of
the real-world networks with their spectral radius ratio for
node degree (see Figure 8(a)).We could observe an increasing
trend of the (DEG, EVC)-NSI values with decrease in the
spectral radius ratio for node degree. However, the R2 values
for all the models that we tried to fit to relate these two
measures are at most 0.25.
(ii) The randomness index [76] quantifies the extent of

randomness in any complex network. It is computed as the
Pearson's correlation coefficient between the degree of the
vertices and the average local clustering coefficient of the
vertices with the particular degree.The local clustering coeffi-
cient of a vertex [1] is the probability that any twoneighbors of
the vertex are directly connected. For a theoretically random
network (say, a random network generated according to the
ER model [15]), the local clustering coefficient of a vertex is
independent of the degree of the vertex, and the expected
randomness index is 0. For real-world networks that are
not random, the local clustering coefficient of the vertices
decreases with increase in the degree of the vertices (as it
is less likely that all the neighbors of a high-degree vertex
will be directly connected to each other), and there is a
negative correlation between the two measures, resulting in
negative values for the randomness index.Themore negative
is the randomness index value (i.e., closer to -1) for a real-
world network, the lower the extent of randomness in the
network. As we expect the vertices in a theoretically random
network to be similar to each other with respect to all the
centralitymetrics (likewe saw in Section 4.2), we compare the
(DEG, EVC, BWC, CLC)-based NSI values of the real-world
networks with their randomness index (see Figure 8(b)). We
do not observe any trend of decrease or increase in the NSI
values of the real-world networks vis-a-vis their randomness
index values: for example, the randomness index of real-
world networks whose NSI values are in the vicinity of 0.90
range from -0.92 to -0.16.
(iii) The assortative index measure [13] quantifies the

extent of similarity between the end vertices of a network
with respect to node degree. It is calculated as the Pearson's
correlation coefficient (ranging from -1 to 1) of the remaining
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(b) Configuration model

Figure 7: Comparison of the (DEG, EVC, BWC, CLC)-based NSI values for the real-world networks and the random networks generated
using the Erdos-Renyi model and the Configuration model.

degree of the end vertices of the edges in a network. The
remaining degree of a vertex is one less than the degree of
the vertex. Networks with larger positive values (closer to 1)
for the assortative index are considered to be assortative and
networks with smaller negative values (closer to -1) for the
assortative index are considered to be disassortative. As it is
a degree-based measure, we compare the (DEG, EVC)-based
NSI values of the real-world networks with their remaining
degree-based assortative index (see Figure 8(c)). We observe
larger NSI values for both assortative as well as disassortative
networks. For example, the assortative index of real-world
networks whose NSI values are in the vicinity of 0.90 range
from -0.49 to 0.20.
(iv)The ratio of the standard deviation to the average path

length has been a classical measure for getting an estimate of
the similarity among the shortest path lengths between any
two nodes in a network. If there is no significant variation
in the shortest path lengths, the ratio is expected to be
lower than 1.0 (and more closer to 0.0). The larger the ratio
(especially, if greater than 1.0), the larger the variation in the
shortest path lengths. As it is a shortest path-based measure,
we compare the (BWC, CLC)-based NSI values with the
ratio of the standard deviation to the average shortest path
length. There is no trend of increase or decrease in the
NSI values with the ratio (see Figure 8(d)). The R2 values
for the different models that we tried to fit the data do
not exceed 0.10. Hence, like the other three network-level
measures comparedwith, the proposedNSImeasure captures
the extent of similarity among the nodes with respect to the
BWC and CLC metrics, and this is not captured with the
classical approach of determining the ratio of the standard
deviation to the average path length.

5. Related Work

To the best of our knowledge, similarity assessment in
complex networks has been conducted only at the node-level
(i.e., between any two nodes or a set of nodes, also referred
to as pair-wise node similarity) and not at the network-level
(i.e., among all the nodes in the network). The objective of
this paper is to develop a measure to comprehensively (i.e., at
the network-level) quantify the extent of the similarity among
the vertices in a coordinate system based on the normalized
values of the node-levelmetrics. In this section, we review the
prominent measures available in the literature for pair-wise
node similarity assessment.
One of the classical approaches for pair-wise node sim-

ilarity assessment is based on the notion of “equivalence
classes” [1]; there are three levels of equivalence classes:
structural, automorphic and regular. Two nodes are struc-
turally equivalent if they share many of their neighbors
[1]. Some of the measures available to quantify structural
equivalence are [1]: cosine similarity, Pearson's coefficient
and Euclidean distance, all of which are computed based on
the rows associated with the corresponding two vertices in
the adjacency matrix of the graph. Two vertices u and v are
automorphically equivalent if all the vertices can be relabeled
to form an isomorphic graph such that the labels of u and
v are interchanged [77]. Two vertices u and v are regularly
equivalent if they have neighbors who are themselves similar
[5, 77]. Similar to structural equivalence, there exist quantita-
tive measures to assess automorphic equivalence and regular
equivalence. In [9], the authors proposed four measures
(based on maximum common neighborhood, neighborhood
patterns, random walks and k-hop neighbors) to assess the
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Figure 8: Comparison of the centrality-based node similarity index values for the real-world networks with some of the related network-level
measures.

automorphic equivalence of two nodes. SimRank [7] and its
variants such as PathSim [8] are examples of well-known
measures to assess the similarity of two nodes based on
the similarity of their neighbors. However, none of these
quantitative measures can be seamlessly extended to quantify
the similarity among nodes at the network-level. Also, from
the definitions of the three equivalence classes and the

measures available to quantify them, we conjecture that it is
very unlikely for two distant nodes (i.e., several hops away
from each other) to belong to the same equivalence class,
especially in the case of structural equivalence, which is the
superclass of the three classes [1]. Note that two structurally
equivalent nodes are also automorphically and regularly
equivalent. Two nodes that are automorphically equivalent
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are regularly equivalent too, but need not be structurally
equivalent. Two nodes that are regularly equivalent need not
be structurally or automorphically equivalent [1].
In addition to the above, quantitative measures to assess

pair-wise node similarity based on the neighborhood of the
nodes were proposed by Ravasz et al. [78], Burt [79] and
Goldberg and Roth [80]. Thiel and Berthold [2] proposed
that two nodes (need not be directly connected to each other)
are structurally similar if their neighborhoods are structurally
similar to each other. In [3], Symeonidis et al. recommended
that for two nodes that are not directly connected to each
other, their similarity could be quantified as the product
of the similarity of the end vertices constituting the edges
of the shortest path between the two nodes. For weighted
graphs, Chen et al. [4] introduced a measure called relation
strength similarity (RSS) to assess similarity between two
nodes: the RSS of two nodes (u, v) connected to each other
is the ratio of the weight of the edge (u, v) to that of
the sum of the weights of the edges incident on u and
v. The transitive node similarity formulation proposed by
Symeonidis et al. [3] for two nodes that are not directly
connected to each other could be extended to the RSS mea-
sure as well. Though neighborhood-based methods are more
common and widely used, there also exist pair-wise node
similarity assessment measures that are not neighborhood-
based. For example, in [6], the authors applied the notion of
“mutual information” from Information Theory to quantify
the extent of similarity between two nodes: the similarity
score for two nodes is a function of the “information loss”
encountered in the network by replacing the two nodes as one
node.
While centrality metrics have been traditionally explored

for their individual usability to analyze the characteristics
of a real-world network, more recent studies [70–72] have
focused on analyzing the correlation between any two cen-
trality metrics to explore the usability of one centrality
metric (typically, a computationally light metric) in lieu
of another centrality metric (typically, a computationally
heavy metric) at different levels (i.e., for prediction, network-
wide ranking, pair-wise ranking, etc.). However, as seen
in Section 4, correlation studies do not reveal or quantify
the extent of similarity among the vertices on the basis of
their centrality values with respect to two or more metrics.
In [81], the authors introduced the notion of “centrality
distance” to quantify the similarity of two graphs with
respect to a centrality metric and is measured as the sum
of the absolute differences of the centrality values (without
any normalization) of the individual vertices in the two
graphs.

6. Conclusions

The high-level contribution of this paper is the proposal for
a unit disk graph-based approach to quantify the similarity
among all the nodes in a network with respect to two or
more node-level metrics. As part of this approach, we pro-
pose the use of a k-dimensional coordinate system wherein
the coordinate of a vertex is composed of the normalized

values of the k node-level metrics considered for similarity
assessment. We propose the use of a binary search algorithm
to determine the minimum value for the threshold distance
(in a search space ranging from 0 to √𝑘) that would be
needed to obtain a connected unit disk graph of the vertices
in the normalized coordinate system. Our hypothesis is that
the larger the similarity among the vertices, the smaller the
value for the minimum threshold distance needed to obtain
a connected unit disk graph. We propose a measure called
the node similarity index (NSI) computed as 1 − (minimum
threshold distance/√𝑘) to quantify the extent of similarity
among the vertices in a scale of 0 to 1. The division by √𝑘 in
the NSI formulation (where 'k' is the number of node-level
metrics considered for similarity assessment) negates the
impact of the number of node-level metrics considered and
solely captures the impact of the actual node-level metrics
considered. With the binary search approach, for a given
k and the terminating search space size ∈, the number of
iterations needed for the algorithm is the same for any
complex network; the overall time complexity and space
complexity of the algorithm are, respectively, O(𝑉2∗ log√𝑘/∈2 )
and O(𝑉2).
We evaluate our proposed model with respect to the four

commonly studied centrality metrics (neighborhood-based
degree and eigenvector centrality and the shortest path-based
betweenness and closeness centrality) on a suite of 60 real-
world networks belonging to different domains. Overall, we
observe the nodes in real-world networks to be more similar
with respect to the neighborhood-based centrality metrics
rather than the shortest path-based centrality metrics. For
all the combinations of centrality metrics considered, we
observe nodes in friendship and acquaintance networks to
be relatively more similar among themselves compared to
the nodes in biological and coappearance networks. We
showcase the uniqueness of the NSI values by comparing
them with several quantitative measures such as correlation
coefficient, spectral radius ratio of node degree, assortative
index, randomness index and ratio of standard deviation to
average path length. We do not observe any significant trend
of increase or decrease in the NSI values with respect to each
of these measures.
We also observed the NSI values of the real-world

networks with respect to all the four centrality metrics to
be different from the NSI values of the random networks
(generated with the ER model) that have the same number
of nodes and edges as that of the real-world networks. Thus,
the notion of node similarity captured by the unit disk graph-
based NSI values is not a random phenomenon and the
proposed NSI measure is a unique measure whose values are
also not correlated with several of the existing measures for
complex network analysis.

Data Availability

The real-world network data used to support the findings of
this study are available from the corresponding author upon
request.
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