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This paper proposes a novel adaptive fuzzy super-twisting sliding mode control scheme for microgyroscopes with unknownmodel
uncertainties and external disturbances. Firstly, an adaptive algorithm is used to estimate the unknown parameters and angular
velocity of microgyroscopes. Secondly, in order to improve the performance of the system and the superiority of the super-twisting
algorithm, this paper utilizes the universal approximation characteristic of the fuzzy system to approach the gain of the super-
twisting sliding mode controller and identify the gain of the controller online, realizing the adaptive adjustment of the controller
parameters. Simulation results verify the superiority and the effectiveness of the proposed approach, comparedwith adaptive super-
twisting sliding mode control without fuzzy approximation; the proposed method is more effective.

1. Introduction

Microgyroscope is the basic measuring element of inertial
navigation and inertial guidance system. Microgyroscope
has been widely used in civil and military fields due to its
advantages in cost, volume, and structure, such as oilfield
survey and development, vehicle navigation and positioning
systems, navigation, aerospace, and aviation. The sensitivity
and accuracy of the microgyroscope will be reduced due
to the errors and temperature effects during the design and
manufacturing process. The main control objectives of the
microgyroscope system are to compensate for manufacturing
errors and tomeasure angular velocity. After years of research
and development, the microgyroscope has made remarkable
progress in precision and structural design. However, due to
the limitations of precision and design principle, the devel-
opment of microgyroscopes difficultly achieves a qualitative
leap.

In order to improve the performance of microgyroscope
and its robustness, many researchers have endeavored to
study advanced technologies [1–8] applied to microgyro-
scopes like adaptive control, backstepping control, sliding
mode control, and fuzzy control. An adaptive force-balancing

control for a micro-electro-mechanical-system z-axis gyro-
scope using a trajectory-switching algorithm was proposed
in [1]. A novel robust adaptive control strategy for MEMS
gyroscope, based on the coupling of the fuzzy control with
sliding mode control (SMC) approach, was proposed in [2].
An adaptive nonsingular terminal sliding mode (NTSM)
tracking control method based on backstepping design was
presented for MEMS vibratory gyroscopes in [3]. In [5], an
adaptive fuzzy sliding mode control problem for a microgy-
roscope system based on global fast terminal sliding mode
approach was discussed. An adaptive sliding mode control
system using a double loop recurrent neural network control
method was proposed for a class of nonlinear dynamic
systems in [6]. A novel adaptive super-twisting sliding mode
control for a microgyroscope was discussed in [7]. The
experimental evaluation and development of an optimized
double closed-loop of microgyroscope were described in [8].

As an effective control method for studying uncertain
objects and unpredictable systems, adaptive control is widely
used in various control systems. A novel adaptive control
architecture for addressing security and safety in cyberphysi-
cal systems was proposed in [9]. An adaptive tracking control
for a class of stochastic uncertain nonlinear systems with
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input saturation was developed in [10]. The adaptive control
problem for robot manipulators with both the uncertain
kinematics and dynamics was investigated in [11]. A robust
adaptive control for a class of MIMO nonlinear systems was
studied in [12].

Because the universal approximation theory of fuzzy
system can approximate any nonlinear model and realize
arbitrary nonlinear control law, it is widely used in the
control systems. In [14], an adaptive fuzzy output feedback
controller is constructed for the systems under consideration
by utilizing an appropriate observer and the approximation
ability of fuzzy systems. In [15], an adaptive backstepping
controller is developed where a fuzzy system is used to
approximate unknown dynamics in flexible structure. In [16],
a nonsingular terminal sliding mode controller is proposed
by combining adaptive fuzzy neural control approach. A new
adaptive fuzzy neural control scheme is proposed for active
power filters in [17]. A problem of universal fuzzy model
and universal fuzzy controller for discrete-time nonaffine
nonlinear systems was investigated in [18].

As a kind of second-order continuous sliding mode
control algorithm, super-twisting sliding mode control algo-
rithm has superior control performance. It is widely used
in various control systems. The biggest advantage of super-
twisting sliding mode control is that it can effectively solve
the chattering problem of the control system and enable the
system to converge in a limited time. The reason why the
super-twisting algorithm can effectively suppress chattering
is that it can hide the high-frequency switching part in the
high-order derivative of the sliding mode variable; that is,
it can transfer the discrete control law to the high-order
sliding mode surface. The detailed analysis of high-order
sliding mode control was discussed in [19, 20]. The strict
Lyapunov functions were proposed in [21] for super-twisting
sliding mode control; the proposed Lyapunov functions
ascertain finite time convergence, provide an estimate of the
convergence time, and ensure the robustness of the finite
time or ultimate boundedness for a class of perturbations.
An adaptive second-order sliding mode control strategy was
proposed in [22] to maximize the energy production of
a wind energy conversion system simultaneously reducing
the mechanical stress on the shaft. A super-twisting sliding
mode direct power control strategy for a brushless doubly
fed induction generator was proposed and implemented
in [23]. An improved nonsingular terminal sliding mode
control based on the super-twisting algorithm is proposed
for a class of second-order uncertain nonlinear systems in
[24]. An output feedback stabilization of perturbed double-
integrator systems using super-twisting control is studied
in [25]. An adaptive super-twisting algorithm based sliding
mode observer was proposed in [26] for surface-mounted
permanent magnet synchronous machine (PMSM) sensor-
less control. A generalization of the super-twisting algorithm
for perturbed chains of integrators of arbitrary order was
proposed in [27]. A novel control scheme combined a
continuous differentiator with an adaptive super-twisting
controller for the regulation and trajectory tracking in spite
of external perturbations of the three-degrees-of-freedom
helicopter was presented in [28]. A hybrid control method

based on RBF neural network and super-twisting sliding
mode control was proposed for the microgyroscope with
unknown model in [13], the RBF neural network was used
to estimate the unknown dynamic model, which provides an
effective method to solve the uncertainty problem.

In [7], adaptive super-twisting controller was investigated
to estimate the unknown parameters and angular velocity of
microgyroscope. Because the selection of the gain value of the
super-twisting sliding mode controller is very complicated,
the optimal control parameters of super-twisting sliding
mode controller are obtained by experience or experiment in
the existing research and we need to constantly adjust it to
achieve the best, which not only increases the difficulty of the
numerical simulation, but also reduces the efficiency of the
simulation. Therefore, the ability of super-twisting algorithm
to weaken the chattering will be reduced, and the superiority
of the algorithm cannot be effectively realized. Two different
methods were studied to estimate the unknown dynamic
model of the microgyroscope in [7, 13], but the parameters
of the super-twisting sliding mode control algorithm were
selected according to simulation test and experience, which
reduces the superiority of the super-twisting algorithm and
the efficiency of the simulation to some extent. Motivated by
[7, 13] and other literatures, a novel super-twisting sliding
mode control scheme based on adaptive fuzzy control for a
microgyroscope is proposed by combining the advantages
of the above methods in this paper, which not only solves
the problem of unknown model of microgyroscope, but also
enables the parameters of super-twisting algorithm to adjust
online adaptively according to the fuzzy system, improving
the effectiveness of the control algorithm and making the
approximation of model parameters more accurate. The
main features and contributions of the proposed methods
compared with existing methods can be summarized as
follows:(1) An adaptive control method is adopted to identify
the unknown parameters of the microgyroscope online, so
that the control system does not depend on the actual
mathematical model, and the design of the controller is
simplified and the control performance of the system is
improved.(2) The proposed super-twisting sliding mode control
algorithm can suppress the chattering of the system effec-
tively; it can make the control system stable in limited time
and, as a high-order sliding mode controller, requires less
information and simplifies the complexity of the algorithm.
In addition, this algorithm takes the influence of disturbance
into account, which ensures that the trajectory of the control
system can track its reference trajectory accurately and
effectively.(3) Compared with the existing work, the advantage
of the method proposed in this paper is that it uses the
universal approximation characteristic of the fuzzy system
to approach the gain of the super-twisting sliding mode
controller and identify the gain of the controller online,
realizing the adaptive adjustment of the controller parameters
and weakening the chattering.

The rest of this paper is organized as follows. The
dynamics of microgyroscope is proposed in Section 2. A
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description of the problem of the control system is presented
in Section 3. Adaptive fuzzy super-twisting sliding mode
control for microgyroscope is studied in Section 4. In order
to show the superiority and effectiveness of the proposed
method, the simulation analysis and comparison between
the adaptive super-twisting sliding mode control based on
proposed fuzzy approximation and adaptive super-twisting
slidingmode control without fuzzy approximation are carried
out in Section 5. Finally, the paper ends with the conclusion
in Section 6.

2. Dynamics of Microgyroscope

In this section, the mathematical model of microgyroscope is
presented. The main structure of microvibration gyroscope
includes base mass block, cantilever beam, driving electrode,
induction device, and basement. The dynamics model of
the microgyroscope system can be simplified to a damping-
spring-mass system, as shown in Figure 1.

Considering the influence of various manufacturing
errors on the microgyroscope, the dynamic equation of the
microgyroscope is established as follows:

𝑚𝑥̈ + 𝑑𝑥𝑥 ̇𝑥 + 𝑑𝑥𝑦 ̇𝑦 + 𝑘𝑥𝑥𝑥 + 𝑘𝑥𝑦𝑦 = 𝑢𝑥 + 2𝑚Ω𝑧 ̇𝑦
𝑚𝑦̈ + 𝑑𝑥𝑦 ̇𝑥 + 𝑑𝑦𝑦 ̇𝑦 + 𝑘𝑥𝑦𝑥 + 𝑘𝑦𝑦𝑦 = 𝑢𝑦 − 2𝑚Ω𝑧𝑥̇ (1)

where 𝑚 is the mass of mass block. 𝑥, 𝑦 represent the
coordinates of x-axis and y-axis system. 𝑑𝑥𝑦 is the damping
coefficient. 𝑘𝑥𝑦 is the coupling coefficient. 𝑑𝑥𝑥 and 𝑑𝑦𝑦 are
the damping coefficients of two axes. 𝑘𝑥𝑥, 𝑘𝑦𝑦 are the spring
coefficients of two axes. 𝑢𝑥, 𝑢𝑦 represent the control inputs of
two axes. Ω𝑧 is the angular speed along the z direction.

The dynamic model of the system described by (1) is a
dimensional form, which not only increases the difficulty
of numerical simulation, but also increases the complexity
of controller design. Dimensionless method is very valuable
in numerical simulation. It can make numerical simulation
easy to realize. At the same time, it can provide a unified
mathematical formula for the design of various microgy-
roscope control systems. Therefore, it is very essential to
perform dimensionless processing on the system model for
simplifying the design of the controller.

The nondimensional form of microgyroscope will be
given by dividing both sides of (1) with 𝑚, 𝑞0, 𝜔20, where 𝑚
represents the mass of mass block, the reference length is 𝑞0,
and𝜔20 expresses the square of the resonance frequency of the
two axes. Finally the dimensionless model of the dynamics is
obtained as follows:

𝑥̈ + 𝑑𝑥𝑥𝑥̇ + 𝑑𝑥𝑦𝑦̇ + 𝜔𝑥2𝑥 + 𝜔𝑥𝑦𝑦 = 𝑢𝑥 + 2Ω𝑧𝑦̇
̈𝑦 + 𝑑𝑥𝑦𝑥̇ + 𝑑𝑦𝑦𝑦̇ + 𝜔𝑥𝑦𝑥 + 𝜔𝑦2𝑦 = 𝑢𝑦 − 2Ω𝑧𝑥̇ (2)

where
𝑑𝑥𝑥𝑚𝜔0 󳨀→ 𝑑𝑥𝑥,
𝑑𝑥𝑦𝑚𝜔0 󳨀→ 𝑑𝑥𝑦,

𝑑𝑦𝑦𝑚𝜔0 󳨀→ 𝑑𝑦𝑦,
𝑘𝑥𝑥𝑚𝜔02 󳨀→ 𝜔2𝑥,
𝑘𝑥𝑦𝑚𝜔02 󳨀→ 𝜔𝑥𝑦
𝑘𝑦𝑦𝑚𝜔02 󳨀→ 𝜔2𝑦,
Ω𝑧𝑚𝜔0 󳨀→ Ω𝑧

(3)

Dimensionless model (2) contains two equations; the
difficulty and complexity of the controller design will be
improved. Therefore, it is necessary to perform an equivalent
transformation on the model. The equivalent model is ben-
eficial to the stability analysis and the application of various
advanced control methods. Then formula (2) is transformed
into the following vector form:

̈𝑞 + 𝐷 ̇𝑞 + 𝐾𝑞 = 𝑢 − 2Ω ̇𝑞 (4)

where

𝑞 = [𝑥
𝑦] ,

𝐷 = [𝑑𝑥𝑥 𝑑𝑥𝑦𝑑𝑥𝑦 𝑑𝑦𝑦] ,

𝐾 = [ 𝜔2𝑥 𝜔𝑥𝑦
𝜔𝑥𝑦 𝜔2𝑦 ] ,

𝑢 = [𝑢𝑥𝑢𝑦] ,

Ω = [ 0 −Ω𝑧Ω𝑧 0 ]

(5)

Considering the parameter uncertainties and external
disturbances, the model of the microgyroscope system
described in (4) can be modified as

̈𝑞 + (𝐷 + 2Ω + Δ𝐷) ̇𝑞 + (𝐾 + Δ𝐾) 𝑞 = 𝑢 + 𝑑 (6)

where Δ𝐷 is the uncertainty of the unknown parameters
of the inertia matrix 𝐷 + 2Ω. Δ𝐾 is the uncertainty of
the unknown parameters of matrix 𝐾. 𝑑 is an external
disturbance.

Then, (6) can be written as

̈𝑞 + (𝐷 + 2Ω) ̇𝑞 + 𝐾𝑞 = 𝑢 + 𝜑 (𝑡) (7)

where 𝜑(𝑡) = 𝑑 − Δ𝐷 ̇𝑞− Δ𝐾𝑞 = [𝜑1(𝑡), 𝜑2(𝑡)]𝑇 shows the
lumped model uncertainties and external disturbances.
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Figure 1: Mass-spring-damper structure of microgyroscopes [5, 7].

3. Problem Description

The control objective is to design a suitable control law that
allows the system's control output to track the reference
trajectory quickly and efficiently and estimate system param-
eters online. The designed control law consists of two parts:
the equivalent control and the super-twisting sliding mode
control; the super-twisting sliding mode control is used as
a switching control to overcome external disturbances and
uncertainties and improve the robustness of the system.

Design the controller of the microgyroscope system
according to the model of the microgyroscope expressed in
(7) and define the sliding mode surface as

𝑠 = 𝑐𝑒 + ̇𝑒 (8)

where 𝑐 is the coefficient of the slidingmode surface; 𝑒 anḋ𝑒 are tracking error and the derivative of the tracking error,
respectively. The expression of 𝑒 and ̇𝑒 is as follows.

𝑒 = 𝑞 − 𝑞𝑟 = [𝑞1 − 𝑞𝑟1, 𝑞2 − 𝑞𝑟2]𝑇 (9)

̇𝑒 = ̇𝑞 − ̇𝑞𝑟 = [ ̇𝑞1 − ̇𝑞𝑟1, ̇𝑞2 − ̇𝑞𝑟2]𝑇 (10)

where 𝑞, 𝑞𝑟 are the output trajectory and the reference
trajectory of the microgyroscope respectively.

Solving the first derivative of the sliding surface yields

̇𝑠 = 𝑐 ̇𝑒 + ̈𝑒 = 𝑐 ̇𝑒 + ̈𝑞 − ̈𝑞𝑟 (11)

Substituting (7) into (11) generates

̇𝑠 = 𝑐 ̇𝑒 − (𝐷 + 2Ω) ̇𝑞 − 𝐾𝑞 + 𝑢 + 𝜑 (𝑡) − ̈𝑞𝑟 (12)

Without considering external disturbances, the equiva-
lent control law can be obtained by setting ̇𝑠 = 0:

𝑢𝑒𝑞 = −𝑐 ̇𝑒 + (𝐷 + 2Ω) ̇𝑞 + 𝐾𝑞 + ̈𝑞𝑟 (13)

According to the super-twisting control algorithm, the
switching control law is designed as follows:

𝑢𝑠𝑤 = − [
[

𝑘11√󵄨󵄨󵄨󵄨𝑠1󵄨󵄨󵄨󵄨 sgn (𝑠1)
𝑘12√󵄨󵄨󵄨󵄨𝑠2󵄨󵄨󵄨󵄨 sgn (𝑠2)

]
]

− [𝑘21 ∫ sgn (𝑠1) 𝑑𝜏
𝑘22 ∫ sgn (𝑠2) 𝑑𝜏] (14)

Set 𝑘1, 𝑘2 as 𝑘1 = [ 𝑘11, 00, 𝑘12 ] , 𝑘2 = [ 𝑘21, 00, 𝑘22 ].
Remark 1. 𝑘1, 𝑘2 as the gain of the super-twisting sliding
mode controller satisfy 𝑘1𝑖 > 0, 𝑘2𝑖 > 0 and 𝑘2𝑖 > |𝜑̇𝑖(𝑡)|,
where 𝑖 = 1, 2.

Sgn(𝑠) is symbolic function, which is defined as

sgn (𝑠) =
{{{{{{{{{

−1 𝑖𝑓 𝑠 < 0
0 𝑖𝑓 𝑠 = 0
+1 𝑖𝑓 𝑠 > 0

(15)

Then the final control law can be obtained as follows:

𝑢 = 𝑢𝑒𝑞 + 𝑢𝑠𝑤
= −𝑐 ̇𝑒 + (𝐷 + 2Ω) ̇𝑞 + 𝐾𝑞 + ̈𝑞𝑟 − 𝑘1√|𝑠| sgn (𝑠)

− 𝑘2 ∫ sgn (𝑠) 𝑑𝜏
(16)

However, because the parameters of the actual micr-
ogyroscope system are unknown, the control algorithm
described in (16) cannot be implemented. It is necessary
to design appropriate control algorithm to identify the
unknown model. Moreover the selection of the parameters𝑘1, 𝑘2 in the super-twisting sliding mode control is very
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complicated. It needs to be selected based on experience
and adjusted manually in the simulation; there is a serious
uncertainty problem. Therefore, an adaptive fuzzy super-
twisting sliding mode control scheme for microgyroscope
system is proposed in this paper in order to solve the two
problems mentioned above. Firstly, an adaptive algorithm of
unknown parameters of microgyroscope system is designed
to identify unknown parameters online according to the
general idea of adaptive control. Secondly, the fuzzy system
is used to approximate the unknown parameters of the
super-twisting controller.Theparameters of the controller are
identified online to find the reasonable parameters, realizing
the optimal control of the system.

4. Adaptive Fuzzy Super-Twisting Sliding
Mode Control

4.1. Approximation Algorithm of Fuzzy Control. Abrief intro-
duction for the approximation principle of fuzzy systems is
given in this part, assuming that the unknown part of the
system model is 𝑓(𝑥) = 𝑓(𝑥1, 𝑥2). 𝑓(𝑥 | 𝜃) is used to
approximate 𝑓(𝑥) according to the universal approximation
property of fuzzy system. Designing 5 fuzzy sets for the input𝑥1, 𝑥2 of the fuzzy system respectively and setting 𝑛 = 2, 𝑖 =1, 2, 𝑝1 = 𝑝2 = 5, there will be 25 (𝑝1 × 𝑝2 = 25) fuzzy rules.

The following two steps are used to construct a fuzzy
system 𝑓(𝑥 | 𝜃).
Step 1. Defining fuzzy sets for the variable 𝑥𝑖 (𝑖 = 1, 2) as𝐴𝑙𝑖𝑖 (𝑙𝑖 = 1, 2, 3, 4, 5), the number of fuzzy sets is 𝑝𝑖.
Step 2. Constructing fuzzy systems 𝑓(𝑥 | 𝜃) with 25
(∏𝑛𝑖=1𝑝𝑖 = 𝑝1 × 𝑝2 = 25) fuzzy rules, then the𝑗th fuzzy rule is

𝑅(𝑗) : 𝐼𝐹 𝑥1 𝑖𝑠 𝐴1𝑙1 𝑎𝑛𝑑 𝑥2 𝑖𝑠 𝐴1𝑙2 𝑇𝐻𝐸𝑁 𝑓 𝑖𝑠 𝐵𝑙1𝑙2 (17)

where 𝑙𝑖 = 1, 2, 3, 4, 5, 𝑖 = 1, 2, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 25, and 𝐵𝑙1𝑙2
is the fuzzy set of conclusions.

The first and twenty-fifth fuzzy rules are expressed as

𝑅(1) : 𝐼𝐹 𝑥1 𝑖𝑠 𝐴11 𝑎𝑛𝑑 𝑥2 𝑖𝑠 𝐴12 𝑇𝐻𝐸𝑁 𝑓 𝑖𝑠 𝐵1
...

𝑅(25) : 𝐼𝐹 𝑥1 𝑖𝑠 𝐴51 𝑎𝑛𝑑 𝑥2 𝑖𝑠 𝐴51 𝑇𝐻𝐸𝑁 𝑓 𝑖𝑠 𝐵25
(18)

The following four steps are adopted in the process of
fuzzy inference.

Step 1. Using product inference engine to realize the prereq-
uisite inference of rules, the result of inference is∏2𝑖=1𝜇𝑙𝑖𝐴𝑖 (𝑥𝑖).
Step 2. Adopt singleton fuzzifier to solve 𝑦𝑙1𝑙2𝑓 .

Step 3. Using product inference engine to realize the infer-
ence of the precondition and the conclusion of the rule, the
result of the inference is 𝑦𝑙1𝑙2

𝑓
(∏2𝑖=1𝜇𝑙𝑖𝐴𝑖 (𝑥𝑖)). Performing the

union operations on all fuzzy rules, then the output of the
fuzzy system is ∑5𝑙1=1∑5𝑙2=1 𝑦𝑙1𝑙2𝑓 (∏2𝑖=1𝜇𝑙𝑖𝐴𝑖(𝑥𝑖)).
Step 4. The output of the fuzzy system is obtained by using
the average defuzzer:

𝑓 (𝑥 | 𝜃) = ∑5𝑙1=1∑5𝑙2=1 𝑦𝑙1𝑙2𝑓 (∏2𝑖=1𝜇𝑙𝑖𝐴𝑖 (𝑥𝑖))∑5𝑙1=1∑5𝑙2=1 (∏2𝑖=1𝜇𝑙𝑖𝐴𝑖 (𝑥𝑖)) (19)

where 𝜇𝑗𝐴𝑖(𝑥𝑖) is the membership function of 𝑥𝑖.
Let 𝑦𝑙1𝑙2
𝑓

be a free parameter and put it in the set of 𝜃 ∈
𝑅(25). Introducing the fuzzy basis vector 𝜉(𝑥), then (19) can
be modified as

𝑓 (𝑥 | 𝜃) = 𝜃𝑇𝜉 (𝑥) (20)

where 𝜃𝑇is the adaptive law based on Lyapunov stability
theory. 𝜉(𝑥) is a 25-dimensional (∏𝑛𝑖=1𝑝𝑖 = 𝑝1 × 𝑝2 = 25)
fuzzy basis vector and the 𝑙1𝑙2-th element is

𝜉𝑙1𝑙2 (𝑥) = ∏2𝑖=1𝜇𝑙𝑖𝐴𝑖 (𝑥𝑖)∑5𝑙1=1∑5𝑙2=1 (∏2𝑖=1𝜇𝑙𝑖𝐴𝑖 (𝑥𝑖)) (21)

4.2. Design of Adaptive Fuzzy Super-Twisting Sliding Mode
Controller. In this part, we will give the design of controller
based on adaptive control, fuzzy approximation and super-
twisting sliding mode control. The block diagram of the
adaptive fuzzy super-twisting sliding mode control is given
as in Figure 2.

The parameters 𝐷, 𝐾, Ω of the actual microgyroscope are
unknown; therefore, the estimated values 𝐷, 𝐾̂, Ω̂ are used
to replace the unknown true values 𝐷, 𝐾, Ω according to the
general idea of adaptive control. Then (13) can be rewritten as

𝑢𝑒𝑞󸀠 = −𝑐 ̇𝑒 + (𝐷 + 2Ω̂) q̇ + 𝐾̂q + q̈𝑟 (22)

According to Lyapunov stability theory to design the
adaptive algorithms of the three parameters 𝐷, 𝐾̂, Ω̂, the
estimation errors of 𝐷, 𝐾, Ω are defined as

𝐷 = 𝐷 − 𝐷
𝐾̃ = 𝐾̂ − 𝐾
Ω̃ = Ω̂ − Ω

(23)

Then the fuzzy system is used to approximate the param-
eters 𝑘1, 𝑘2 of the super-twisting sliding mode controller, in
which ℎ̂ is used to approximate the controller parameter 𝑘1,
and𝑓 is used to approximate the controller parameter 𝑘2, and
the definitions of ℎ̂ and 𝑓 are given as follows:

ℎ̂ (𝑠 | 𝜃ℎ) = 𝜃𝑇ℎ𝜙 (𝑠) = [ℎ̂1, 0
0, ℎ̂2]

= [
[

𝜃𝑇ℎ1𝜙 (𝑠1) , 0
0, 𝜃𝑇ℎ2𝜙 (𝑠2)]]

(24)
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Figure 2: Block diagram of the adaptive fuzzy super-twisting sliding mode control.

𝑓 (𝑠 | 𝜃𝑓) = 𝜃𝑇𝑓𝜙 (𝑠) = [𝑓1, 0
0, 𝑓2]

= [
[

𝜃𝑇𝑓1𝜙 (𝑠1) , 0
0, 𝜃𝑇𝑓2𝜙 (𝑠2)]]

(25)

Here ℎ̂(𝑠 | 𝜃ℎ) and 𝑓(𝑠 | 𝜃𝑓) are the outputs of the fuzzy
system, 𝜙(𝑠) is a matrix composed of fuzzy basis vectors and𝜙(𝑠) = [ 𝜙(𝑠1), 00, 𝜙(𝑠2)

], and 𝜃𝑇ℎ and 𝜃𝑇𝑓 will change according to

the adaptive laws, where 𝜃𝑇ℎ = [ 𝜃𝑇ℎ1 , 0
0, 𝜃𝑇ℎ2

], 𝜃𝑇𝑓 = [ 𝜃𝑇𝑓1 , 0
0, 𝜃𝑇𝑓2

]
Then (16) can be rewritten as

𝑢 = 𝑢𝑒𝑞󸀠 + 𝑢𝑠𝑤
= −𝑐 ̇𝑒 + (𝐷 + 2Ω̂) ̇𝑞 + 𝐾̂𝑞 + ̈𝑞𝑟 − ℎ̂√|𝑠| sgn (𝑠)

− 𝑓 ∫ sgn (𝑠) 𝑑𝜏
(26)

The ideal value of ℎ̂(𝑠 | 𝜃ℎ) is ℎ̂(𝑠 | 𝜃∗ℎ ) = 𝑘1 and the ideal
value of 𝑓(𝑠 | 𝜃𝑓) is𝑓(𝑠 | 𝜃∗𝑓) = 𝑘2.

The optimal parameters are defined as

𝜃∗ℎ = arg min
𝜃ℎ∈Ωℎ

[sup 󵄨󵄨󵄨󵄨󵄨ℎ̂ (𝑠 | 𝜃ℎ) − 𝑘1󵄨󵄨󵄨󵄨󵄨]
𝜃∗𝑓 = arg min

𝜃𝑓∈Ω𝑓
[sup 󵄨󵄨󵄨󵄨󵄨𝑓 (𝑠 | 𝜃𝑓) − 𝑘2󵄨󵄨󵄨󵄨󵄨]

(27)

where Ωℎ and Ω𝑓 are the sets of 𝜃ℎ and 𝜃𝑓, respectively.

Substituting (26) into (12) generates

̇𝑠 = − (𝐷 + 2Ω) ̇𝑞 + (𝐷 + 2Ω̂) ̇𝑞 − 𝐾𝑞 + 𝐾̂𝑞
− ℎ̂√|𝑠| sgn (𝑠) − 𝑓 ∫ sgn (𝑠) 𝑑𝜏 + 𝜑 (𝑡)

= (𝐷 + 2Ω̃) ̇𝑞 + 𝐾̃𝑞 − ℎ̂√|𝑠| sgn (𝑠) − 𝑓 ∫ sgn (𝑠) 𝑑𝜏
+ 𝜑 (𝑡)

= (𝐷 + 2Ω̃) ̇𝑞 + 𝐾̃𝑞 − ℎ̂ (𝑠 | 𝜃ℎ) √|𝑠| sgn (𝑠)
+ ℎ̂ (𝑠 | 𝜃∗ℎ ) √|𝑠| sgn (𝑠) − ℎ̂ (𝑠 | 𝜃∗ℎ ) √|𝑠| sgn (𝑠)
− 𝑓 (𝑠 | 𝜃𝑓) ∫ sgn (𝑠) 𝑑𝜏
+ 𝑓 (𝑠 | 𝜃∗𝑓) ∫ sgn (𝑠) 𝑑𝜏
− 𝑓 (𝑠 | 𝜃∗𝑓) ∫ sgn (𝑠) 𝑑𝜏 + 𝜑 (𝑡)

= (𝐷 + 2Ω̃) ̇𝑞 + 𝐾̃𝑞 + 𝜃𝑇ℎ𝜙 (𝑠) √|𝑠| sgn (𝑠)
− ℎ̂ (𝑠 | 𝜃∗ℎ ) √|𝑠| sgn (𝑠) + 𝜃𝑇𝑓𝜙 (𝑠) ∫ sgn (𝑠) 𝑑𝜏
− 𝑓 (𝑠 | 𝜃∗𝑓) ∫ sgn (𝑠) 𝑑𝜏 + 𝜑 (𝑡)

(28)

where 𝜃ℎ = 𝜃∗ℎ − 𝜃ℎ, 𝜃𝑓 = 𝜃∗𝑓 − 𝜃𝑓.
Theorem 2. If the adaptive laws of the unknown parameters
of the microgyroscope model and the parameters of the super-
twisting sliding mode controller are designed as (29) and (30),
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the system will be able to reach the stable state in a finite time,
and all unknown parameters of the microgyroscope including
the angular rate can be accurately estimated:

̇̂𝐷𝑇 = −12𝑀 ( ̇𝑞s𝑇 + s ̇𝑞𝑇)
̇̂𝐾𝑇 = −12𝑁 (𝑞s𝑇 + s𝑞𝑇)
̇̂Ω𝑇 = −𝑃 ( ̇𝑞s𝑇 − s ̇𝑞𝑇)

(29)

̇̂𝜃ℎ1 = 𝛾1 󵄨󵄨󵄨󵄨𝑠1󵄨󵄨󵄨󵄨 𝜙 (𝑠1) √󵄨󵄨󵄨󵄨𝑠1󵄨󵄨󵄨󵄨
̇̂𝜃ℎ2 = 𝛾1 󵄨󵄨󵄨󵄨𝑠2󵄨󵄨󵄨󵄨 𝜙 (𝑠2) √󵄨󵄨󵄨󵄨𝑠2󵄨󵄨󵄨󵄨
̇̂𝜃𝑓1 = 𝛾2 󵄨󵄨󵄨󵄨𝑠1󵄨󵄨󵄨󵄨 𝜙 (𝑠1) ∫ sgn (𝑠1) 𝑑𝜏
̇̂𝜃𝑓2 = 𝛾2 󵄨󵄨󵄨󵄨𝑠2󵄨󵄨󵄨󵄨 𝜙 (𝑠2) ∫ sgn (𝑠2) 𝑑𝜏

(30)

Here 𝑀, 𝑁, and 𝑃 are positive definite symmetric matri-
ces and satisfy 𝑀 = 𝑀𝑇 > 0, 𝑁 = 𝑁𝑇 > 0, 𝑃 = 𝑃𝑇 > 0.
4.3. Stability Analysis. Stability analysis and proof will be
given in this part. First, the Lyapunov function is defined as

𝑉 = 12𝑠𝑇𝑠 + 12 tr {𝐷𝑀−1𝐷𝑇} + 12 tr {𝐾̃𝑁−1𝐾̃𝑇}
+ 12 tr {Ω̃𝑃−1Ω̃𝑇} + 12 1𝛾1

2∑
𝑖=1

𝜃𝑇ℎ𝑖𝜃ℎ𝑖 + 12 1𝛾2
2∑
𝑖=1

𝜃𝑇𝑓𝑖𝜃𝑓𝑖
(31)

where tr{⋅} represents the inverse operation of the matrix,𝑀, 𝑁, and 𝑃 satisfy 𝑀 = 𝑀𝑇 > 0, 𝑁 = 𝑁𝑇 > 0, 𝑃 = 𝑃𝑇 > 0.
Then the derivative of 𝑉can be obtained as

𝑉̇ = 𝑠𝑇 ̇𝑠 + tr {𝐷𝑀−1 ̇̃𝐷𝑇} + tr {𝐾̃𝑁−1 ̇̃𝐾𝑇}
+ tr {Ω̃𝑀−1 ̇̃Ω𝑇} + 1𝛾1

2∑
𝑖=1

𝜃𝑇ℎ𝑖 ̇̃𝜃ℎ𝑖 + 1𝛾2
2∑
𝑖=1

𝜃𝑇𝑓𝑖 ̇̃𝜃𝑓𝑖
(32)

Substituting (28) into (32) generates

𝑉̇ = 𝑠𝑇 ((𝐷 + 2Ω̃) ̇𝑞 + 𝐾̃𝑞 + 𝜃𝑇ℎ𝜙 (𝑠) √|𝑠| sgn (𝑠)
− ℎ̂ (𝑠 | 𝜃∗ℎ ) √|𝑠| sgn (𝑠) + 𝜃𝑇𝑓𝜙 (𝑠) ∫ sgn (𝑠) 𝑑𝜏
− 𝑓 (𝑠 | 𝜃∗𝑓) ∫ sgn (𝑠) 𝑑𝜏 + 𝜑 (𝑡)) + tr {𝐷𝑀−1 ̇̃𝐷𝑇}
+ tr {𝐾̃𝑁−1 ̇̃𝐾𝑇} + tr {Ω̃𝑀−1 ̇̃Ω𝑇} + 1𝛾1

2∑
𝑖=1

𝜃𝑇ℎ𝑖 ̇̃𝜃ℎ𝑖
+ 1𝛾2
2∑
𝑖=1

𝜃𝑇𝑓𝑖 ̇̃𝜃𝑓𝑖 = 𝑠𝑇 (𝜃𝑇ℎ𝜙 (𝑠) √|𝑠| sgn (𝑠)
− ℎ̂ (𝑠 | 𝜃∗ℎ ) √|𝑠| sgn (𝑠) + 𝜃𝑇𝑓𝜙 (𝑠) ∫ sgn (𝑠) 𝑑𝜏

− 𝑓 (𝑠 | 𝜃∗𝑓) ∫ sgn (𝑠) 𝑑𝜏 + 𝜑 (𝑡)) + 𝑠𝑇𝐷 ̇𝑞
+ tr {𝐷𝑀−1 ̇̃𝐷𝑇} + 𝑠𝑇𝐾̃𝑞 + tr {𝐾̃𝑁−1 ̇̃𝐾𝑇}
+ 2𝑠𝑇Ω̃ ̇𝑞 + tr {Ω̃𝑀−1 ̇̃Ω𝑇} + 1𝛾1

2∑
𝑖=1

𝜃𝑇ℎ𝑖 ̇̃𝜃ℎ𝑖 + 1𝛾2
⋅ 2∑
𝑖=1

𝜃𝑇𝑓𝑖 ̇̃𝜃𝑓𝑖
(33)

Because 𝐷 = 𝐷𝑇, 𝐾 = 𝐾𝑇, Ω = −Ω𝑇, and 𝑠𝑇𝐷 ̇𝑞 = ̇𝑞𝑇𝐷𝑠
(it is scalar), then (34) can be obtained.

𝑠𝑇𝐷 ̇𝑞 = 12 (𝑠𝑇𝐷 ̇𝑞 + ̇𝑞𝑇𝐷𝑠) (34)

Meanwhile, the following equation also can be obtained.

𝑠𝑇𝐾̃𝑞 = 12 (𝑠𝑇𝐾̃𝑞 + 𝑞𝑇𝐾̃𝑠)
2𝑠𝑇Ω̃ ̇𝑞 = 12 (2𝑠𝑇Ω̃ ̇𝑞 − 2 ̇𝑞𝑇Ω̃𝑠)

(35)

Therefore, (33) can be modified as follows:

𝑉̇ = 𝑠𝑇 (𝜃𝑇ℎ𝜙 (𝑠) √|𝑠| sgn (𝑠) − ℎ̂ (𝑠 | 𝜃∗ℎ ) √|𝑠| sgn (𝑠)
+ 𝜃𝑇𝑓𝜙 (𝑠) ∫ sgn (𝑠) 𝑑𝜏 − 𝑓 (𝑠 | 𝜃∗𝑓) ∫ sgn (𝑠) 𝑑𝜏
+ 𝜑 (𝑡)) + tr {𝐷 [𝑀−1 ̇̂𝐷𝑇 + 12 ( ̇𝑞s𝑇 + s ̇𝑞𝑇)]}
+ tr {𝐾̃ [𝑁−1 ̇̂𝐾𝑇 + 12 (𝑞s𝑇 + s𝑞𝑇)]}
+ tr {Ω̃ [𝑃−1 ̇̂Ω𝑇 + 12 (2 ̇𝑞s𝑇 − 2s ̇𝑞𝑇)]} + 1𝛾1
⋅ 2∑
𝑖=1

𝜃𝑇ℎ𝑖 ̇̃𝜃ℎ𝑖 + 1𝛾2
2∑
𝑖=1

𝜃𝑇𝑓𝑖 ̇̃𝜃𝑓𝑖

(36)

The adaptive laws of the unknown parameters𝐷, 𝐾̂, Ω̂ are
designed as (29) according to the Lyapunov stability theory.
Therefore, substituting (29) into (36) yields

𝑉̇ = 𝑠𝑇 (𝜃𝑇ℎ𝜙 (𝑠) √|𝑠| sgn (𝑠) − ℎ̂ (𝑠 | 𝜃∗ℎ ) √|𝑠| sgn (𝑠)
+ 𝜃𝑇𝑓𝜙 (𝑠) ∫ sgn (𝑠) 𝑑𝜏 − 𝑓 (𝑠 | 𝜃∗𝑓) ∫ sgn (𝑠) 𝑑𝜏
+ 𝜑 (𝑡)) + 1𝛾1

2∑
𝑖=1

𝜃𝑇ℎ𝑖 ̇̃𝜃ℎ𝑖 + 1𝛾2
2∑
𝑖=1

𝜃𝑇𝑓𝑖 ̇̃𝜃𝑓𝑖 = 󵄨󵄨󵄨󵄨󵄨𝑠𝑇󵄨󵄨󵄨󵄨󵄨 𝜃𝑇ℎ𝜙 (𝑠)

⋅ √|𝑠| + 𝑠𝑇𝜃𝑇𝑓𝜙 (𝑠) ∫ sgn (𝑠) 𝑑𝜏 + 1𝛾1
2∑
𝑖=1

𝜃𝑇ℎ𝑖 ̇̃𝜃ℎ𝑖 + 1𝛾2
⋅ 2∑
𝑖=1

𝜃𝑇𝑓𝑖 ̇̃𝜃𝑓𝑖 + 𝑠𝑇 (−ℎ̂ (𝑠 | 𝜃∗ℎ ) √|𝑠| sgn (𝑠)
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− 𝑓 (𝑠 | 𝜃∗𝑓) ∫ sgn (𝑠) 𝑑𝜏 + 𝜑 (𝑡))
= 2∑
𝐼=1

󵄨󵄨󵄨󵄨𝑠𝑖󵄨󵄨󵄨󵄨 𝜃𝑇ℎ𝑖𝜙 (𝑠𝑖) √󵄨󵄨󵄨󵄨𝑠𝑖󵄨󵄨󵄨󵄨 + 2∑
𝑖=1

𝑠𝑖𝜃𝑇𝑓𝑖𝜙 (𝑠𝑖) ∫ sgn (𝑠𝑖) 𝑑𝜏

+ 1𝛾1
2∑
𝑖=1

𝜃𝑇ℎ𝑖 ̇̃𝜃ℎ𝑖 + 1𝛾2
2∑
𝑖=1

𝜃𝑇𝑓𝑖 ̇̃𝜃𝑓𝑖
+ 𝑠𝑇 (−ℎ̂ (𝑠 | 𝜃∗ℎ ) √|𝑠| sgn (𝑠)
− 𝑓 (𝑠 | 𝜃∗𝑓) ∫ sgn (𝑠) 𝑑𝜏 + 𝜑 (𝑡)) = 1𝛾1
⋅ 2∑
𝑖=1

𝜃𝑇ℎ𝑖 (𝛾1 󵄨󵄨󵄨󵄨𝑠𝑖󵄨󵄨󵄨󵄨 𝜙 (𝑠𝑖) √󵄨󵄨󵄨󵄨𝑠𝑖󵄨󵄨󵄨󵄨 + ̇̃𝜃ℎ𝑖) + 1𝛾2
⋅ 2∑
𝑖=1

𝜃𝑇𝑓𝑖 (𝑠𝑖𝜙 (𝑠𝑖) ∫ sgn (𝑠𝑖) 𝑑𝜏 + ̇̃𝜃𝑓𝑖)
+ 𝑠𝑇 (−ℎ̂ (𝑠 | 𝜃∗ℎ ) √|𝑠| sgn (𝑠)
− 𝑓 (𝑠 | 𝜃∗𝑓) ∫ sgn (𝑠) 𝑑𝜏 + 𝜑 (𝑡))

(37)

Because ̇̂𝜃ℎ𝑖 = − ̇̃𝜃ℎ𝑖 , ̇̂𝜃𝑓𝑖 = − ̇̃𝜃𝑓𝑖 , and ℎ̂(𝑠 | 𝜃∗ℎ ) = 𝑘1,𝑓(𝑠 | 𝜃∗𝑓) = 𝑘2, in order to ensure 𝑉̇ ≤ 0, the adaptive laws
of the super-twisting sliding mode controller parameters are
designed as (30).

Simplify (30) as

̇̂𝜃ℎ𝑖 = 𝛾1 󵄨󵄨󵄨󵄨𝑠𝑖󵄨󵄨󵄨󵄨 𝜙 (𝑠𝑖) √󵄨󵄨󵄨󵄨𝑠𝑖󵄨󵄨󵄨󵄨
̇̂𝜃𝑓𝑖 = 𝛾2 󵄨󵄨󵄨󵄨𝑠𝑖󵄨󵄨󵄨󵄨 𝜙 (𝑠𝑖) ∫ sgn (𝑠𝑖) 𝑑𝜏 (38)

Substituting (38) into (37) generates

𝑉̇ = 𝑠𝑇 (−𝑘1√|𝑠| sgn (𝑠) − 𝑘2 ∫ sgn (𝑠) 𝑑𝜏 + 𝜑 (𝑡))
= − 2∑
𝑖=1

󵄨󵄨󵄨󵄨𝑠𝑖󵄨󵄨󵄨󵄨 𝑘1𝑖√󵄨󵄨󵄨󵄨𝑠𝑖󵄨󵄨󵄨󵄨 − 2∑
𝑖=1

𝑠𝑖𝑘2𝑖 ∫ sgn (𝑠𝑖) 𝑑𝜏

+ 2∑
𝑖=1

𝑠𝑖𝜑𝑖 (𝑡)

≤ − 2∑
𝑖=1

󵄨󵄨󵄨󵄨𝑠𝑖󵄨󵄨󵄨󵄨 𝑘1𝑖√󵄨󵄨󵄨󵄨𝑠𝑖󵄨󵄨󵄨󵄨 − 2∑
𝑖=1

󵄨󵄨󵄨󵄨𝑠𝑖󵄨󵄨󵄨󵄨 ∫ 𝑘2𝑖𝑑𝜏

+ 2∑
𝑖=1

󵄨󵄨󵄨󵄨𝑠𝑖󵄨󵄨󵄨󵄨 ∫ 󵄨󵄨󵄨󵄨𝜑̇𝑖 (𝑡)󵄨󵄨󵄨󵄨 𝑑𝜏

Table 1: Parameters of microgyroscope.

Parameters Values
𝑚 1.8 × 10−7𝑘𝑔𝑘𝑥𝑥 63.955𝑁/𝑚𝑘𝑦𝑦 95.92𝑁/𝑚
𝑘𝑥𝑦 12.779𝑁/𝑚
𝑑𝑥𝑥 1.8 × 10−6𝑁𝑠/𝑚𝑑𝑦𝑦 1.8 × 10−6𝑁𝑠/𝑚
𝑑𝑥𝑦 3.6 × 10−7𝑁𝑠/𝑚

≤ − 2∑
𝑖=1

󵄨󵄨󵄨󵄨𝑠𝑖󵄨󵄨󵄨󵄨 𝑘1𝑖√󵄨󵄨󵄨󵄨𝑠𝑖󵄨󵄨󵄨󵄨
− 2∑
𝑖=1

󵄨󵄨󵄨󵄨𝑠𝑖󵄨󵄨󵄨󵄨 (∫ 𝑘2𝑖𝑑𝜏 − ∫ 󵄨󵄨󵄨󵄨𝜑̇𝑖 (𝑡)󵄨󵄨󵄨󵄨 𝑑𝜏)
(39)

Since 𝑘1𝑖 > 0, 𝑘2𝑖 > 0 and 𝑘2𝑖 > |𝜑̇𝑖(𝑡)|, then (39) can be
simplified as

𝑉̇ ≤ − 2∑
𝑖=1

󵄨󵄨󵄨󵄨𝑠𝑖󵄨󵄨󵄨󵄨 𝑘1𝑖√󵄨󵄨󵄨󵄨𝑠𝑖󵄨󵄨󵄨󵄨 ≤ 0 (40)

According to the Lyapunov stability criterion, 𝑉̇ is sem-
inegative definite, which guarantees the global asymptotic
stability of the system and ensures that the controlled system
can reach stable state in limited time. The seminegative
definite matrices of 𝑉̇ guarantee that 𝑉 and 𝑠 are bounded.
According to Barbalat theorem and its corollaries, 𝑠(𝑡) will
tend to zero, and then 𝑒 and ̇𝑒 will also tend to zero in limited
time, which guarantees the robustness and stability of the
system.

5. Simulation Study

In this section, the Matlab simulation software is used to
verify the proposed adaptive fuzzy super-twisting sliding
mode control method. The unknown parameters 𝐷, 𝐾, Ω of
the microgyroscope system are estimated online, and the
fuzzy approximation theory is used to identify the parameters
of the super-twisting sliding mode controller. In order to
clarify the effectiveness and superiority of the adaptive fuzzy
super-twisting sliding mode control method studied in this
paper, the simulations were implemented inMatlab/Simulink
environment for both adaptive fuzzy super-twisting sliding
mode control and adaptive super-twisting sliding mode
control without fuzzy approximation. Parameters of the
microgyroscope are chosen as Table 1.

The angular velocity of the input of the microgyroscope
is assumed to be Ω𝑧 = 100 rad/s. Then the dimensionless
processing to the microgyroscope is carried out, in order to
make the numerical simulation easier to realize and simplify
the design of the controller. The reference length 𝑞0 and the
reference frequency 𝜔0 are selected as 1𝜇m and 1000𝐻𝑧,
respectively. Therefore, the dimensionless parameters of the
microgyroscope system are obtained as Table 2.
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Table 2: Dimensionless parameters of microgyroscope [13].

Parameters Values
𝜔2𝑥 355.3𝜔 2𝑦 532.9
𝜔𝑥𝑦 70.99
𝑑𝑥𝑥 0.01𝑑𝑦𝑦 0.01
𝑑𝑥𝑦 0.002
Ω𝑧 0.1

Table 3: Parameters of system and controller.

Parameters Values
𝑞1(0) 1̇𝑞1(0) 0
𝑞2(0) 0.5̇𝑞2(0) 0
𝑞𝑟1 sin(𝜋t)
𝑞𝑟2 cos(0.5𝜋t)
𝐷(0) 0.95 ∗ 𝐷
K̂(0) 0.95 ∗ 𝐾
Ω̂(0) 0
𝑀 = 𝑁 = 𝑃 𝑑𝑖𝑎𝑔(150, 150)
𝛾1 6
𝛾2 6
𝑑 [0.5 ∗ 𝑟𝑎𝑛𝑑𝑛(1, 1); 0.5 ∗ 𝑟𝑎𝑛𝑑𝑛(1, 1)]𝑐 10

The matrices of the dimensionless parameter of the
microgyroscope system are expressed as follows:

𝐷 = [ 0.01 0.002
0.002 0.01 ] ,

𝐾 = [355.3 70.99
70.99 532.9] ,

Ω = [ 0 −0.1
0.1 0 ]

(41)

The other parameters of the microgyroscope and con-
troller are selected as Table 3.

Here 𝑞1(0), ̇𝑞1(0), 𝑞2(0), ̇𝑞2(0) represent the initial states
of the system. The reference trajectories of the x- and y-axis
are set as 𝑞𝑟1, 𝑞𝑟2, respectively. The estimated values of the
three parameter matrices are 𝐷(0), K̂(0), Ω̂(0). The sliding
coefficient is 𝑐. 𝑀, 𝑁, 𝑃 represent adaptive gains. Define the
membership functions of the sliding surface 𝑠𝑖 as 𝜇𝑁𝑀(𝑠𝑖) =1/(1 + exp(5(𝑠𝑖 + 3))), 𝜇𝑍𝑂(𝑠𝑖) = exp(−𝑠𝑖2), 𝜇𝑃𝑀(𝑠𝑖) = 1/(1 +
exp(5(𝑠𝑖 − 3))). 𝛾1 and 𝛾2 are adaptive parameters. The con-
troller parameters 𝑘1, 𝑘2 of the adaptive super-twisting sliding
mode control without fuzzy approximation are selected as
10,20, respectively. Random signal 𝑑 is considered as external
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Figure 3: Position tracking of microgyroscope system under adap-
tive fuzzy super-twisting sliding mode control.

disturbance. The simulation time is set as 60s, and the
simulation results are shown in Figures 3–14.

Figure 3 shows the position tracking of the x- and y-
axis under the adaptive fuzzy super-twisting sliding mode
control. Figures 4 and 5 show the position tracking error
under the adaptive fuzzy super-twisting sliding mode control
and adaptive super-twisting sliding mode control without
fuzzy approximation, respectively. Figures 4 and 5 show that
both two controllers can make the tracking errors decrease
and converge to zero quickly. However, the adaptive fuzzy
super-twisting sliding mode control method proposed in this
paper can achieve more effective and accurate tracking and
reach the reference trajectory in a shorter finite time than the
method in Figure 5.

Figure 6 indicates the control input of the x- and y-axis of
the microgyroscope under the adaptive fuzzy super-twisting
sliding mode control. It can be seen from the diagram that
the chattering of the control input can be avoided effectively
under the adaptive fuzzy super-twisting slidingmode control.

The estimated values of 𝑑𝑥𝑥, 𝑑𝑥𝑦, 𝑑𝑦𝑦 and 𝑤2𝑥, 𝑤𝑥𝑦, 𝑤2𝑦
under two methods are described in Figures 7–10. It is
observed that the estimated values of 𝑑𝑥𝑥, 𝑑𝑥𝑦, 𝑑𝑦𝑦 and𝑤2𝑥, 𝑤𝑥𝑦, 𝑤2𝑦 under the adaptive fuzzy super-twisting sliding
mode control can converge to their true values in shorter
time and are closer to the true values than that under the
adaptive super-twisting sliding mode control without fuzzy
approximation.

Figures 11 and 12 indicate the estimated value of Ω𝑧 under
two schemes. It is obvious that the adaptive fuzzy super-
twisting sliding mode control has a better estimation effect.
Simulation results also verify that the estimated value of Ω𝑧
under the adaptive fuzzy super-twisting sliding mode control
can converge to its true value in shorter time and overshoot
is smaller than that under the adaptive super-twisting sliding
mode control without fuzzy approximation.

Figures 13 and 14 are the fuzzy approximation curves of
the parameters 𝑘1 and 𝑘2 of the super-twisting sliding mode
controller under the adaptive fuzzy super-twisting sliding
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Figure 4: Position tracking error of microgyroscope system under adaptive fuzzy super-twisting sliding mode control.
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Figure 5: Position tracking error ofmicrogyroscope systemunder adaptive super-twisting slidingmode control without fuzzy approximation.

mode control method. It can be seen from Figures 13 and 14
that fuzzy system can effectively approximate the unknown
parameters of the controller, improving the performance of
the control system.

In order to illustrate the superiority of the proposed
scheme clearly, the root mean square error (RMSE) of x- and
y-axis between adaptive fuzzy super-twisting sliding mode
control and adaptive super-twisting sliding mode control
without fuzzy approximation is analyzed. The validity and
accuracy of the proposedmethod can be well proved by using
RMSE.The comparison of the RMSE is shown in Table 4.

Table 4 indicates that the RMSE under adaptive fuzzy
super-twisting sliding mode control is smaller than that
under the adaptive super-twisting sliding mode control
without fuzzy approximation. All these simulation results and
analyses prove the advantage and validity of the proposed
method.

6. Conclusion

Through the comparison and analysis of the simulation
results above, it can be seen that the proposed method



Complexity 11

Table 4: RMSE of x-axis and y-axis under two methods.

Control method RMSE
X Y

Adaptive fuzzy ST-SMC 0.1105 0.0601
Adaptive ST-SMC without fuzzy approximation 0.1370 0.0703
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Figure 6: Control input of microgyroscope system under adaptive
fuzzy super-twisting sliding mode control.
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Figure 7: Estimated values of 𝑑𝑥𝑥, 𝑑𝑥𝑦, 𝑑𝑦𝑦 under adaptive fuzzy
super-twisting sliding mode control.

is superior to the adaptive super-twisting sliding mode
control without fuzzy approximation in all aspects. The
proposed method in this paper can not only identify the
unknown parameters of the microgyroscope system more
effectively, but also adjust the parameters of the super-
twisting controller adaptively. It is more effective in ensuring
the stability, robustness, and accuracy of the system.The sim-
ulation results demonstrate the superiority of the proposed
method. In the current step, we implemented simulation
study to verify the effectiveness of the proposed methods.
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Figure 8: Estimated values of 𝑑𝑥𝑥, 𝑑𝑥𝑦, 𝑑𝑦𝑦 under adaptive super-
twisting sliding mode control without fuzzy approximation.
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Figure 9: Estimated values of 𝑤2𝑥, 𝑤𝑥𝑦, 𝑤2𝑦 under adaptive fuzzy
super-twisting sliding mode control.

Experimental verification is needed to verify the validity in
the practical application, which will be the next research
steps.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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Figure 11: Estimated value of Ω𝑧 under adaptive fuzzy super-
twisting sliding mode control.
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Figure 12: Estimated value of Ω𝑧 under adaptive super-twisting
sliding mode control without fuzzy approximation.
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