
Research Article
Event-Triggered Stability Analysis of Semi-Markovian
Jump Networked Control System with Actuator Faults and
Time-Varying Delay via Bessel–Legendre Inequalities

Hongqian Lu ,1 Chaoqun Guo,1 Yue Hu,1 and Wuneng Zhou2

1School of Electrical Engineering and Automation, Qilu University of Technology (Shandong Academy of Sciences),
Jinan 250353, China
2College of Information Science and Technology, Donghua University, Shanghai 201620, China

Correspondence should be addressed to Hongqian Lu; hqlu@163.com

Received 1 June 2019; Revised 6 October 2019; Accepted 14 October 2019; Published 31 October 2019

Academic Editor: Hassan Zargarzadeh

Copyright © 2019 Hongqian Lu et al.  is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 is paper discusses the stability of semi-Markovian jump networked control system containing time-varying delay and actuator
faults.  e system dynamic is optimized while the network resource is saved by introducing an improved static event-triggered
mechanism. For deriving a less conservative stability criterion, the Bessel–Legendre inequalities approach is employed to the stability
analysis and plays a major role. By constructing the enhanced Lyapunov–Krasovskii functional (LKF) relevant to the Legendre
polynomials, a stability criterion with lower conservativeness indexed by N is derived, and the conservativeness will decrease as N
increases. In addition, a controller is designed. To prove the validity of this paper, numerical examples are provided at the last.

1. Introduction

Networked control system is widely used and researched due
to its many advantages such as sharing network resources,
cutting down system cost, and improving system stability.
 e networked control system is a feedback control system
consisting of the controller, actuator, controlled object, and
sensor [1].  ere are many unavoidable problems in the
networked control system. Among them, the network time
delay has a large impact on stability of the networked control
system [2, 3]. e networked control time delay occurs in the
transmission process of information.  is paper ignores the
process delay caused by the calculation of sensors, con-
trollers, and actuators themselves and only considers the
network time delay which is called the network time-varying
delay. In addition, an actual networked control system may
su�er from actuator faults resulting in losing partial or total
e�ectiveness of executing control actions, which can also
cause instability of the networked control system.  us,
researching stability of the networked control system con-
taining actuator faults is of vital importance [4]. Observer-

based fault estimation for a nonlinear system was studied in
[5]. A reliable controller for system with actuator faults was
researched in [6]. Chance constrained control was proposed
in [7] for stochastic nonlinear systems.

As a result of the inevitable external interferences, pa-
rameters and structures of the model may suddenly change.
 e jumping of parameters is usually subject to Markovian
jump process.  us, the Markovian jump has received wide
attention in control systems. It is a useful tool in con-
structing the model structures which could abrupt change in
their parameters [8]. Many research results about the
Markovian jump systems are proposed.  e stability of the
Markovian jump networked control system was analyzed in
[9] and the �lter problem of the networked control system
using the Markovian jumpmethod was researched in [10]. It
is worth mentioning that the actuator faults usually have the
random property like Markovian jump. Literatures [11–13]
all studied the control problem of the system with Mar-
kovian jump actuator faults. However, the application of the
Markovian jump structure is limited because of the as-
sumption that sojourn-time l obeys exponential distribution,
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and the transition rate is a constant. Nevertheless, in the
practical applications, such an assumption is not always
satisfied. To overcome this defect, we slack probability
distribution of sojourn-time as a general probability dis-
tribution. +is will make the transition rate become time-
varying [14–16]. Correspondingly, this stochastic process is
often called as semi-Markovian jump process. Nowadays,
there are many research results about semi-Markovian
jump. For instance, robust sliding mode control of the
uncertain semi-Markovian jump system was researched in
[17]. An observer was established for the fuzzy system
containing stochastic actuator faults in [18]. +is paper will
further study the stability of the semi-Markovian jump
networked control system with actuator faults and delays.

For cutting down the conservatism of the delay upper
bound, in terms of technology, a series of approaches are
developed aiming to decrease the approximation error of
term 􏽒

t

t− d2
_xT(s)R _x(s)ds in the derivative of LKF. At first, a

model transformation method is employed to deal with that
integral term, which has large conservatism [19]. Afterwards,
a free weighting matrix method was studied in [20] to reduce
the conservatism of stability criterion. Nevertheless, this
approach will raise decision variables. +en, Jensen in-
equality was widely employed to overcome this defect [21].
Besides, Wirtinger-based inequality, as a more advanced
technology than Jensen inequality, was introduced in var-
ious control systems [22]. Moreover, free-matrix-based
integral inequality was applied in [23] for researching fil-
tering problem for the neural network system. A kind of
integral inequality method based on auxiliary function was
introduced in [24]. +ese techniques are used to approxi-
mate the derivative of the LKF more accurately so as to
obtain less conservative linear matrix inequalities in the
stability criterion. But, they all have some manipulations
permitting to use a finite linear matrix inequality to test
the infinite dimensional stability problem [25–28]. In this
paper, we use the Bessel–Legendre inequalities method to
tightly approximate the integral term of quadratic functional
to the quadratic term of matrix functional about Legendre
polynomials. For example, term “− 􏽒

t

t− τM

_x(t)W _x(t)ds” in
Lyapunov–Krasovskii functional derivative is less than or equal
to the “− τMΨT

NWNΨN”, where WN � diag W, 3W, . . . ,{

(2N + 1)W}, ΨN � (1/τM) 􏽒
t

t− τM
LN((s − τM)/τM)x(s)ds,

N≥ 0, and the LN is the “shifted” Legendre polynomial
matrix. Moreover, we construct an improved LKF which is
relevant to Legendre polynomials and make use of the re-
ciprocally convex combination method [29–31] to obtain the
stability criterion. +e derived stability criterion with lower
conservativeness is governed by the orderN. +e conservatism
of the criterion decreases as N increases. To the author’s best
knowledge, for the semi-Markovian jump networked control
system containing actuator faults and time-varying delay,
employing Bessel–Legendre inequalities to investigate stability
has not been fully researched and is of vital significance.

In fact, network channel resources are limited. In the
past, most articles applied a periodic triggered mechanism to
study networked control systems. +e traditional periodic

triggered mechanism is fixed to deal with various distur-
bances. +is will cause an increase in the amount of com-
putation of controller because the system is not always under
disturbance [32–34]. +e event-triggered scheme can de-
crease the waste of channel resources effectively compared
with the traditional periodic triggering scheme. +us, event-
triggered stability analysis not only guarantees the stability of
system but also reduces the burden of channel. +e dis-
tribute control under the event-triggered scheme was
researched in [35]. An event-triggered controller for the
discrete networked control systems was designed in [36].
+e event-triggered real-time scheduling strategy was in-
troduced in [37] for the T-S fuzzy system. Recently, the
researchers have developed some improved ETSs for dif-
ferent control systems and different property requirements.
Decentralized ETS was researched for the networked fuzzy
system in [38]. Distributed ETS for a multiagent system was
dealt in [39]. In terms of accelerating system dynamics, we
usually expect the high frequency of release at the beginning
process. A new static ETS was introduced for a discrete
nonlinear system in [40]. Correspondingly, the dynamic ETS
which contains the dynamic variables was studied for the
networked multiagent system in [41]. Now, in this paper, for
the purpose of improving system dynamics while reducing
transmission burden, we will introduce an improved static
ETS for this semi-Markovian jump networked control
system containing actuator faults and time-varying delay.

+us, there exist several questions to further investigate
the semi-Markovian jump networked control system con-
taining actuator faults and delay based on the Bessel–
Legendre inequalities approach as follows:

(1) Is it feasible to complete the analysis of this semi-
Markovian jump networked control system con-
taining actuator faults and network delay by
employing the Bessel–Legendre inequalities
approach?

(2) How to establish an improved ETS for this com-
prehensive continuous system with time delay to
raise the release frequency in beginning stage and
then gradually reduce the release rate? Such an ETS
can not only reduce the waste of channel resources
but also accelerate the system dynamics.

(3) Based on the approach of Bessel–Legendre in-
equalities, how can we design an effective event-
triggered controller to control the semi-Markovian
jump networked control system containing actuator
faults and time-varying delay?

Despite all questions mentioned above are necessary to
solve, no one has ever carried out. Now, this paper is
committed to dealing with these problems.

In general, the major contributions are (1) A compre-
hensive model such as the semi-Markovian jump networked
control system with actuator faults and time-varying delay is
researched. Different from previous research studies, this
paper applies Bessel–Legendre inequalities approach to
analyze the stability of the system and constructs an ap-
propriate Lyapunov–Krasovskii functional with respect to
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Legendre polynomials. Finally, an affine linear matrix in-
equality is obtained. +e acquired stability criterion which is
indexed by N has lower conservatism. And the larger N is,
the lower conservatism is. (2) +is paper establishes an
improved static ETS for this comprehensive continuous
system to effectively shorten system dynamic process and
decrease the burden of transmission. (3) A valid event-
triggered controller is ingeniously designed.

+e remainder of this paper can be summarized as
below. Section 2 shows definitions and problem formulation.
In addition, an improved static ETS is established. In Section
3, the result of stability analysis is presented. An effective
controller is designed in Section 4. Section 5 provides the
numerical examples to verify the effectiveness of the research
results. Finally, Section 6 shows the conclusions.

Notations. E ·{ } denotes the mathematical expectation. N
denotes the natural number. SN

+ is the set of symmetric
positive definite matrices ofRn×n, andRn×n represents the set
of all n × n matrices. For any matrix A, He(A) � A + AT.

2. Definitions and Problem Formulation

+e general state space model of the semi-Markovian jump
networked control system can be expressed as follows:

_x(t) � A(r(t))x(t) + B(r(t))u(t), (1)

where x(t) ∈ Rn is the system state and u(t) ∈ Rp is the
control input. When t≥ 0, r(t){ } is the semi-Markovian
jump process and r(t) � i ∈ S, S � 1, 2, . . . , M{ }. At t � 0,
the initial value x(0) � x0, and the initial mode of the semi-
Markovian jump process is r(0) � r0. A(r(t)) is system
matrix with appropriate dimensions. Due to r(t) � i, then
A(r(t)) is expressed by Ai.

+e sojourn time of the semi-Markovian jump process does
not follow the exponential distribution. +us, the semi-Mar-
kovian jump process has the following transition probabilities:

Pr r(t + l) � j | r(t) � i􏼈 􏼉 �
λij(l)l + o(l), i≠ j,

1 + λii(l)l + o(l), i � j,
􏼨

(2)

and l is the sojourn time. λij(l) denotes the transition rate
from mode i at time t to mode j at time t + l for i≠ j.
λii(l) � − 􏽐

M
j�1,j≠iλij(l). o(l) is the high order infinitesimal of l

and liml⟶0(o(l)/l) � 0. We define that λi(l) is the system
transition rate of mode i, and then the λi(l) satisfies

λi(l) �
fi(l)

1 − Fi(l)
. (3)

At mode i, function fi(l) denotes the probability dis-
tribution of sojourn time and function Fi(l) denotes cu-
mulative distribution of sojourn time.

Due to that the bandwidth is limited and the capability of
the controller, sensor, and actuator is finite, the traditional
periodic-triggered mechanism which will send some un-
necessary signals under themost cases without disturbances can
causewaste of network resources. In order to shorten the system

dynamics while decreasing the load of network transmission,
this paper introduces an improved event-triggered scheme.

Assume that the sampled states at t0h, t1h, t2h, . . ., satisfy
event-triggering condition, then we call the t0h, t1h, t2h, . . .,
as release times. +e signals at t0h, t1h, t2h, . . ., can be sent
from the sensor to controller. However, there exists a time
delay when signal arrives at the actuator from controller.
Suppose that τk ∈ (0, τ) is the network time delay and τ is a
positive scalar. +us, x(t0h), x(t1h), x(t2h), . . . are trans-
mitted to the actuator at the time t0h + τ0, t1h + τ1,
t2h + τ2, . . ., respectively. We redescribe system (1) as

_x(t) � Aix(t) + Biu tkh( 􏼁. (4)

Due to u(t) � K(r(t))x(t), thus,
_x(t) � Aix(t) + BiKix tkh( 􏼁. (5)

Considering the time delay in the network transmission
process, we need to set up the model of the network time
delay. Define that

ϕk � min α | tkh + τk + αh≥ tk+1h + τk+1, α � 0, 1, 2, . . .􏼈 􏼉.

(6)

Let

Iα � tkh + τk +(α − 1)h, tkh + τk + αh􏼂 􏼁,

Iϕk � tkh + τk + ϕk − 1( 􏼁h, tk+1h + τk+1􏼂 􏼁,

α � 1, 2, . . . , ϕk − 1.

(7)

+en,

tkh + τk, tk+1h + τk+1􏼂 􏼁 � ∪
ϕk

α�1
Iα. (8)

For t ∈ [tkh + τk, tk+1h + τk+1), define that

τ(t) �

t − tkh, t ∈ I1,
t − tkh − h, t ∈ I2,

· ·

· ·

· ·

t − tkh − ϕk − 1( 􏼁h, t ∈ Iϕk
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ek(t) �

0, t ∈ I1,
x tkh( 􏼁 − x tkh + h( 􏼁, t ∈ I2,

· ·

· ·

· ·

x tkh( 􏼁 − x tkh + ϕk − 1( 􏼁h( 􏼁, t ∈ Iϕk
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

Apparently, 0< τk ≤ τ(t)≤ τ + h. Let τM � τ + h, then
0< τk ≤ τ(t)≤ τM.

We expect the proposed ETS to achieve the situation that
more packets are transmitted during transient response to
make the system approach stability faster. And when the
system nears the steady state, the triggering should be
limited. Next, we introduce the following improved static
event-triggered mechanism:

e
T
k (t)Λek(t)≤ σk(t)x

T
(t − τ(t))Λx(t − τ(t)), (10)
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where Λ is symmetric positive definite matrix, and time-
varying function σk(t) meets

σk(t) � σkα, t ∈ Iα, α � 1, 2, . . . , ϕk,

σk(α+1) � σ +
eT

kαekα

ε + eT
kαekα

σkα − σ( 􏼁,

ekα � x tkh( 􏼁 − x tkh +(α − 1)h( 􏼁, α � 1, 2, . . . ,ϕk,

(11)

where σ is the upper bound of σkα and σ ∈ [0, 1], 0< σk1 < σ,
known constant ε> 0.

Using ek(t) and τ(t), for t ∈ [tkh + τk, tk+1h + τk+1), we
rewrite (5) as

_x(t) � Aix(t) + BiKix(t − τ(t)) + BiKiek(t). (12)

In practical systems, the actuators may experience fail-
ures, which may cause the instability of real system.
+erefore, considering the actuator faults is meaningful,
under the even-triggered mechanism, we define uf(tkh) as
the control signal sent from the actuator and

uf tkh( 􏼁 � β(r(t))u tkh( 􏼁, (13)

where β(r(t)) � diag(β1r(t),β2r(t), . . . ,βpr(t)) and 0 ≤ β
wr(t)
≤

βwr(t) ≤ βwr(t) ≤ 1, w � 1,2, . . . ,p. +e β
wr(t)

and βwr(t) denote
the failure bounds of the pth actuator under the fault mode i.
We use βi denoting β(r(t)), then βi � diag(β1i,β2i, . . . ,βpi)

with 0≤β
wi
≤βwi≤βwi≤1. It is easy to see that if βwi

� βwi � 0,
then the w th actuator completely outage in the ith fault
mode; if β

wi
� βwi � 1, then the w th actuator under fault

mode i has no failure. Define

􏽢βi � diag
β
1i

+ β1i

2
,
β
2i

+ β2i

2
, . . . ,

β
pi

+ βpi

2
⎛⎝ ⎞⎠,

�β � diag
β1i − β

1i

2
,
β2i − β

2i

2
, . . . ,

βpi − β
pi

2
⎛⎝ ⎞⎠.

(14)

Rewrite βi as

βi � 􏽢βi + Δi, (15)

where Δi � diag(δ1i, δ2i, . . . , δpi), and |δwi|≤ ((βwi − β
wi

)/2),
w � 1, 2, . . . , p.

Next, the complete model is shown as
_x(t) � Aix(t) + BiβiKix(t − τ(t)) + BiβiKiek(t),

x(t) � ϕ(t), t ∈ − τM, 0􏼂 􏼃,
(16)

where the function Φ(t) is continuous on [− τM, 0]. Note
that

0< τk ≤ τ(t)≤ τM,

d1 ≤ _τ(t)≤d2,
(17)

where scalars d1 < 0 and d2 > 0.

+is paper analyzes the stability of system (16) via the
Bessel–Legendre inequalities. Before the stability research,
we first give some definitions and lemmas to facilitate
analysis.

Lemma 1 (see [42]). Assume that W1, W2 ∈ Rn are sym-
metric positive matrices. If there exist the symmetric matrices
X1, X2 ∈ Rn and the matrices Y1, Y2 ∈ Rn such that for
ε � 0, 1, the

W1 0

0 W2
􏼢 􏼣 − ε

X1 Y1

YT
1 0

􏼢 􏼣 − (1 − ε)
0 Y2

YT
2 0

􏼢 􏼣≥ 0, (18)

holds, then the following inequality is true for all ε ∈ (0, 1):
1
ε
W1 0

0
1

1 − ε
W2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≥

W1 0

0 W2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ + ε
0 Y1

YT
1 X2

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

+(1 − ε)
X1 Y2

YT
2 0

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

(19)

Next, we give the definition of the “shifted” Legendre
polynomials which is defined over the interval [0, 1].

Definition 1. For all u ∈ [0, 1], f, q ∈ N, the “shifted” Leg-
endre polynomials is the following formula:

Lf(u) � (− 1)
f

􏽘

f

q�0
ρf

q u
q
, (20)

where ρf
q � (− 1)q f

q
􏼠 􏼡

f + q

q
􏼠 􏼡, f

q
􏼠 􏼡 means the binomial

coefficients, and f

q
􏼠 􏼡 � f!/((f − q)!q!).

According to the Legendre polynomials, we define
polynomial matrix LN:

LN(u) ≔ L0(u)In L1(u)In . . . LN(u)In􏼂 􏼃
T
, (21)

where n ∈ N and N ∈ N. +e Legendre polynomials have the
orthogonality property which results in the application of
the Legendre polynomials. For any symmetric positive
definite matrix W

􏽚
1

0
LN(u)W

− 1
L

T
N(u)du � W

− 1
N , (22)

is true, where WN � diag W, 3W, . . . , (2N + 1)W{ }.
In the process of stability analysis, we need to use the

following techniques with respect to the differential about
the Legendre polynomials matrix:

d
du

LN(u) � ΥNLN(u) � ΥNLN− 1(u), (23)

d
du

uLN(u)( 􏼁 � LN(u) + ΞNLN(u), (24)
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where ΥN � ΥN 0n(N+1),n􏽨 􏽩, ΥN � υN ⊗ In, and ΞN �

􏽢eN ⊗ In. +e matrix υN ∈ R(N+1)×N is defined as

υN(f, q) �
0, if f≥ q,

(2f − 1) 1 − (− 1)f+q
􏼐 􏼑, if f< q.

⎧⎨

⎩ (25)

+e matrix 􏽢eN ∈ R(N+1)×(N+1) is defined as

􏽢eN(f, q) �

0, if f> q,

f, if f � q,

2f − 1, if k< q.

⎧⎪⎪⎨

⎪⎪⎩
(26)

Noting that the “shifted” Legendre polynomials are
defined on the interval [0, 1], we give the evaluation values of
the polynomial matrix at u � 0 and u � 1:

LN(0) �

In

− In

⋮

(− 1)NIn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≔ χN, (27)

LN(1) �

In

In

⋮
In

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≔ χN. (28)

+enext lemma expresses the Bessel–Legendre inequality.

Lemma 2 (see [43]). For x ∈L2([a, b]⟶ Rn), any ap-
propriate dimensional matrix W which is a symmetric pos-
itive definite, and any N ∈ N, the inequality

􏽚
b

a
x

T
(s)Wx(s)ds ≥ (b − a)ΨT

NWNΨN, (29)

holds, where

ΨN �
1

b − a
􏽚

b

a
LN

s − a

b − a
􏼒 􏼓x(s)ds,

WN � diag W, 3W, . . . , (2N + 1)W{ }.

(30)

Definition 2. For any r0 ∈ S and any initial state
Φ(t) ∈ [− τM, 0], if the following inequality

lim
t⟶∞

E 􏽚
t

0
‖x(s)‖

2ds | Φ(t), r0( 􏼁􏼨 􏼩≤∞, (31)

is true, then system (16) is stochastically stable.

3. Stability Analysis

In this part, we research the stochastic stability of system
(16). +e less conservative stability criterion is given in
+eorem 1.

Theorem 1. Given N ∈ N, scalar ε> 0, if there exist matrix
PN(j) ∈ S(2N+3)n

+ , matrices Q1, Q2, W ∈ Sn
+, and matrices

Y1, Y2 ∈ R(N+1)n×(N+1)n such that for all (τ(t), _τ(t)) ∈H the
following inequality

ΘN
′ �

ΘN ΠT
N

τM − τ(t)

τM

Y1

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ΠT

N

0

τ(t)

τM

Y
T
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
τMHT

N

∗ −
τM − τ(t)

τM

WN 0 0

∗ ∗ −
τ(t)

τM

WN 0

∗ ∗ ∗ W − 2In

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤0,

(32)

holds, then system (16) is stochastically stable, where

H�Co (0,0), 0,d2( 􏼁, τM,0( 􏼁, τM,d1( 􏼁􏼈 􏼉,

ΘN � He E1,N + _τ(t)E2,N􏼐 􏼑
T
PN(i)ΦN􏼒 􏼓

+ΦT
N 􏽘

M

j�1
λi,jPN(j)⎛⎝ ⎞⎠ΦN + E3,N − 􏽙

T

N

ΛNΠN,

ΠN �
χN − ΥN 0 − χN 0 0

0 0 − ΥN χN − χN 0

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦,

WN � diag W,3W, . . . ,(2N +1)W{ },

HN � Ai 0 0 BiβiKi 0 BiβiKi􏼂 􏼃,

E1,N �

Ai 0 0 BiβiKi 0 BiβiKi

χN − ΥN 0 − χN 0 0

0 0 − ΥN χN − χN 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

E2,N �

0 0 0 0 0 0

0 − ΞN +ΥN 0 χN 0 0

0 0 ΞN − χN 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

ΦN �

In 0 0 0 0 0

0 τ(t)InN 0 0 0 0

0 0 τM − τ(t)( 􏼁InN 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

E3,N � diag Q1,0,0,(1 − _τ(t)) Q2 − Q1( 􏼁 +σk(t)Λ, − Q2, − Λ􏼈 􏼉,

ΛN �
WN 0

0 WN

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ +
τ(t)

τM

0 Y1

YT
1 WN

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ +
τM − τ(t)

τM

WN Y2

YT
2 0

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦,

(33)

and the unit matrix InN ∈ R(N+1)n×(N+1)n and In ∈ Rn×n.
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Proof. Firstly, we construct the LKF as

VN(x(t), _x(t), r(t), t) � V1N(x(t), r(t), t) + V2N(x(t), t)

+ V3N(x(t), _x(t), t),

(34)

where

V1N(x(t), r(t), t) � ξT
N(t)PN(r(t))ξN(t),

V2N(x(t), t) � 􏽚
t

t− τ(t)
x

T
(s)Q1x(s)ds

+ 􏽚
t− τ(t)

t− τM

x
T

(s)Q2x(s)ds,

V3N(x(t), _x(t), t) � τM 􏽚
t

t− τM

􏽚
t

θ
_x
T
(s)W _x(s)ds dθ,

(35)

where

ξT
N(t) � xT(t) τ(t)ΨT

1,N(t) τM − τ(t)( 􏼁ΨT
2,N(t)􏽨 􏽩,

Ψ1,N(t) �
1

τ(t)
􏽚

t

t− τ(t)
LN

s − t + τ(t)

τ(t)
􏼠 􏼡x(s)ds,

Ψ2,N(t) �
1

τM − τ(t)
􏽚

t− τ(t)

t− τM

LN

s − t + τM

τM − τ(t)
􏼠 􏼡x(s)ds.

(36)

For deriving the stability criterion, we fist calculate
the weak infinitesimal generator LVN of LKF. +e main
task is to obtain an upper bound of the weak infinitesimal
generator LVN by employing the Bessel–Legendre
polynomials method. +rough using Lemma 1 and
Lemma 2, we will carry out a series of relaxations and
simplifications on LVN to get a tight upper bound. Next,
we calculate the LVN:

LVN � LV1N + 􏽘
3

k�2
LVkN. (37)

Among them,

LV1N � lim
Δ⟶0

E V1N(t +Δ), r(t +Δ) |x(t), r(t)􏼂 􏼃 − V1N(x(t), r(t))

Δ
.

(38)

Due to r(t) � i ∈ S, making use of transition probability
of the semi-Markovian jump process, we have

LV1N � lim
Δ⟶0

1
Δ

E 􏽘
M

j�1,j≠i
Pr r(t + Δ) � j | r(t) � i􏼈 􏼉ξT

N(t + Δ)PN(j)ξN(t + Δ)⎡⎢⎢⎣
⎧⎪⎨

⎪⎩

+ Pr r(t + Δ) � i | r(t) � i{ }ξT
N(t + Δ)PN(i)ξN(t + Δ)⎤⎥⎥⎦ − ξT

N(t)PN(i)ξN(t)
⎫⎪⎬

⎪⎭

� lim
Δ⟶0

1
Δ

E 􏽘
M

j�1,j≠i

qij Fi(l + Δ) − Fi(l)( 􏼁

1 − Fi(l)
ξT

N(t + Δ)PN(j)ξN(t + Δ)⎡⎢⎢⎣
⎧⎪⎨

⎪⎩

+
1 − Fi(l + Δ)
1 − Fi(l)

ξT
N(t + Δ)PN(i)ξN(t + Δ)⎤⎥⎥⎦ − ξT

N(t)PN(i)ξN(t)
⎫⎪⎬

⎪⎭
.

(39)

+e derivation process of equation (39) is aided by (3),
and the following definitions that λij(l) �

△
qijλi(l), i≠ j, and

λii(l) �
△

− 􏽐
M
j�1,j≠iλij(l), where qij is the transition probability

intensity, and qii � − 􏽐
M
j�1,j≠iqij � − 1 [44]. In equation (39),

Pr r(t +Δ) � j |r(t) � i􏼈 􏼉 � λij(l)Δ � qijλi(l)Δ � qij(fi(l)Δ)/
(1 − Fi(l)) � qij((Fi(l +Δ) − Fi(l))Δ)/((1 − Fi(l))Δ) � (qij

(Fi(l +Δ) − Fi(l)))/(1 − Fi(l)),Pr r(t +Δ) � i |r(t) � i{ } � 1+

λiiΔ� 1 − 􏽐
M
j�1,j≠iλij(l)Δ � 1 − 􏽐

M
j�1,j≠i(qij(Fi(l +Δ) − Fi(l)))/

(1 − Fi(l)) � (1 − Fi(l +Δ))/(1 − Fi(l)).

When Δ is small, we can get that

ξN(t + Δ) � Δ _ξN(t) + ξN(t) + o(Δ). (40)

+en, (39) becomes

6 Complexity



LV1N � lim
Δ⟶0

1
Δ

E 􏽘
M

j�1,j≠i

qij Fi(l + Δ) − Fi(l)( 􏼁

1 − Fi(l)
Δ _ξN(t) + ξN(t) + o(Δ)􏽨 􏽩

T
PN(j)⎡⎢⎢⎣

⎧⎪⎨

⎪⎩

· Δ _ξN(t) + ξN(t) + o(Δ)􏽨 􏽩 +
1 − Fi(l + Δ)
1 − Fi(l)

Δ _ξN(t) + ξN(t) + o(Δ)􏽨 􏽩
T

· PN(i) Δ _ξN(t) + ξN(t) + o(Δ)􏽨 􏽩⎤⎥⎥⎦ − ξN(t)
T
PN(i)ξN(t)

⎫⎪⎬

⎪⎭
.

(41)

Due to

lim
Δ⟶0

Δ2

Δ
� 0,

lim
Δ⟶0

qij Fi(l + Δ) − Fi(l)( 􏼁

1 − Fi(l)
� 0,

(42)

then

LV1N � lim
Δ⟶0

1
Δ
E 􏽘

M

j�1,j≠i

qij Fi(l + Δ) − Fi(l)( 􏼁

1 − Fi(l)
ξT

N(t)PN(j)ξN(t)􏽨 􏽩⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎪⎨

⎪⎩

+ E
1 − Fi(l + Δ)
1 − Fi(l)

_ξ
T

N(t)PN(i)ξN(t) + ξT
N(t)PN(i) _ξN(t)􏼔 􏼕􏼢

+
1
Δ
1 − Fi(l + Δ)
1 − Fi(l)

ξT
N(t)PN(i)ξN(t)􏼣 −

1
Δ
ξT

N(t)PN(i)ξN(t)􏼩,

� lim
Δ⟶0

1
Δ
E 􏽘

M

j�1,j≠i

qij Fi(l + Δ) − Fi(l)( 􏼁

1 − Fi(l)
ξT

N(t)PN(j)ξN(t)􏽨 􏽩⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎪⎨

⎪⎩

+ E
1 − Fi(l + Δ)
1 − Fi(l)

_ξ
T

N(t)PN(i)ξN(t) + ξT
N(t)PN(i) _ξN(t)􏼔 􏼕􏼢

+
1
Δ

Fi(l) − Fi(l + Δ)
1 − Fi(l)

ξT
N(t)PN(i)ξN(t)􏼣􏼩.

(43)

According to

lim
Δ⟶0

1 − Fi(l + Δ)
1 − Fi(l)

� 1, (44)

we can get

LV1N � E _ξ
T

N(t)PN(i)ξN(t) + ξT
N(t)PN(i) _ξN(t) + lim

Δ⟶0

1
Δ

Fi(l + Δ) − Fi(l)

1 − Fi(l)
􏽘

M

j�1,j≠i
qijξ

T
N(t)PN(j)ξN(t) − ξT

N(t)PN(i)ξN(t)⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(45)

Notice that

lim
Δ⟶0

1
Δ

Fi(l + Δ) − Fi(l)

1 − Fi(l)
�

1
1 − Fi(l)

lim
Δ⟶0

Fi(l + Δ) − Fi(l)

Δ
, (46)
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according to (3) and (46) becomes λi(l). +en, LV1N

becomes

LV1N � E _ξ
T

N(t)PN(i)ξN(t) + ξT
N(t)PN(i) _ξN(t)

⎧⎪⎨

⎪⎩

+ ξT
N(t) 􏽘

M

j�1
λij(l)PN(j)⎛⎝ ⎞⎠ξN(t)

⎫⎪⎬

⎪⎭
.

(47)

By the same approach in [44],

LV1N � _ξ
T

N(t)PN(i)ξN(t) + ξT
N(t)PN(i) _ξN(t)

+ ξT
N(t) 􏽘

M

j�1
λijPN(j)⎛⎝ ⎞⎠ξN(t),

(48)

where λij ≔ E λij(l)􏽮 􏽯 � 􏽒
∞
0 λij(l)fi(l)dl.

Before solving LV2N and LV3N, we do some processes
on (48) in order to conveniently derive inequality (32) in
+eorem 1. We need to define that

ηT
N(t) � xT(t) ΨT

1,N(t) ΨT
2,N(t) xT(t − τ(t)) xT t − τM( 􏼁 eT

k (t)􏽨 􏽩.

(49)

+en,

ξT
N(t) � ηT

N(t)ΦT
N, (50)

where ΦN is defined in +eorem 1. In addition,

_ξ
T

N(t) � _xT(t)
d
dt

τ(t)ΨT
1,N(t)􏽨 􏽩

d
dt

τM − τ(t)( 􏼁ΨT
2,N(t)􏽨 􏽩􏼢 􏼣.

(51)

Among them,
_x(t) � Aix(t) + BiβiKix(t − τ(t)) + BiβiKiek(t),

Ψ1,N(t) �
1

τ(t)
􏽚

t

t− τ(t)
LN

s − t + τ(t)

τ(t)
􏼠 􏼡x(s)ds,

Ψ2,N(t) �
1

τM − τ(t)
􏽚

t− τ(t)

t− τM

LN

s − t + τM

τM − τ(t)
􏼠 􏼡x(s)ds.

(52)

Set λ� (s − t + τ(t))/(τ(t)), then s(λ) � λτ(t) + t − τ(t),
and rewrite Ψ1,N(t) as

Ψ1,N(t) � 􏽚
1

0
LN(λ)x(s(λ))dλ. (53)

+en,
d
dt

τ(t)Ψ1,N(t)􏽨 􏽩 � _τ(t)Ψ1,N(t) + τ(t) 􏽚
1

0
LN(λ) _x(s(λ))

· [λ _τ(t) + 1 − _τ(t)]dλ

� _τ(t)Ψ1,N(t) + _τ(t)τ(t) 􏽚
1

0
λLN(λ) _x(s(λ))dλ

+(1 − _τ(t))τ(t) 􏽚
1

0
LN(λ) _x(s(λ))dλ.

(54)

Using the subsection integration method and employing
(24) and (28), we can get

τ(t)􏽚
1

0
λLN(λ) _x(s(λ))dλ� 􏽚

1

0
λLN(λ)dx(s(λ))

�LN(1)x(t) − 􏽚
1

0
x(s(λ))

d

dλ
λLN(λ)( 􏼁dλ

�LN(1)x(t) − Ψ1,N(t) − ΞNΨ1,N(t)

� χNx(t) − Ψ1,N(t) − ΞNΨ1,N(t).

(55)

In addition, we deal with τ(t) 􏽒
1
0 LN(λ) _x(s(λ))dλ.

Similarly, using the subsection integration and employing
(23) and (27), we obtain

τ(t)􏽚
1

0
LN(λ) _x(s(λ))dλ� 􏽚

1

0
LN(λ)dx(s(λ))

�LN(1)x(t) − LN(0)x(t − τ(t))

− 􏽚
1

0
x(s(λ))

d
dλ

LN(λ)( 􏼁dλ

� χNx(t) − χNx(t − τ(t)) − ΥNΨ1,N(t).

(56)

+us,

d
dt

τ(t)Ψ1,N(t)􏽨 􏽩 � _τ(t)Ψ1,N(t) + _τ(t) χNx(t) − Ψ1,N(t)􏽨

− ΞNΨ1?N(t)􏽩 +(1 − _τ(t)) χNx(t)􏼂

− χNx(t − τ(t)) − ΥΨ1,N(t)􏽩.

(57)

Next, we deal with (d/dt)[(τM − τ(t))Ψ2,N(t)]. Set u �

(s − t + τM)/(τM − τ(t)) and s(u) � uτM − uτ(t) + t − τM,
and then we rewrite Ψ2,N(t) as

Ψ2,N(t) � 􏽚
1

0
LN(u)x(s(u))du. (58)

+en,
d
dt

τM − τ(t)( 􏼁Ψ2,N(t)􏽨 􏽩 � − _τ(t)Ψ2,N(t) + τM − τ(t)( 􏼁

· 􏽚
1

0
LN(u) _x(s(u))[− u _τ(t) + 1]du

� − _τ(t)Ψ2,N(t) − _τ(t) τM − τ(t)( 􏼁

· 􏽚
1

0
uLN(u) _x(s(u))du

+ τM − τ(t)( 􏼁 􏽚
1

0
LN(u) _x(s(u))du,

(59)
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where

τM − τ(t)( 􏼁 􏽚
1

0
uLN(u) _x(s(u))du � 􏽚

1

0
uLN(u)dx(s(u))

� LN(1)x(t − τ(t)) − Ψ2,N(t) − ΞNΨ2,N(t)

� χNx(t − τ(t)) − Ψ2,N(t) − ΞNΨ2,N(t),

τM − τ(t)( 􏼁 􏽚
1

0
LN(u) _x(s(u))du � 􏽚

1

0
LN(u)dx(s(u))

� LN(1)x(t − τ(t)) − LN(0)x t − τM( 􏼁 − ΥNΨ2,N(t)

� χNx(t − τ(t)) − χNx t − τM( 􏼁 − ΥNΨ2,N(t).

(60)

+us, (d/dt)[(τM − τ(t))Ψ2,N(t)] becomes

d
dt

τM − τ(t)( 􏼁Ψ2,N(t)􏽨 􏽩 � − _τ(t)Ψ2,N(t) − _τ(t) χNx(t − τ(t)) − Ψ2,N(t) − ΞNΨ2,N(t)􏽨 􏽩

+ χNx(t − τ(t)) − χNx t − τM( 􏼁 − ΥNΨ2,N(t).

(61)

Combining _x(t) and (57) and (61), we can obtain
_ξN(t) � E1,N + _τ(t)E2,N􏼐 􏼑ηN(t), (62)

where E1,N and E2,N are defined in +eorem 1.
Now, we use the obtained (50) and (62) to rewrite the

LV1N in (48),

LV1N � ηT
N(t)He E1,N + _τ(t)E2,N􏼐 􏼑

T
PN(i)ΦN􏼒 􏼓ηN(t)

+ ηT
N(t)ΦT

N 􏽘

M

j�1
λi,jPN(j)⎛⎝ ⎞⎠ΦNηN(t).

(63)

Next, we will give LV2N and LV3N. Add term
eT

k (t)Λek(t) − eT
k (t)Λek(t) on LV2N, then

LV2N � x
T
(t)Q1x(t) +(1 − _τ(t))x

T
(t − τ(t)) Q2 − Q1( 􏼁x(t − τ(t))

− x
T

t − τM( 􏼁Q2x t − τM( 􏼁 + e
T
k (t)Λek(t) − e

T
k (t)Λek(t)

≤ ηT
N(t)E3,NηN(t),

(64)

where the matrix E3,N is defined in +eorem 1.

LV3N � τ2M _x
T
(t)W _x(t) − τM 􏽚

t

t− τM

_x
T
(s)W _x(s)ds

� τ2MηT
N(t)H

T
NWHNηN(t) − τM 􏽚

t

t− τM

_x
T
(s)W _x(s)ds,

(65)

where

HN � Ai 0 0 BiβiKi 0 BiβiKi􏼂 􏼃. (66)

Based on Lemma 2, we have

τM 􏽚
t

t− τM

_x
T
(s)W _x(s)ds≥

Ψ1,N

Ψ2,N

⎡⎣ ⎤⎦

T τMτ(t)WN 0

0 τM τM − τ(t)( 􏼁WN

⎡⎣ ⎤⎦
Ψ1,N

Ψ2,N

⎡⎣ ⎤⎦, (67)
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where

Ψ1,N �
1

τ(t)
􏽚

t

t− τ(t)
LN

s − t + τ(t)

τ(t)
􏼠 􏼡 _x(s)ds,

Ψ2,N �
1

τM − τ(t)
􏽚

t− τ(t)

t− τM

LN

s − t + τM

τM − τ(t)
􏼠 􏼡 _x(s)ds.

(68)

Employing the subsection integration method, we derive

τ(t)Ψ1,N

τM − τ(t)( 􏼁Ψ2,N

⎡⎣ ⎤⎦ �
χNx(t) − χNx(t − τ(t)) − ΥNΨ1,N

χNx(t − τ(t)) − χNx t − τM( 􏼁 − ΥNΨ2,N

⎡⎣ ⎤⎦

� ΠNηN(t),

(69)

where

ΠN �
χN − ΥN 0 − χN 0 0

0 0 ΥN χN − χN 0
⎡⎣ ⎤⎦. (70)

+us,

− τM 􏽚
t

t− τM

_x
T
(s)W _x(s)ds ≤ − ηT

N(t)􏽙
T

N

τM

τ(t)
WN 0

0
τM

τM − τ(t)
WN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ΠNηN(t). (71)

Next, using Lemma 1 and 2 and choosing X1 � WN −

Y1W
− 1
N YT

1 , X2 � WN − YT
2 W− 1

N Y2 [43], we get the following
inequality:

− τM 􏽚
t

t− τM

_x
T
(s)W _x(s)ds≤ − ηT

N(t) 􏽙
T

N

ΛNΠNηN(t)

+ ηT
N(t)􏽙

T

N

ΛN
′ ΠNηN(t),

(72)

where

ΛN �
WN 0

0 WN

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ +
τ(t)

τM

0 Y1

YT
1 WN

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ +
τM − τ(t)

τM

WN Y2

YT
2 0

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦,

ΛN
′ �

τM − τ(t)

τM

Y1W
− 1
N Y

T
1 0

0
τ(t)

τM

Y
T
2 W

− 1
N Y2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(73)

+en, we rewrite LV3N as follows:

LV3N � ηT
N(t) τ2MH

T
NWHN + 􏽙

T

N

ΛN
′ ΠN − 􏽙

T

N

ΛNΠN
⎤⎦ηN(t).⎡⎣

(74)

Combining (63), (64), and (74), LVN satisfies that

LVN ≤ η
T
N(t)⎡⎣He E1,N + _τ(t)E2,N􏼐 􏼑

T
PN(i)ΦN􏼒 􏼓

+ΦT
N 􏽘

M

j�1
λi,jPN(j)⎛⎝ ⎞⎠ΦN + E3,N + τ2MH

T
NWHN

+ 􏽙

T

N

ΛN
′ ΠN − 􏽙

T

N

ΛNΠN
⎤⎦ηN(t)

� ηT
N(t)ΘNηN(t),

(75)

where

ΘN � ΘN + 􏽙
T

N

ΛN
′ ΠN + τ2MH

T
NWHN,

ΘN � He E1,N + _τ(t)E2,N􏼐 􏼑
T
PN(i)ΦN􏼒 􏼓

+ΦT
N 􏽘

M

j�1
λi,jPN(j)⎛⎝ ⎞⎠ΦN + E3,N − 􏽙

T

N

ΛNΠN.

(76)

According to

In − W( 􏼁W
− 1

In − W( 􏼁> 0, (77)
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thus

− W
− 1 ≤ − 2In − W( 􏼁. (78)

By Schur complement, if ΘN ≤ 0, then ΘN
′ ≤ 0 which is

defined in (32) in +eorem 1. As we can see, ΘN
′ is mul-

tiaffine on τ(t) and _τ(t), where (τ(t), _τ(t)) ∈H �

Co (0, 0), (0, d2), (τM, 0), (τM, d1)􏼈 􏼉. +ere exists ε> 0 such
that LVN ≤ − εx(t)2. +us, system (16) is stochastically
stable for any delay satisfying the set H. +e proof is
complete.

It is should be mentioned that the solution of LMI in
+eorem 1 with allowable delay set H has lower conser-
vatism than that with allowable delay set [0, τM] × [d1, d2].
In fact, in the instance of set [0, τM] × [d1, d2], the vertices
(0, d1) and (τM, d2) cannot be reached at any time for the
impossible circumstances that _τ(t) is negative when τ(t) � 0
and _τ(t) is positive when τ(t) � τM. □

4. Stabilization Analysis

+is section studies the stabilization for system (16). We will
design a controller based on +eorem 1. +e next theorem
shows the main result.

Theorem 2. Given N ∈ N, scalar ε> 0, if there exist
􏽢P1,N(i) ∈ Sn

+, 􏽢P2,N(i) ∈ S(N+1)n
+ , 􏽢P3,N(i) ∈ S(N+1)n

+ , matrices
Q1, Q2, W ∈ Sn

+, and matrices Y1, Y2 ∈ R(N+1)n×(N+1)n such
that the following inequality

􏽢ΘN
′ �

ΘN
′ 􏽑

T

N

τM − τ(t)

τM

Y1

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
􏽑
T

N

0

τ(t)

τM

Y
T
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
τM

􏽢H
T

N

∗ −
τM − τ(t)

τM

WN 0 0

∗ ∗ −
τ(t)

τM

WN 0

∗ ∗ ∗ W − 2I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 0,

(79)

is true for any (τ(t), _τ(t)) ∈H, then system (16) is sto-
chastically stable, where

H � Co (0, 0), 0, d2( 􏼁, τM, 0( 􏼁, τM, d1( 􏼁􏼈 􏼉,

ΘN
′ � He E1,N

′ + _τ(t)E2,N􏼐 􏼑
T
PN(i)ΦN􏼒 􏼓 +ΦT

N 􏽘

M

j�1
λi,jPN(j)⎛⎝ ⎞⎠ΦN + E3,N − 􏽙

T

N

ΛNΠN,

E1,N
′ �

Ai 0 0 􏽢P1,N(i) − 2In 0 􏽢P1,N(i) − 2In

χN − ΥN 0 − χN 0 0

0 0 − ΥN χN − χN 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

PN(i) �

􏽢P1,N(i) 0 0

0 􏽢P2,N(i) 0

0 0 􏽢P3,N(i)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

􏽢HN � Ai 0 0 􏽢P1,N(i) − 2In 0 􏽢P1,N(i) − 2In􏽨 􏽩,

(80)

and other terms are defined in (33).

Proof. If (33) holds, system (16) is called stochastically
stable. In +eorem 1, there exist some nonlinear terms like
ET
1,NPN(i)ΦN because of the existence of Ki. +us, we need

to eliminate the nonlinear terms in inequality (32).
Due to the BiβiKi ∈ Rn×n is just one term in E1,N, and

PN(i) is inN(2N+3)n×(2N+3)n, thus we dividematrixPN(i) into
blocks. +en, the PN(i) becomes that

PN(i) �

􏽢P1,N(i) 0 0

0 􏽢P2,N(i) 0

0 0 􏽢P3,N(i)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (81)

where 􏽢P1,N(i) ∈ Sn
+, 􏽢P2,N(i) ∈ S(N+1)n

+ , and 􏽢P3,N(i) ∈
S(N+1)n

+ .

Obviously, KT
i β

T
i BT

i
􏽢P1,N(i) and 􏽢P1,N(i)BiβiKi are non-

linear terms in E1,NPN(i). To eliminate the nonlinear terms,
we define Ki � − β− 1

i B− 1
i

􏽢P
− 1
1,N(i). +en, the KT

i β
T
i BT

i
􏽢P1,N(i)

and 􏽢P1,N(i)BiβiKi become − In.
In addition, the term BiβiKi which is in HN in (32) will

become − 􏽢P
− 1
1,N(i). Due to

In − 􏽢P1,N(i)􏼐 􏼑􏽢P
− 1
1,N(i) In − 􏽢P1,N(i)􏼐 􏼑≥ 0, (82)

thus

− 􏽢P
− 1
1,N(i)≤ 􏽢P1,N(i) − 2In. (83)

We replace BiβiKi in (32) with 􏽢P1,N(i) − 2In, then we
obtain

􏽢HN � Ai 0 0 􏽢P1,N(i) − 2In 0 􏽢P1,N(i) − 2In􏽨 􏽩. (84)
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+us, we get

􏽢ΘN � ΘN
′ + 􏽙

T

N

ΛN
′ ΠN + τ2M 􏽢H

T

NW 􏽢HN, (85)

where

ΘN
′ � He E1,N

′ + _τ(t)E2,N􏼐 􏼑
T
PN(i)ΦN􏼒 􏼓

+ΦT
N 􏽘

M

j�1
λi,jPN(j)⎛⎝ ⎞⎠ΦN + E3,N − 􏽙

T

N

ΛNΠN.

(86)

ΠN and ΛN are defined in (33) and PN(i) is defined in
(81). By Schur complement, if 􏽢ΘN ≤ 0, then 􏽢ΘN

′ ≤ 0 which is
defined in +eorem 2. Obviously, 􏽢ΘN

′ ≥ΘN
′ which is defined

in +eorem 1, thus if 􏽢ΘN
′ ≤ 0, then ΘN

′ ≤ 0. According to
+eorem 1, system (16) is stochastically stable for any delay
satisfying H. +e proof is complete. □

5. Numerical Examples

Example 1. Consider the following event-triggered semi-
Markovian jump networked control system with actuator
faults and time-varying delay:

A1 �
− 2.1 1.6

1.5 − 1.9
􏼢 􏼣,

A2 �
− 2 1.7

− 1.2 − 2.2
􏼢 􏼣,

B1 �
1

1
􏼢 􏼣,

B2 �
0.9

0.9
􏼢 􏼣,

λi,j �
0.8 − 0.8

− 0.5 0.5
􏼢 􏼣.

(87)

Take σ � 0.3, σk1 � 0.01, ε � 0.01, h � 0.18, β1 � 0.3,
β2 � 0.2, N � 0. +e designed controller gains K1 and K2
and triggering parameters Λ1 and Λ2 at different times are
given in Table 1. +e state trajectories x(t) and semi-
Markovian chain r(t) of the system are shown in Figure 1.

Under the improved static ETS, the time-varying pa-
rameter σk(t) and the situation of release are shown in
Figure 2. From Figure 2, σk(t) changes from 0.01 to 0.3 and
the release frequency at the initial stage is larger than other
times. In addition, only 25.2% sampled signals are released.
Consequently, this proposed ETS cuts down the dynamic
process and reduces the transmission burden.

Next, set h � 0.35. Under the improved static ETS with
time-varying parameter σk(t), the release instants and re-
lease interval are given in Figure 3. If we replace σk(t) with
the constant σ, the corresponding release instants and re-
lease intervals are described in Figure 4. It is distinct that the
transmission frequency at the beginning times in Figure 3 is
higher than that in Figure 4.

Example 2. Consider the following parameters of system
(16):

A1 �
− 2 0
0 − 0.9

􏼢 􏼣,

A2 �
2.2 1.8

− 1.2 − 0.5
􏼢 􏼣,

B1 �
1 0
0 1

􏼢 􏼣,

B2 �
1.1 1.5
− 1 1.4

􏼢 􏼣,

K1 �
− 1 0
0 − 1

􏼢 􏼣,

K2 �
− 1 0
0 − 1

􏼢 􏼣,

λi,j �
0.8 − 0.8

− 0.5 0.5
􏼢 􏼣,

β1 � β2 � 0.2, σ � 0.1.

(88)

Take σ � 0.3, σk1 � 0.01, ε � 0.01, h � 0.18, β1 � 0.2, and
β2 � 0.2. Under different N, we obtain corresponding upper
bounds of network time delay with (τ(t), _τ(t)) ∈H. If
N � 0, then τM � 1.2161. If N � 1, then τM � 1.7572. If
N � 2, then τM � 2.2546. Table 2 shows the comparison of
the upper bound of network time delay with other papers.

From Table 2, we can see that when N � 0, τM � 1.2161
is bigger than other papers.+e upper bound of τM increases

Table 1: +e controller gains K1 and K2 and trigger matrices Λ1 and Λ2.

t 0 1 . . . 20

Λ1 1.88 − 0.02
− 0.12 1.90􏼢 􏼣

1.33 0.95
0.40 7.23􏼢 􏼣

. . . 1.77 0.13
0.13 6.14􏼢 􏼣

Λ2 2.50 0.07
0.07 2.40􏼢 􏼣

2.13 0.95
0.40 1.85􏼢 􏼣

. . . 1.97 − 0.22
− 0.03 5.14􏼢 􏼣

K1 − 0.9129 0.4357􏼂 􏼃 1.1887 − 2.0034􏼂 􏼃 . . . − 1.4731 0.7982􏼂 􏼃

K2 − 0.9029 − 0.3271􏼂 􏼃 0.1735 − 1.1657􏼂 􏼃 . . . 1.1003 2.1372􏼂 􏼃
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Figure 1: State trajectory x(t) and semi-Markovian chain r(t) of the networked control system containing actuator faults and time-varying delay.
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Figure 2: +e parameter σk(t) and the release instants.
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Figure 3: +e release instants and release intervals of the improved static ETS.
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as N increases. +us, the conservativeness of the stability
criterion decreases as N increases.

6. Conclusions

To sum up, event-triggered control problem for the
networked control system with network delay and sto-
chastic jumping parameters is investigated. +e jumping
among the parameters is subject to semi-Markovian jump
process. More in combination with the actual situation,
the actuator faults which also have the semi-Markovian
jump property are considered. +e feature of this paper is
that an improved static ETS is proposed to change the
trigger frequency at different stages. Consequently, the
burden of transmission is reduced and the system dy-
namic process is shortened. A stability criterion with
lower conservativeness is obtained with the help of ap-
plying the Bessel–Legendre inequalities approach and
constructing an appropriate LKF. +e criterion is indexed
by N. +e conservatism will decrease when N increases.
Moreover, for this comprehensive system model, this
paper designs an effective event-triggered controller.
Finally, for verifying the validity of the results, numerical
examples are presented.

+e further topics of the research can be that the
investigation of the improved event-triggered filtering
problem of the semi-Markovian jump networked control
system containing actuator faults. +e further improve-
ment of ETS for some requirements of this compre-
hensive system.
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