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Community structures in complex networks play an important role in researching network function. Although there are various
algorithms based on a�nity or similarity, their drawbacks are obvious. �ey perform well in strong communities, but perform
poor in weak communities. Experiments show that sometimes, community detection algorithms based on a single a�nity do not
work well, especially for weak communities. So we design a self-adapting switching (SAS) algorithm, where weak communities are
detected by combination of two a�nities. Compared with some state-of-the-art algorithms, the algorithm has a competitive
accuracy and its time complexity is near linear. Our algorithm also provides a new framework of combination algorithm for
community detection. Some extensive computational simulations on both arti�cial and real-world networks con�rm the potential
capability of our algorithm.

1. Introduction

�e continuing advance of network science plays a prom-
inent role in deepening the understanding of complex
systems in the real world [1–3]. Among others, one salient
property commonly observed in many complex networks is
the community structure, i.e., the organization of nodes in
di�erent groups, with many edges connecting nodes of the
same group and comparatively fewer connections among
nodes of di�erent groups [4–7]. For instance, in a scienti�c
citation network, communities are sets of scienti�c papers
on the same topic or in a similar research �eld [8], while in
protein-protein interaction networks, proteins working in
the same biological process (or being in the same cellular
component) interact with each other. Moreover, the com-
munity structure has been shown to have strong impacts on
epidemic dynamics [9, 10] and link prediction. �erefore,
with the acquisition of the real network data, one should pay
careful attention to the community structure, which is of
value to further investigations of complex networks.

For a deep understanding to the community structure, it
is necessary to de�ne what a community is. In general, there
are three types of de�nitions: local de�nition, global de�ni-
tion, and de�nition based on vertex similarity [6], including
the de�nition based on modularity and the topological
structure, such as the self-referring de�nition and compar-
ative de�nition [11]. However, there are few de�nitions that
quantitatively describe the community structure. In 2003,
Radicchi et al. provide the community de�nitions in both the
strong and weak sense with the quantitative description [12]:
the subgraph C is a community in a strong sense if

kini (C)> k
out
i (C), ∀i ∈ C, (1)

and in a weak sense if

∑
i∈C
kini (C)> ∑

i∈C
kouti (C), ∀i ∈ C. (2)

�e above quantitative de�nitions mean that the degrees
inside of all, or most, nodes are more than the degrees
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outside, where the degree inside kin
i (C) is the number of

node’s neighbors in the same community and the degree
outside kout

i (C) is the number of node’s neighbors in other
communities. .ereafter, another quantitative definition is
defined by Hu et al. [11] as follows: subnetworks (or sub-
graphs) C1, C2, . . . , Cm are said to be m communities of a
network (or graph) G if and only if they satisfy that
∪ l�m

l�1 Cl � G, and for any node j ∈ Cl0
, l0 ∈ 1, 2, . . . , m{ },

one has


i∈Cl0

Ai,j ≥max 
i∈Ct

Ai,j, t � 1, 2, . . . , m
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (3)

where A is the adjacency matrix of the graph G. Unlike the
consideration by Zhan et al. [13], we regard this definition as
the generalized definition, since it allows that each node
degree outside can be more than degree inside, and only
need the node which has the largest number of neighbors
with its own community. In this paper, we use this definition
as our standard for community detection and it is re-
markable that the overlap of node is not considered and
node belongs to only one community based on the detection
result.

In order to accurately describe the quantitative relation
between the degree inside and outside of communities,
Lancichinetti et al. introduce a mixing parameter μi for each
node i to denote that the node i shares a fraction μi of its links
with external nodes and a fraction 1 − μi with internal nodes,
i.e., μi � kout

i /(kin
i + kout

i ) [14, 15]. In this paper, we consider
that the mixing parameter of each node is less than 0.5 in
strong communities, and contrarily, it is more than 0.5 in
weak communities, and these two kinds of communities all
satisfy the definition of Hu et al.

.ere have been various kinds of algorithms designed
for community detection. For example, the Kernighan–
Lin algorithm, spectral bisection method, k-means clus-
tering method, and the spectral clustering algorithm are
traditional algorithms derived from graph theory or
statistics. With the development of computers, large-scale
computing is becoming widely available, so it is feasible to
increase the calculation complexity and network scale.
.ese advances enable researchers to develop many op-
timized algorithms, including the greedy algorithms based
on modularity [16] and betweenness [4, 17]. Meanwhile,
there are some algorithms which are based on dynamical
methods [18–23] and similarity or affinity [24, 25].
However, ignoring difference between the strong and weak
communities is a major drawback to some algorithms
based on node affinity or similarity, which makes the
detection accuracy of these algorithms low for weak
communities. .us, we design a self-adapting switching
(SAS) algorithm based on single affinity and combination
of two affinities.

.e evaluation criterions for the performance of com-
munity detection can be determined by two kinds of ap-
proaches. One is to compute the topology-based metrics,
including the coverage, conductance, andmodularity metrics.
.e other is to calculate the knowledge-drivenmeasurements,
such as the Precision metrics, Jaccard index, and the

normalized mutual information (NMI) [26]. We adopt NMI
index as the evaluation criterion for the performance of al-
gorithms in some real-world networks, the Lancichinetti–
Fortunato–Radicchi (LFR) benchmark networks (heteroge-
neous networks) [14], the Girvan–Newman (GN) benchmark
networks (homogeneous networks) [4], and the nonuniform
popularity similarity optimization (nPSO) benchmark net-
works (heterogeneous networks) [27]. Based on the results,
we find that our algorithm has an advantage over some state-
of-the-art algorithms and is more suitable for heterogeneous
networks with larger power-law exponent. .is paper is
outlined as follows. In Section 2, we design the principle of
our algorithm and discuss its complexity. Tests and results are
presented in Section 3. Conclusions are summarized in
Section 4.

2. Structural Analysis and Algorithm

In this section, we will present an analysis about the com-
munity structure and design the affinity-based SAS algo-
rithm for community detection, and then its complexity is
discussed at last.

2.1. 3e Analysis of Community Structure. Some studies
indicate that the node degrees generally obey the power-law
distribution [28, 29] or [30] log-normal distributions in real-
world networks, where the nodes with large degree are
known as hub nodes and have strong degree centrality, such
as the network in Figure 1. Although the number of hub
nodes in real-world networks is relatively small, their vital
roles in communities and networks have been repeatedly
mentioned in some literature studies [13, 31, 32]. .e
identification of the hub nodes is usually considered as the
breakthrough point for heuristic algorithms. In these al-
gorithms, a single affinity is often deficient for community
detection, especially for the weak communities. .erefore,
we design a new algorithm that combines two affinities in the
detection of weak communities.

As is well known, the ultimate aim of the community
detection algorithms that are based on affinity or modularity
is to find the global maximum of such indices and to
guarantee the minimum number of connections between
different communities. Both of them are nondeterministic
polynomial hard problems. Putting aside these problems,
our algorithm is heuristic and its detection process is based
on the affinity between the nodes being detected and having
been detected, rather than between two single nodes. Mo-
tivated by the different affinities, i.e., the common neighbors
(CN), hub depressed (HD), and hub promoted (HP) indices
summarized by Zhou et al. [33], we provide two definitions
of affinity for node j and node set P as follows, and some
important notations are shown in Table 1.

.e first affinity s
(j)
P between any node j and node set P is

as follows:

s
(j)
P � Nj ∩P



. (4)

.e second affinity S
(j)
P between any node j and node set

P is given by
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S
(j)
P �

s
(j)
P

kj

, (5)

where kj is the degree of node j.
.ese two affinities have different emphases: the first one

focuses on the absolute number of the common neighbors
and the second is the relative affinity. Our heuristic algo-
rithm is implemented from the hub node and then detects
other nodes belonging to the same community based on
these affinities.

Generally, the affinities between nodes in one commu-
nity are larger than those between nodes in different
communities, while this is hard to be satisfied sometimes,
especially for the weak communities. To illustrate this point,
we calculate the first and second affinity between the hub
node and its neighbors in LFR benchmark graphs. First, the
second affinity between the hub node’s neighbors in the
same community and other communities is shown in
Figure 2(a).We discover that the second affinities of nodes in
strong communities have obvious differences, but they are
mixed together in the weak communities when μ> 0.5. We
conduct a similar experiment on the weak communities with
the first affinity to observe its distinction ability. Since the

first affinity is the absolute number of common neighbors,
we normalize it and only pay attention to its normalization
form c

(j)
Ni

in Figure 2(b), where the notation of hub node is i,
the notation of its neighbors set is Ni, and node j is a
neighbor of hub node:

c
(j)
Ni

�
s

(j)
Ni

maxj∈Ni
s

(j)
Ni

 
, j ∈ Ni. (6)

From the statistical results, we find that, for the strong
communities, the second affinity has effective distinction
ability. However, it is not enough to detect the weak
communities and need to work with the first affinity.
Moreover, the detection method of strong communities is
not suitable to weak communities and may detect many
communities composed of several nodes or even a single
node, which can be a trigger principle of the switch con-
dition in our SAS algorithm. So our algorithm is divided into
two parts, which we name in short as SAS-1 and SAS-2,
respectively. Next, we will describe the algorithm and its
principle in detail.

2.2.3e Algorithm. Here, we will introduce the two parts of
our algorithm including its core principles and pseudocodes
and then analyze its complexity. Some important notations
are also shown in Table 1.

2.2.1.3e Strong CommunityMethod SAS-1. In this method,
each community, its nodes and the edges of these nodes, will
be gradually deleted from the network after the end of its
detection. So we denote the network as Gm � (Vm, Em) after
the (m − 1)th (m> 1) community has been detected, where
Vm and Em are the sets of nodes and edges, respectively. In
order to describe the algorithm generally, we will use the
example of the detection of mth community.

.e first step: at step t � 1, the method selects one node
i ∈ Vm as the hub node, whose degree is maximal in Gm.
At this step, the hub node i and its neighbors, satisfying
S

(j)

P ≥ 0.5, are the detected nodes belonging to Cm(1),
where the node set P consists of the node i and its
neighbors, node j ∈ Ni.
.e second step: at step t � 2, the method searches the
nodes in Cm(1), and then these nodes’ neighbor j is
substituted into this community if and only if it satisfies
the condition

S
(j)

Cm(1) ≥ 0.5, (7)

where the value 0.5 is confirmed by the definition of the
strong community, and then the community from
Cm(1) to Cm(2) is updated.
.e tth step: similarly, when t≥ 3, in order to reduce the
complexity, the method searches the nodes in Cnew

m (t)

and only detects these nodes’ undetected neighbors.
.en, neighbor j is substituted into Cm(t) if and only if
it satisfies the condition

Table 1: Description of main symbols.

Notation Meaning
|A| .e number of elements in set A

Cm(t)
.e set of nodes detected at tth step that belong to the

mth community, where t is the detection step

C∗m
.e set of nodes that belong to the mth community

when Cm(t) no longer changes

Cnew
m (t)

.e new detected nodes that belong to the mth

community at step t, Cnew
m (t) � Cm(t) − Cm(t − 1)

Ni .e set of neighbors of node i

s
(j)
P

.e first affinity between node j and P, where P is a set
of nodes

S
(j)
P .e second affinity between node j and P

Figure 1: In heterogeneous networks, hub nodes are scattered in
almost every communities. .ese hub nodes are the key starting
point in community detection. Communities are distinguished by
different colors, where node degree is marked by different sizes.
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Figure 2: (a)We present the statistical results of S
(j)
P for different values of µ from 0.1 to 0.8..e detailed information about the size and scale of

network structure is shown in Section 3..e hollow box plot is calculated from the hub nodes’ neighbors in the same community, and the solid
blue plot is calculated from the hub nodes’ neighbors in other communities. Each test is conducted by 100 times. (b) We statistically
compute the normalization form c

(j)
Ni

for the neighbors inside and those outside the communities, respectively..en, we get the mean values of
c

(j)
Ni

for each hub node i, where the blue lines are derived from the inside neighbors of the hub node and the red lines are from outside. In both
(a) and (b), the letter S denotes communities of size between 10 and 50 while the letter B denotes communities of size between 20 and 100.
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S
(j)

Cm(t− 1) ≥ 0.5, (8)

and the community Cm(t) is updated.

.e detection process of the mth community finishes
until there are no nodes satisfying condition (8).

2.2.2. 3e Weak Community Method SAS-2. From the re-
sults in Figure 2, we can infer the method SAS-1 may detect
many communities that are composed of several nodes or
even a single node in weak communities. Hence, the algo-
rithm needs a self-adapting switching condition to reflect
this phenomenon and make it to switch from SAS-1 to SAS-
2. Our method is to calculate the average scale of com-
munities having been detected and the switching condition
between the two methods is given by

∪ncm�1C
∗
m




nc
≤ β, (9)

where β � O(p〈k〉), in which p � 0.05 and 〈k〉 is the av-
erage degree, and nc(≥1) is the current number of com-
munities having been detected. Actually, few neighbors of
hub node in weak community can satisfy condition (7), so
the average scale of communities detected by SAS-1 is the
same order with p〈k〉, and the parameter p derived from
hypothesis test is a small incidence rate.

Once the SAS-1 triggers the switching condition, it will
switch to SAS-2 and redetects the network. Different from
the first method SAS-1, this method does not delete any
nodes or edges from the network because the recognition of
theweak communities depends on the whole construction of
the network. In the following, we will also introduce this new
method by taking the detection progress of the mth com-
munity as an example.

.e first step: at step t � 1, the method selects the node i
with the maximal degree as the starting node, which
does not belong to other communities C∗1 , . . . , C∗m− 1.
Obviously, we have Cm(1) � i{ } after confirming the
starting node.
.e second step: at step t � 2, the method chooses the
hub node’s neighbor j not belonging to other

communities C∗1 , . . . , C∗m− 1, as the member of the mth

community if and only if it satisfies the following
condition:

s
(j)
Ni
≥ c · max

j∈Ni

s
(j)
Ni

 , (10)

where c is a threshold based on the average value of c
(j)
Ni

in Figure 2, and then Cm(2) is updated.
.e tth step: when t≥ 3, similar to the method SAS-1,
this method searches the nodes in Cnew

m (t) and only
detects these nodes’ undetected neighbors. .en
neighbor j is substituted into Cm(t) if and only if it
satisfies the condition

S
(j)

Cm(t− 1) � max S
(j)

Cm(t− 1) ,

s
(j)

Cm(t− 1) � max s
(j)

Cm(t− 1) .

(11)

.e termination condition of the mth community is to
separate the undetected nodes with lower affinity from the
nodes having been detected, which have higher affinity each
other. We assume that the detection of the mth community
stops when there is no node j satisfying the following
condition at step t � t0:

S
(j)

Cm t0− 1( )
≥ ρ · max S

(j′)
Cm t0− 1( )

 , (12)

where node j is one of the undetected neighbors of nodes,
which belong to Cnew

m (t0 − 1), and node j′ belong to
Cm(t0 − 1), and the parameter ρ ∈ (0, 1) is used to cut the
community in the network.

.e algorithm pseudocodes are shown in Algorithm 1 and
its process structure is shown in Figure 3. Last, we analyze the
algorithm complexity. In the method SAS-1, the detection
process is conducted in every communities, so we consider that
the average step number for each community is ta. .e com-
plexity in searching and filtering for each node by the condition
(8) scale is O(〈k〉2). With the detection of communities, the
number of nodes is reduced, so the extreme complexity is about
O(〈k〉2tanc), where nc is the number of communities having
been detected and 〈k〉 is the average degree. In themethod SAS-

Algorithm community detection with self-adapting switching.
(1) input Adjacency matrix of the network.
(2) while |∪ncm�1C

∗
m|/nc ≤ β.

(3) Select a node as the hub node such that its degree is maximal in the current network.
(4) Gradually search the suitable nodes by S

(j)

Cm(t− 1) ≥ 0.5.
(5) Repeat step 4 until no nodes satisfy the condition in step 4, and then update the network and start the next detection.
(6) if |∪ncm�1C

∗
m|/nc ≤ β fails.

(7) Select a node as the hub node such that its degree is maximal in the network.
(8) Gradually search the suitable nodes by the double affinities condition: S

(j)

P2
� max S

(j)

P2
 , s

(j)

P2
� max s

(j)

P2
 .

(9) Repeat step 8 until no nodes satisfy S
(j)
P2
≤ ρ · max S

(j′)
P2

 , then start the next detection.
(10) Adjust the results based on the community definition.

ALGORITHM 1: .e pseudocodes of the SAS algorithm.
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2, the detection process is different only in the detected condition
(11), so the complexity is also about O(〈k〉2tanc). In summary,
the complexity of the SAS algorithm is O(〈k〉2tanc). Evidently,
ta is the same order as the average size of community Nc,
namely, O(ta/Nc) � 1. Since O(nc) � O(n/Nc), thus the
complexity can be derived to O(〈k〉2n) � O(〈k〉m), where m
is the number of network edges.

3. Results

In this section, some experiments are performed on both
real-world networks (the karate club network, the dolphin
network, the football team network, and the political books
network) and synthetic networks (LFR, GN, and nPSO
benchmark graphs). First, we use the GN benchmark to

A origin search from the hub node

Network

�e SAS-1 with the
strong communities

The whole network detection process
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Figure 3: Flowchart of the algorithm with self-adapting switching (i.e., the SAS algorithm) based on affinity..e green area in the left is part
of the algorithm SAS-1. (a).e SAS-1 starts from hub nodes and gradually searches their nodes in the same community. (b) After the end of
one community detection, the nodes and edges of this community will be deleted in the network, and new network data will be provided for
the following detection. .e red area in the right is part of the algorithm SAS-2. (c-d) Once the algorithm satisfies the switch condition, the
SAS-2 will use the combination of two affinities to detect communities one by one. (e) Different from SAS-1, SAS-2 does not delete
communities having been detected.
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Figure 4: Continued.
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estimate suitable parameters range and analyze parameter
sensitivity. .e SAS algorithm relies on three parameters β,
c, and ρ, where the choice of parameter β is related to the
average degree 〈k〉. .e parameters ρ and c can be freely
selected in the range (0, 1). In the GN benchmark, its scale
is 128 and degree distribution is relatively concentrated, so
it is suitable for parameter sensitivity analysis. Because its
average degree 〈k〉 is 16, so we default the β � 2, 3, 4, 5 and
mainly study the sensitivity of parameters ρ and c. Based on
the results in Figure 4, we find that the results are in-
sensitive to parameters β and c. However, the changes of
parameter ρ have obvious influence on the results when
Zout > 4. Fortunately, when the parameter 0.3< ρ< 1, all the
detected results are stable and do not have wide-range
fluctuations.

In practice, the parameter c should be close to 1 to
ensure the accuracy of initial detected nodes. .e parameter

0.3< ρ< 1 should be appropriately increased with the in-
crease of clustering coefficient. .en, we evaluate the ad-
vantages and disadvantages of our algorithm compared with
other state-of-the-art algorithms: Infomap, LPA, Louvain,
Walktrap, Fast greedy, EM, and Blondel. .e performance
comparison in real-world networks confirms its potential
capability shown in Table 2 and Figure 5. It is worth
mentioning that some community divisions are slightly
different from the ground truth. .e possible reason is that
the detailed division of communities leads to an increase in
the number of community, but its results at least satisfy the
quantitative definition of our article and have a good ac-
curacy rate.

In order to discuss our algorithm accuracy deeply, we use
three benchmark networks: LFR, GN, and nPSO to study
how the algorithm performance, NMI [26], changes with the
weakening of the community structure.
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Figure 4:.e sensitivity analysis of SAS algorithm detection results with parameters β, c, and ρ in GN benchmark. For each combination of
parameters, 100 networks have been generated.

8 Complexity



Table 2: Performance comparison in real-world networks, where n and m are the number of nodes and edges and <k> is the average degree
of the network.

Real-world networks Dolphin social network American college football Zachary’s karate club Political books Complexity
SAS (NMI) 0.9071 0.9114 1 0.5861 O(〈k〉m)

Infomap (NMI) [34] 0.3892 0.9241 0.6994 0.4934 O(n(n + m))

LPA (NMI) [35] 0.5267 0.9094 0.7403 0.5744 O(n + m)

Louvain (NMI) [36] 0.4483 0.8903 0.5866 0.5368 O(n) or O(m)

Walktrap (NMI) [37] 0.4740 0.8873 0.5041 0.5427 O(n2log(n))

Fast greedy (NMI) [16] 0.4482 0.6977 0.6924 0.5308 O(n log2 n)

EM (NMI) [38] 0.4428 0.6986 0.6771 0.5201 O(n2)

Blondel (NMI) [39] 0.4143 0.8903 0.5866 0.5121 O(m)
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Figure 5: .e detection results for various real-world networks. For the karate network (a), the result is identical with the original. But for
the dolphin network (b), the left community in the original has been divided into two communities, which are marked in red and green,
respectively. In the football team network (c) and the political books network (d), the detected communities are illustrated by dashed lines
and the original partitions are distinguished by different colors. .e parameters β � 3, c � 0.9, and ρ � 0.8.
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3.1. 3e LFR Benchmark. In this part, LFR networks have
two different scales: 1000 and 5000, as presented in Figure 6.
For each kind of network, we consider two different com-
munity sizes, indicated by the letters S and B, where S stands
for “small” communities that have about 10 to 50 nodes and
B stands for “big” communities that have about 20 to 100
nodes [15]. In Figure 6, our algorithm tests four types of
networks by NMI with μ ∈ [0.1, 0.8]. For the strong and
weak community, the performance of our algorithm is better
than some algorithms in Table 2.

3.2. 3e GN Benchmark. Beyond that, we test the SAS al-
gorithm in the GN benchmark network with the results
shown in Figure 7, where each point is also tested on 100
same kind networks..e performance of SAS algorithm is as
good as other algorithms in Table 2. It is well known that the
LFR benchmark is a kind of heterogeneous networks, whose
degree distribution follows the power-law distribution.
However, for the GN benchmark, its degree distribution
follows the normal distribution and the role of hub nodes is
weakened. Maybe the heterogeneity of network structure
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Figure 6: Community detection on LFR networks. For each combination of parameters, 100 networks have been generated. And for each
network, the community detection methods Infomap, LPA, Louvain, Walktrap, Fast greedy, EM, and Blondel have been executed. .e
communities detected have been compared by computing the normalized mutual information (NMI). .e parameters β � 3, c � 0.9, and
ρ � 0.8.
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Figure 8: Continued.
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will affect the accuracy of our algorithm. Next, we will use
the nPSO benchmark to conduct the further analysis of the
performance of our algorithm.

3.3.3e nPSO Benchmark. Recently, there is a new network
generative model named nonuniform popularity similarity
optimization (nPSO) for evaluation of community detection
and link prediction that can create synthetic networks with
controlled parameters: network scale, average degree,
community number, power-law exponent, and temperature.
It allows one to tune the mixing property of networks by
temperature. In particular, this model simulates how ran-
dom geometric graphs grow in the hyperbolic space, gen-
erating realistic networks with clustering, small-worldness,
scale-freeness, and rich-clubness.

In this part, we generate the nPSO hyperbolic networks
with community with these parameters: N � [100, 500, 1000]

(network size), 〈k〉0.5 � [4, 8, 10] (half of average degree),T �

[0.1, 0.3, 0.5, 0.7] (temperature, inversely related to the
clustering coefficient), nc � [3, 6, 9] (number of communi-
ties), and cnPSO � [2, 3] (power-law degree distribution ex-
ponent). We also compare the SAS algorithm with state-of-
the-art community detection algorithms. From the results in
Figures 8–10, we find that the performance of SAS algorithm

is not sensitive to the change of parameters N, 〈k〉0.5, and nc.
However, it performs well in the heterogeneous network with
cnPSO � 3 and generally with cnPSO � 2. .is indicates that
our algorithm may be more suitable for heterogeneous net-
works with larger power-law exponent. Combining all the
detection results, we can see that the SAS algorithm has some
advantages over other state-of-the-art algorithms, and its
accuracy ranks high among those algorithms in some
benchmarks. .e near linear time complexity is also an ad-
vantage of our algorithm.

4. Conclusions

In this paper, the performance of SAS algorithm is evaluated
with some state-of-the-art algorithms in real-world net-
works as well as three benchmark graphs, traditionally used
in the existing literatures. First, experimental results show
that it is feasible to use different affinities for strong andweak
communities. Our algorithm improves the accuracy of weak
communities, compared with some algorithms based on
single affinity, and has the same reliability as some state-of-
the-art algorithms. Second, some heuristic algorithms based
on hub node may need to analyze the network degree
distribution or clustering coefficient in advance to improve
the accuracy of the algorithm. .e weakening of the role of
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Figure 8: Community detection on nPSO networks. For each combination of parameters, 100 networks have been generated. And for each
network, the community detection methods Infomap, LPA, Louvain, Walktrap, Fast greedy, EM, and Blondel have been executed. .e
communities detected have been compared by computing the normalized mutual information (NMI). .e number of communities nc is 3,
and the parameter cnPSO is 2 and 3 in (a) and (b), respectively. .e parameters β � 3, c � 0.9, and ρ � 0.7.
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Figure 9: Community detection on nPSO networks. .e number of communities nc is 6, and other parameters are all the same with
Figure 8.

Complexity 13



Infomap
Fast greedy

LPA
EM

Louvain
Blondel

Walktrap
SAS

0 0.2 0.4 0.6 0.8

N = 100, 〈k〉0.5 = 4

0

0.5

1

N
M

I

T

0 0.2 0.4 0.6 0.8

N = 500, 〈k〉0.5 = 4

0

0.5

1

N
M

I

T

0 0.2 0.4 0.6 0.8

N = 1000, 〈k〉0.5 = 4

0

0.5

1

N
M

I

T

0 0.2 0.4 0.6 0.8

N = 100, 〈k〉0.5 = 8

0

0.5

1

N
M

I

T

0 0.2 0.4 0.6 0.8

N = 500, 〈k〉0.5 = 8

0

0.5

1

N
M

I

T

0 0.2 0.4 0.6 0.8

N = 1000, 〈k〉0.5 = 8

0

0.5

1

N
M

I

T

0 0.2 0.4 0.6 0.8

N = 100, 〈k〉0.5 = 10

0

0.5

1

N
M

I

T

0 0.2 0.4 0.6 0.8

N = 500, 〈k〉0.5 = 10

0

0.5

1

N
M

I

T

0 0.2 0.4 0.6 0.8

N = 1000, 〈k〉0.5 = 10

0

0.5

1

N
M

I

T

(a)

Infomap
Fast greedy

LPA
EM

Louvain
Blondel

Walktrap
SAS

0 0.2 0.4 0.6 0.8

N = 100, 〈k〉0.5 = 4

0

0.5

1

N
M

I

T

0 0.2 0.4 0.6 0.8

N = 500, 〈k〉0.5 = 4

0

0.5

1

N
M

I

T

0 0.2 0.4 0.6 0.8

N = 1000, 〈k〉0.5 = 4

0

0.5

1

N
M

I

T

0 0.2 0.4 0.6 0.8

N = 100, 〈k〉0.5 = 8

0

0.5

1

N
M

I

T

0 0.2 0.4 0.6 0.8

N = 500, 〈k〉0.5 = 8

0

0.5

1

N
M

I

T

0 0.2 0.4 0.6 0.8

N = 1000, 〈k〉0.5 = 8

N
M

I

0

0.5

1

T

0 0.2 0.4 0.6 0.8

N = 100, 〈k〉0.5 = 10

0

0.5

1

N
M

I

T

0 0.2 0.4 0.6 0.8

N = 500, 〈k〉0.5 = 10

0

0.5

1

N
M

I

T

0 0.2 0.4 0.6 0.8

N = 1000, 〈k〉0.5 = 10

N
M

I

0

0.5

1

T

(b)

Figure 10: Community detection on nPSO networks. .e number of communities nc is 9, and other parameters are all the same with
Figure 8.
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hub nodes may be the reason why our algorithm performs
bad in nPSO benchmark with power-law exponent 2, but
performs well in LFR benchmark and nPSO benchmark with
power-law exponent 3. .is is also an important direction of
algorithm improvement in the future. Last, our definitions of
affinity are based on the concept of common neighbours.
Recently, there is a new paradigm to define affinities that not
only uses the information associated with the number of
common neighbours but also considers (and integrates) the
information associated with the links that occurs between
the common neighbours. .e union of common neighbours
and their cross-links is named as local community, and the
redefinition of affinities based on common neighbours in
function of local communities has demonstrated to signif-
icantly boost link prediction in both monopartite and bi-
partite networks. If the SAS algorithm adopts affinities based
on the local community paradigm, instead of the simple
common neighbours’ paradigm, we guess that this possible
innovation may make our algorithm more suitable for
heterogeneous networks with smaller power-law exponent.
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