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 e complicated interaction patterns among heterogeneous individuals have a profound impact on the contagion process in the
networks. In recent years, there has been increasing evidence for the emergence of many-body interactions between two or more
nodes in a wide range of biological and social networks. To encode these multinode interactions explicitly, the simplicial complex
is now a popular alternative to simple networks. Meanwhile, the time-varying network has been acknowledged as a key ingredient
of the contagion process. In this paper, we consider the connectivity pattern of networks a�ected by the homophily e�ect
associated with individual attributes and investigate the impact of homophily-driven group interactions on the contagion process
in temporal networks. e simplicial complex modeling framework is adopted to capture stochastic interactions between passively
selected nodes in the paradigm of activity-driven networks. We study the evolution of infection and the epidemic threshold of the
contagion process by both analytical and numerical methods. Our results on statistical topological properties of instantaneous
network may shed light on accurately characterizing the evolution curve of infection. Furthermore, we show the impact of the
homophily-driven interaction pattern on the epidemic threshold, which generalizes the existing results on both the paradigmatic
activity-driven network and the simplicial activity-driven network.

1. Introduction

Network modeling plays a critical role in identifying struc-
tural properties and analyzing contagion processes on net-
works, such as the spreading of epidemic andmalware, as well
as the di�usion of news and ideas. Meanwhile, it has been
acknowledged that the intrinsic characteristic di�erences
among individuals and the complicated connectivity patterns
are two main important factors determining the properties of
the contagion process [1–3]. For instance, in a social network,
individuals are distinguished by their attributes such as
gender and age.  ese, together with biased interaction
patterns, induce heterogeneous rates of adoption of an idea
[4]. Consequently, there are substantial works dedicated to the
comprehension of the typical behavioral characteristics and
distinctive connectivity features, such as the homophily [4, 5],
reinforcement e�ect [6, 7], heterogeneous degree distribution
[8–10], and community structures [11, 12].

Generally, there is a tacit hypothesis in network mod-
eling approaches that the structure of complex systems is
reducible to the pairwise interactions (links) of their entities
(nodes) [13]. In recent years, the research community has
accumulated overwhelming evidence for the emergence of
many-body interaction patterns in a vast body of biological
and social systems. For instance, the rich datasets available
have revealed that interactions occur betweenmore than two
nodes in many systems [14].  ese complicated interactions
cannot be encoded in the simple network and thus prompt
the need for characterizing generalized network structures.
Simplicial complexes are a generalization of networks that
describe interactions between more than two nodes.  ey
can involve any number of nodes. For instance, simplices of
dimension d � 0, 1, 2, and 3 are nodes, links, triangles, and
tetrahedra, respectively, while d-dimensional simplices are
their d-dimensional generalizations. A simplicial complex is
a ¢nite collection of simplices of di�erent dimensions
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properly glued together. It has recently been adopted in
modeling many complex interacting systems, such as the
brain [15], biological protein-interaction systems [16], and
social systems [17].

Inmany cases, the interactions among system entities are
rapidly changing and evolving over time.+e understanding
of time-varying networks and their impacts on the dy-
namical process has been a long-standing area of research.
Recently, an activity-driven (AD) modeling framework has
been put forward to address the time-scale separation be-
tween the evolving network structure and the dynamical
process [18]. In this framework, each node is characterized
by a specific activity rate. At each time step, a node may
become active and generate finite connections with other
nodes randomly selected from the network. +e simple
formulation of AD networks and its extensions is amenable
to analytical treatment and thus facilitates the study of
contagion processes on time-varying networks. Examples
include epidemic spreading processes with different network
structures [19, 20], information diffusion processes with
complex adoption models [21, 22], and the interplay be-
tween the epidemic spreading and awareness diffusion with
different risk perception mechanisms [23–25].

However, the above studies focused on the pairwise
interactions between individuals, while the evolving sim-
plicial interactions are rarely considered. +is gap is bridged
by the simplicial activity-driven (SAD) model proposed in
the recent work [26]. Within this framework, a multiagent
interaction is depicted by a simplex of nodes, which implies
the interaction between any two nodes in a group created by
an active node. Although this simplex description is accurate
for some systems such as scientific collaboration networks, a
more general group interaction may contain different in-
teraction patterns among individuals. Take the micro-
blogging network as an example, when a user actively posts a
text and interacts with its followers, two or more of its
followers may also be connected because they share common
interests. +us, the potential role of possible interactions
among nodes connected to a common active node in the
epidemic spreading process deserves further discussions.

As mentioned above, the intrinsic characteristic of an
individual is critical for shaping the individual interaction
pattern. Inspired by the existence of temporal homophily
revealed in the temporal motifs of communication networks
[27], we consider the case in which the interaction patterns
are affected by the individual attribute. We assume that there
are two types of nodes in the network depending on their
attributes. At each step, an active node randomly chooses its
neighbors, and these neighbor nodes would interact at
different probabilities determined by their types. In par-
ticular, nodes tend to interact with others of the same type.
+at is to say, the formation of group interactions is
homophily-driven. +is model extends the paradigms of
typical AD models and the SAD model, which either ignore
any interaction among neighbor nodes or assume complete
interactions among neighbor nodes. We refer to this model
as the complex activity-driven (CAD) model since the group
interactions facilitated by active nodes are now described by
a simplicial complex.

In this paper, the effects of homophily-driven group
interactions on the contagion processes in time-varying
networks are investigated. We consider the susceptible-in-
fected-susceptible (SIS) model for the epidemic spreading
process and provide analytical analysis for both the evolu-
tion process and the epidemic threshold. In majority of
existing studies, the characterization of both the evolution
and the steady state of infection relies on extensive Monte
Carlo simulations. Once the epidemics outbreaks, the
spreading models based on the classical heterogeneous
mean-field (HMF)method can only provide an upper bound
for the infection level. Here, we propose a new model by
developing the classical HMF method to more accurately
predict the evolution of the epidemic curve. To this end, we
explore the topological properties of the instantaneous
network generated at each step and obtain the degree dis-
tribution and the connection correlations among nodes. It is
shown that introducing these statistical information of the
instantaneous network contributes to accurately charac-
terize the evolution of epidemic. +en, we derive the epi-
demic threshold with the analytical statistical model. +e
threshold is related to the connectivity pattern determined
by the node’s activity potential and the homophily effect, as
well as the proportion of two types of nodes. Our analytical
results can cover and generalize the existing results in both
classical AD and SAD networks.

+e rest of this paper is constructed as follows. In Section
2, the basic CAD model is established and the topological
properties of the instantaneous network are analyzed. In
Section 3, the statistical SIS epidemic model is formulated
and the epidemic threshold is discussed. In Section 4, nu-
merical simulations for the epidemic spreading process are
presented. Conclusions are drawn in Section 5.

2. Model

+is section introduces the CAD model and investigates the
topological properties of the instantaneous CAD network.

2.1.ComplexActivity-DrivenNetwork. +e complex activity-
driven network is an extension of the paradigmatic activity-
driven network that incorporates group interactions at each
step. In the framework of ADmodels, each node (individual)
i in a population of N nodes is endowed with an activity rate
ai, which is taken from a predefined activity probability
distribution F(a). ai is defined as the probability per unit
time of node i to create interactions with other nodes. In
addition to the heterogeneous activity rates, individuals in
the population are distinguished by their attributes. We
assume that there are two types of nodes, A and B. +e
proportions of typeA nodes and type B nodes in the network
are p and 1 − p, respectively. For simplicity, we assume that
the activity rates of nodes are irrelevant to their types, and
thus the activity probability distributions for both typeA and
B nodes are expected to be F(a). Similar to the approach for
static networks, we group nodes into different classes
according to their types and activities. Nodes with the same
type and the same activity belong to the same class and are
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considered to be statistically equivalent. We denote the class
NA

a as the collection of all nodes of type A with the activity
rate a. Other classes are denoted similarly.

+e instantaneous network Gt of the CAD model is
generated as follows: At each time step t, Gt starts with N
disconnected nodes. With probability aiΔt, a node i becomes
active and generates connection with m other nodes chosen
randomly (as shown in Figure 1). All the selected nodes are
neighbors of i, which together with the node i, form the group
i. +ere are two different roles in this group: center and
neighbor, which are played by the active node i and all other
nodes connected by i, respectively. +e neighbor nodes may
interact with each other, and the probabilities for an in-
teraction between two neighbor nodes with the same type and
different types are λ1 and λ2, respectively. Since the in-
teractions between neighbor nodes are stochastic, there may
be different interaction patterns in one group, such as pair-
wise interactions and interactions involving more than two
nodes. With one center node and m neighbor nodes in each
group, the dimension of group interactions may vary from 1
to m. +is is different from the SAD model that considers an
m-simplex in each group. +e instantaneous network Gt is
then modeled as a simplicial complex composed of lower
dimension simplicial complexes in each group. All these
simplicial complexes are deleted at the next time step t + Δt.
Without loss of generality, we set Δt � 1 in the following.

2.2. Topological Properties of the Instantaneous Network.
To quantitatively characterize the epidemic spreading process,
we analyze the degree distribution and the connection corre-
lation for nodes belonging to different classes in the in-
stantaneous network. SinceGt evolves with time, the topological
properties of Gt are analyzed in a statistical way. Based on the
definition ofm, ai, and F(a), it is expected that there are N〈a〉

active nodes with N〈a〉 groups in Gt, where 〈a〉 � 􏽐aaF(a).
In each group, there are at most (m(m − 1))/2 edges amongm
neighbor nodes. Since these m neighbor nodes are chosen
randomly by the center node, an interaction between any two
neighbor nodes occurs with the average probability
λ1(p2 + (1 − p)2) + 2λ2p(1 − p). +us, it is expected that
there are Eg edges in each group, with

Eg � m 1 +
λ1 p2 +(1 − p)2􏼐 􏼑 + 2λ2p(1 − p)

2
(m − 1)⎡⎣ ⎤⎦.

(1)

From the perspective of directed networks, the number
of edges existing in Gt is expected to be E � 2N〈a〉Eg.

Next, we discuss the degree distribution of nodes be-
longing to class NA

a in the instantaneous network. At each
step, the inactive nodes may be passively connected by the
active nodes. +e probability Pinact

A,a (k) that an inactive node
i ∈NA

a has degree k is

P
inact
A,a (k) � 􏽘

k

k1�⌈k/m⌉
Pa k1( 􏼁Pg k − k1( 􏼁, (2)

where ⌈x⌉ denotes the minimum integer that is no less than
x, Pa(k1) denotes the probability that the node i is connected
by k1 active nodes in Gt, and Pg(k − k1) denotes the
probability of k − k1 interactions between the node i and
other neighbor nodes. +e expression of Pa(k1) is the same
as that for AD networks [24], which is given by

Pa k1( 􏼁 �
m〈a〉N

k1
􏼠 􏼡

1
N

􏼒 􏼓
k1

1 −
1
N

􏼒 􏼓
N− k1

. (3)

In the thermodynamic limit, i.e., N⟶∞, Pa(k1) can
be rewritten as

Pa k1( 􏼁 �
(m〈a〉)k1

k1!
e

− m〈a〉
. (4)

In addition, the expression of Pg(k − k1) is

Pg k − k1( 􏼁 �
k1(m − 1)

k − k1
􏼠 􏼡λk− k1

A 1 − λA( 􏼁
k1m− k

, (5)

with λA � λ1p + λ2(1 − p) denoting the average probability
that the node i of type A interacts with a neighbor node in
the group.

In equation (2), ⌈k/m⌉ implies that the inactive node i
with degree k must be connected by at least ⌈k/m⌉ active
nodes. +is is due to the fact that a node can have at mostm
connections in one group. Once the node i is connected by
k1 ≥ ⌈k/m⌉ active nodes, there are k1 edges between the node
i and the k1 center nodes in the network. Accordingly, the
rest of k − k1 edges of the node i are created by group in-
teractions with neighbor nodes. Since the proportions of the
nodes of type A and B are, respectively, p and 1 − p, the
average probability for an interaction between the node i and
a neighbor node in the group is expected to be λA. +us, the
k − k1 interactions between node i and all other k1(m − 1)

neighbor nodes included in k1 groups occur with the
probability Pg(k − k1).

For each active node with degree k, there must be m
edges emitted from it. Hence, other k − m edges are gen-
erated by other active nodes or through group interactions.
Similar to the inactive case, the probability Pact

A,a(k) that an
active node i ∈NA

a has degree k is

P
act
A,a(k) �

0, k<m,

􏽘

k

k1� ⌈(k− m)/m⌉
Pa k1( 􏼁Pg k − m − k1( 􏼁, k≥m.

⎧⎪⎪⎨

⎪⎪⎩

(6)

Combining equations (2) and (6), the instantaneous
degree distribution PA

a (k) of nodes in class NA
a is given by

P
A
a (k) � aP

act
A,a(k) +(1 − a)P

inact
A,a (k). (7)

+e analysis for the nodes of type B is analogous to that
of type A. For the nodes of type B with activity rate a in class
NB

a , we can easily derive the instantaneous degree distri-
butions PB

a (k) as

P
B
a (k) � aP

act
B,a(k) +(1 − a)P

inact
B,a (k), (8)
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with λA in Pact
A,a(k) and Pinact

A,a (k) replaced by λB � λ2p +

λ1(1 − p) in Pact
B,a(k) and Pinact

B,a (k).
In Figure 2, we compare the statistical results (7) and (8)

with those obtained by Monte Carlo simulations. Due to the
heterogeneous activity rates in the real world, we consider
different activity rates among individuals in the network.
+e activity probability distribution is chosen as F(a)∝ a− 2.
For simplicity, we assume that there are n different activity
rates in the network and they are uniformly sampled in (0, 1]

[24].+e sampling interval is 1/N, and theminimum activity
rate in the network is denoted as a1. For the example of
n � 5, the activity rate is selected from a ∈ 0.2, 0.4,{

0.6, 0.8, 1} with a1 � 0.2. In this way, the heterogeneity of
node activity rates is adjustable by the value of n. +e degree
distribution of the nodes with activity rate a1 is taken as an
illustration example and presented in Figure 2. It is shown
that the theoretical results of both PA

a1
(k) and PB

a1
(k) are

consistent with the simulation results. To further measure
the error between the theoretical and simulation results, we
define an evaluation parameter, i.e.,

σn � 􏽘
k

􏽘

n

i�1
P

A
ai

(k) − 􏽢P
A

ai
(k)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + P
B
ai

(k) − 􏽢P
B

ai
(k)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓, (9)

with PA
ai

(k) and PB
ai

(k) from equations (7) and (8) and their
counterparts 􏽢P

A

ai
(k) and 􏽢P

B

ai
(k) obtained by simulations.

According to the value of σn in Figure 2, the absolute error
between theoretical and simulation results is very small. +is
error is reasonable due to the finite network size and in-
dependent realizations.

In addition to the degree distribution, we need to analyze
the connection correlation among different node classes in
the instantaneous network Gt. +e connection correlation
describes a preference for nodes to interact with others in
terms of their class. It is similar to the degree-degree cor-
relation in the static network [8] and the activity-activity
correlation in AD networks [24]. Here, we refer to it as the
class-class correlation since both the type and the activity
rate of a node are considered in each class.

To this end, we define F(NA
a ,NA

a′) as the probability of
finding a node in classNA

a and another node in classNA
a′ at

two ends of an edge randomly chosen in Gt. Also, Fn(NA
a ) is

defined as the probability that there is a node belonging to
the class NA

a at the end of a randomly selected edge in Gt.
Obviously, F(NA

a ,NA
a′) represents the ratio of the number

of edges E(NA
a ,NA

a′) created by one node in class NA
a and

the other node inNA
a′ , to the total number of edges E in the

instantaneous network Gt. According to the generating rules
of Gt, we can obtain

E N
A
a ,N

A
a′􏼐 􏼑 � pNF(a)mapF a′( 􏼁 + pNF a′( 􏼁ma′pF(a)

+ N〈a〉mpF(a)(m − 1)pF a′( 􏼁λ1
� p

2
NmF(a)F a′( 􏼁 a + a′ + λ1〈a〉(m − 1)􏼂 􏼃.

(10)

+e first (second) term corresponds to an active node in
class a(a′) that becomes active and connects to a node in class
a′(a). +e third term describes the case where both a node in
class a and a node in class a′ are chosen as neighbor nodes of
an active node. Similarly, the number of edges E(NA

a ,NB
a′)

related to classes NA
a and NB

a′ can be written as

E N
A
a ,N

B
a′􏼐 􏼑 � p(1 − p)NmF(a)F a′( 􏼁 a + a′ + λ2〈a〉(m − 1)􏼂 􏼃,

(11)

with equations (1), (10), and (11), and the explicit expres-
sions of F(NA

a ,NA
a′) � E(NA

a ,NA
a′)/E and F(NA

a ,NB
a′) �

E(NA
a ,NB

a′)/E can be easily obtained. +e analysis of
F(NB

a ,NA
a′) and F(NB

a ,NB
a′) is carried out in a similar

way. Obviously, F(NA
a′ ,N

A
a ) � F(NA

a ,NA
a′), F(NB

a′ ,N
A
a ) �

F(NB
a ,NA

a′) � F(NA
a ,NB

a′) � F(NA
a′ ,N

B
a ), F(NB

a′ ,N
B
a ) �

F(NB
a ,NB

a′),∀a, a′. In addition, the sum rule of 􏽐a,a′F

(NA
a ,NA

a′) + 2F(NA
a ,NB

a′) + F(NB
a ,NB

a′) � 1 is satisfied.
According to the definition of Fn(NA

a ), Fn(NA
a ) equals

the ratio of the number of edges E(NA
a ) connected to the

nodes in class NA
a to the total number of edges E in the

instantaneous network Gt. +at is,

E N
A
a􏼐 􏼑 � pNF(a)ma + pNF(a)m〈a〉

· 􏼂1 +(m − 1) λ1p + λ2(1 − p)( 􏼁􏼃

� pNmF(a) a +〈a〉 +(m − 1)〈a〉 λ1p + λ2(1 − p)( 􏼁􏼂 􏼃.

(12)

i

aiΔt λ1 and λ2

m = 5

i i i

Figure 1:+eCADmodel. In the network, there are two types of nodes, with the blue (green) circles representing typeA (B). At each time step, a type
A node i becomes active (labeled with solid circle) with the probability aiΔt. Once the node i is active, it interacts withm neighbor nodes randomly
chosen from all the other nodes in the network.+e purple (orange) dotted line denotes the possible interaction between two neighbor nodes with the
same type (different types).With the given group interaction probabilities, a simplicial complexwith one link and two triangles is generated at this step.
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+e first term corresponds to an active node in classNA
a

that generates m edges connected to m other randomly
selected nodes. +e second term stems from the fact that an
inactive node i in classNA

a is connected by an active node in
Gt, and as the role of neighbor in the group, node i interacts
with other neighbor nodes with certain probabilities.
Moreover, the explicit expression of Fn(NA

a ) can be ob-
tained with equations (1) and (12). Based on equations
(10)–(12), it is easily to prove that the quantities
F(NA

a ,NA
a′), F(NA

a ,NB
a′), and Fn(NA

a ) are satisfied with
Fn(NA

a ) � 􏽐a′F(NA
a ,NA

a′) + F(NA
a ,NB

a′).
We define F(NA

a′ |N
A
a ) as the conditional probability

that a randomly selected edge of the nodes in class NA
a

points to a node in the classNA
a′ . +en, combining equations

(10)–(12), F(NA
a′ |N

A
a ) can be written as

F N
A
a′

􏼌􏼌􏼌􏼌􏼌N
A
a􏼒 􏼓 �

F NA
a ,NA

a′􏼐 􏼑

Fn NA
a􏼐 􏼑

�
pF a′( 􏼁 a + a′ + λ1〈a〉(m − 1)􏼂 􏼃

a +〈a〉 +(m − 1)〈a〉 λ1p + λ2(1 − p)( 􏼁
,

(13)

which indicates a connection correlation between the classNA
a

and NA
a′ in the instantaneous network Gt. Following the

analysis steps of equation (13), we can derive the following
conditional probabilities for other three cases:

F N
B
a′

􏼌􏼌􏼌􏼌􏼌N
A
a􏼒 􏼓 �

(1 − p)F a′( 􏼁 a + a′ + λ2〈a〉(m − 1)􏼂 􏼃

a +〈a〉 +(m − 1)〈a〉 λ1p + λ2(1 − p)( 􏼁
,

F N
A
a′

􏼌􏼌􏼌􏼌􏼌N
B
a􏼒 􏼓 �

pF a′( 􏼁 a + a′ + λ2〈a〉(m − 1)􏼂 􏼃

a +〈a〉 +(m − 1)〈a〉 λ2p + λ1(1 − p)( 􏼁
,

F N
B
a′

􏼌􏼌􏼌􏼌􏼌N
B
a􏼒 􏼓 �

(1 − p)F a′( 􏼁 a + a′ + λ1〈a〉(m − 1)􏼂 􏼃

a +〈a〉 +(m − 1)〈a〉 λ2p + λ1(1 − p)( 􏼁
.

(14)

+e combination of any two activity rates a and a′ can be
analyzed by taking similar steps (10)–(14):

In Figure 3, the conditional probabilities of nodes with
the minimum activity rate a1 are presented. Here,
F(NA/B

a |NA
a1

) (F(NA/B
a |NB

a1
)) denotes the conditional

probability with which an edge of nodes in the class NA
a1

(NB
a1
) is connected to a node in the classNA

a orNB
a . It can be

found that the simulation results match well with the the-
oretical results (13) and (14). Also, it is observed that the
homophily-driven group interactions play a significant role
in shaping the connection pattern of nodes. Particularly, as
shown in Figure 3(a), nodes in class NA

a1
tend to interact

with nodes in classNA
a1
rather than nodes in classNB

a1
, even

though the latter is dominant in quantity. Similarly, we in-
troduce an evaluation parameter εn to further measure the
error between theoretical and simulation results. +at is,

n = 5 theory
n = 5 simulation
n = 10 theory

n = 10 simulation
n = 20 theory
n = 20 simulation

P a
1(k

)
A

0

0.1

0.2

0.3

0.4

0.5

5 10 15 200
k

(a)

n = 5 theory
n = 5 simulation
n = 10 theory

n = 10 simulation
n = 20 theory
n = 20 simulation

0

0.1

0.2

0.3

0.4

0.5

P a
1(k

)
B

5 10 15 20 250
k

(b)

Figure 2:+e degree distribution of the nodes with activity a1 in the instantaneous network Gt. Node types in (a) and (b) are, respectively,A
and B. +e dash-dotted line (circle), solid line (square), and dotted line (diamond) represent the theoretical (simulation) results for n � 5,
n � 10, and n � 20, respectively. For the three candidates of n, the values of σn are 0.0572, 0.1736, and 0.5779, respectively. Other parameters
are set to be N � 10,000, p � 0.3, m � 5, λ1 � 0.9, and λ2 � 0.1. +e simulation results are averaged over 1,000 realizations.
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εn � 􏽘
n

i�1
􏽘

n

j�1
􏼒ΔF N

A
aj

_N
A
ai

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 + ΔF N
B
aj

N
A
ai

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

+ ΔF N
A
aj

N
B
ai

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 + ΔF N
B
aj

N
B
ai

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓􏼓,

(15)

with ΔF(NC
aj

|ND
ai

) � |F(NC
aj

|ND
ai

) − 􏽢F(NC
aj

|ND
ai

)|, C, D �

A, B{ } and F(NC
aj

|ND
ai

) from equations (13) and (14) and its
counterpart 􏽢F(NC

aj
|ND

ai
) obtained by simulations. According

to Figure 3, εn is small under the three candidates of n.

3. Analysis

In this section, we characterize the paradigmatic SIS
model with the statistical properties of the instantaneous
network obtained in Section 2. Based on the statistical SIS
model, we discuss the epidemic threshold in the CAD
networks.

3.1. Statistical SISModel. In the SIS model, each node can be
either susceptible (S) or infectious (I). A susceptible node in
contact with an infectious node becomes infected with an
infection rate β, while each infectious node recovers from
infection with a recovery rate μ.

At the time step t, we denote the fractions of susceptible
and infectious nodes in the class NA

a as St
A,a and It

A,a, re-
spectively. +en, it gives St

A,a + It
A,a � 1. To analyze the

contagion process quantitatively, we define ωt
A,a as the

probability that an edge of nodes in class NA
a points to an

infectious node in Gt. Obviously, ωt
A,a is dependent on both

the class-class connection correlation property of Gt and the
infection level in each node class. Based on the analysis in
Section 2, we have

ωt
A,a � 􏽘

a′

F N
A
a′ N

A
a

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓I
t
A,a′ + F N

B
a′ N

A
a

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓I
t
B,a′, (16)

with F(NA
a′ |N

A
a ) and F(NB

a′ |N
A
a ) given by equations (13)

and (14), respectively.
For a node i in the class NA

a , the probability of node i
with degree k is given by the degree distribution PA

a (k).
Based on equation (7), the fractions of susceptible and in-
fectious nodes in the class NA

a at next time step t + 1 are
given by

St+1
A,a � μIt

A,a − St
A,a 􏽘

k

1 − 1 − βωt
A,a􏼐 􏼑

k
􏼔 􏼕PA

a (k),

It+1
A,a � (1 − μ)It

A,a + St
A,a 􏽘

k

1 − 1 − βωt
A,a􏼐 􏼑

k
􏼔 􏼕PA

a (k).

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(17)

It is noted that the statistical properties of the in-
stantaneous network Gt, PA

a (k) and F(NA
a′ |N

A
a ), are in-

cluded in (17). Since PA
a (k) and F(NA

a′ |N
A
a ) are related to

the parameters p, λ1 and λ2, the potential impacts of
homophily-driven group interactions on the contagion
process are reflected in the statistical properties of Gt. We
refer to the SIS model described by equation (17) as our
statistical model. +is model is different from models

derived by the classical HMF theory in most of existing
studies within the framework of ADmodels. Leveraging the
HMF theory, the SIS model on the CAD networks is de-
rived as

􏽢I
t+1
A,a � (1 − μ)􏽢I

t

A,a + β􏽢S
t

A,ama 􏽚
􏽢I

t

A,a′ +
􏽢I

t

B,a′

N
da′ + β􏽢S

t

A,a

· 􏽚
􏽢I

t

A,a′ +
􏽢I

t

B,a′

N
ma′da′ + β􏽢S

t

A,a 􏽚 ma′da′

× 􏽚
λ1􏽢I

t

A,a″ + λ2􏽢I
t

B,a″

N
(m − 1)da″,

(18)

where 􏽢S
t

A,a and 􏽢I
t

A,a, respectively, denote the number of
susceptible and infectious nodes in classNA

a at the time step
t. With 􏽢S

t

A,a � pNF(a)St
A,a and 􏽢I

t

A,a � pNF(a)It
A,a, equation

(18) can be rewritten as

I
t+1
A,a � (1 − μ)I

t
A,a + βS

t
A,ama pI

t
A +(1 − p)I

t
B􏼐 􏼑

+ βS
t
A,am pθt

A +(1 − p)θt
B􏼐 􏼑 + βS

t
A,am〈a〉(m − 1)

· λ1pI
t
A + λ2(1 − p)I

t
B􏼐 􏼑,

(19)

with It
A � 􏽐aF(a)It

A,a, It
B � 􏽐aF(a)It

B,a, θ
t
A � 􏽐aaF(a)It

A,a,
and θt

B � 􏽐aaF(a)It
B,a. To distinguish with the statistical

model, the model (19) is referred to as the classical MF
model. +is model is introduced as a comparison model to
measure the performance of the proposed statistical model
that contains more topological properties of the in-
stantaneous network.

3.2. Epidemic 5reshold. To obtain the epidemic threshold,
we analyze the stability around It

A,a⟶ 0. In this case, we
have the approximation 1 − (1 − βωt

A,a)k ≈ kβωt
A,a. +en, it

gives

􏽘
k

1 − 1 − βωt
A,a􏼐 􏼑

k
􏼔 􏼕P

a
A(k) � 􏽘

k

kβωt
A,aP

a
A(k) �

E NA
a􏼐 􏼑

pNF(a)
βωt

A,a.

(20)

By introducing equations (13) and (14) into ωt
A,a, the

fraction of infectious nodes It+1
A,a in equation (17) can be

rewritten as

I
t+1
A,a � (1 − μ)I

t
A,a + βS

t
A,am􏼔pI

t
A a + λ1〈a〉(m − 1)( 􏼁 +(1 − p)I

t
B

a + λ2〈a〉(m − 1)( 􏼁 + pθt
A +(1 − p)θt

B􏼐 􏼑􏼕,

(21)

which is exactly equation (19) derived by the classical HMF
theory. +is fact then implies that the classical MF model
(19) is an approximation of the statistical model (17).
Meanwhile, the result of approximation is accurate only
when the infection level is very low. +is will be further
discussed in the following numerical simulations.
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By integrating equation (21) over all the node classes and
ignoring the second-terms in It

A, we can obtain the ex-
pression of It+1

A :

I
t+1
A � (1 − μ)I

t
A + βm pI

t
A〈a〉 1 + λ1(m − 1)( 􏼁 +(1 − p)I

t
B〈a〉 1 + λ2(m − 1)( 􏼁 + pθt

A +(1 − p)θt
B􏼐 􏼑􏽨 􏽩. (22)

Moreover, the closed expression for θt+1
A is derived by

multiplying both sides of equation (21) by a and integrating
over all classes spectrum. +at is,

θt+1
A � (1 − μ)θt

A + pβmI
t
A 〈a

2〉 + λ1〈a〉
2
(m − 1)􏽨 􏽩 +(1 − p)βmI

t
B 〈a

2〉 + λ2〈a〉
2
(m − 1)􏽨 􏽩 + βm〈a〉 pθt

A +(1 − p)θt
B􏽨 􏽩.

(23)

Similarly, the expressions of It+1
B and θt+1

B that corre-
spond to the nodes of type B can be written as

I
t+1
B � (1 − μ)I

t
B + βm pI

t
A〈a〉 1 + λ2(m − 1)( 􏼁 +(1 − p)I

t
B〈a〉 1 + λ1(m − 1)( 􏼁 + pθt

A +(1 − p)θt
B􏼐 􏼑􏽨 􏽩,

θt+1
B � (1 − μ)θt

B + pβmI
t
A 〈a

2〉 + λ2〈a〉
2
(m − 1)􏽨 􏽩 +(1 − p)βmI

t
B 〈a

2〉 + λ1〈a〉
2
(m − 1)􏽨 􏽩 + βm〈a〉 pθt

A +(1 − p)θt
B􏽨 􏽩.

(24)

+us, we obtain the following closed system of the
master equations for It

A, It
B, θ

t
A, and θt

B:

0 Type A
a

1(0) Type B
a

1

n = 5 theory
n = 5 simulation
n = 10 theory

n = 10 simulation
n = 20 theory
n = 20 simulation

0.05

0.1

0.15

0.2

0.25

0.3

F(


aA/
B

A
| 

a 1)

(a)

0 Type A
a

1(0) Type B
a

1

n = 5 theory
n = 5 simulation
n = 10 theory

n = 10 simulation
n = 20 theory
n = 20 simulation

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

F(


aA/
B

B
| 

a 1)
(b)

Figure 3: +e conditional probability corresponding to the nodes with activity a1 in the instantaneous network Gt. In (a) and (b), we show
F(NA/B

a |NA
a1

) and F(NA/B
a |NB

a1
) for the type A nodes and type B nodes, respectively. +eoretical and simulation results are labeled in the

same manner as in Figure 2. For n � 5, 10, and 20, εn � 0.015, 0.0702, and 0.3981, respectively. Other parameters are set to be the same as
those in Figure 2.
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ztI
t
A � − μI

t
A + pβm〈a〉 1 + λ1(m − 1)( 􏼁I

t
A +(1 − p)βm〈a〉 1 + λ2(m − 1)( 􏼁I

t
B + βm pθt

A +(1 − p)θt
B􏼐 􏼑,

ztI
t
B � − μI

t
B + pβm〈a〉 1 + λ2(m − 1)( 􏼁I

t
A +(1 − p)βm〈a〉 1 + λ1(m − 1)( 􏼁I

t
B + βm pθt

A +(1 − p)θt
B􏼐 􏼑,

ztθ
t
A � − μθt

A + pβm 〈a2〉 + λ1〈a〉
2
(m − 1)􏽨 􏽩I

t
A +(1 − p)βm 〈a2〉 + λ2〈a〉

2
(m − 1)􏽨 􏽩I

t
B + βm〈a〉 pθt

A +(1 − p)θt
B􏼐 􏼑,

ztθ
t
B � − μθt

B + pβm 〈a2〉 + λ2〈a〉
2
(m − 1)􏽨 􏽩I

t
A +(1 − p)βm 〈a2〉 + λ1〈a〉

2
(m − 1)􏽨 􏽩I

t
B + βm〈a〉 pθt

A +(1 − p)θt
B􏼐 􏼑,

(25)

whose Jacobian matrix is given by

J �

− μ + pβm〈a〉 1 + λ1(m − 1)( 􏼁 (1 − p)βm〈a〉 1 + λ2(m − 1)( 􏼁 pβm (1 − p)βm

pβm〈a〉 1 + λ2(m − 1)( 􏼁 − μ +(1 − p)βm〈a〉 1 + λ1(m − 1)( 􏼁 pβm (1 − p)βm

pβm 〈a2〉 + λ1〈a〉2(m − 1)􏽨 􏽩 (1 − p)βm 〈a2〉 + λ2〈a〉2(m − 1)􏽨 􏽩 − μ + pβm〈a〉 (1 − p)βm〈a〉

pβm 〈a2〉 + λ2〈a〉2(m − 1)􏽨 􏽩 (1 − p)βm 〈a2〉 + λ1〈a〉2(m − 1)􏽨 􏽩 pβm〈a〉 − μ +(1 − p)βm〈a〉

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (26)

+e critical condition for the epidemic threshold is
determined by the largest eigenvalue Λmax of J. +at is, if

Λmax(J)> 0, (27)

the epidemics will outbreak in the network. Here, we cannot
get the explicit expression of equation (27) for general

systems. In the following, we will discuss two special cases of
the system.

If λ1 � λ2 � λ, there is no homophily effect on in-
teractions between neighbor nodes in any groups. +us, all
nodes in the network can be considered to be of the same
type. In this case, the master equations of the system can be
rewritten as

ztI
t
A � − μI

t
A + βm〈a〉(1 + λ(m − 1)) pI

t
A +(1 − p)I

t
B􏼐 􏼑 + βm pθt

A +(1 − p)θt
B􏼐 􏼑,

ztI
t
B � − μI

t
B + βm〈a〉(1 + λ(m − 1)) pI

t
A +(1 − p)I

t
B􏼐 􏼑 + βm pθt

A +(1 − p)θt
B􏼐 􏼑,

ztθ
t
A � − μθt

A + βm 〈a2〉 + λ〈a〉
2
(m − 1)􏽨 􏽩 pI

t
A +(1 − p)I

t
B􏼐 􏼑 + βm〈a〉 pθt

A +(1 − p)θt
B􏼐 􏼑,

ztθ
t
B � − μθt

B + βm 〈a2〉 + λ〈a〉
2
(m − 1)􏽨 􏽩 pI

t
A +(1 − p)I

t
B􏼐 􏼑 + βm〈a〉 pθt

A +(1 − p)θt
B􏼐 􏼑,

(28)

which can be further reduced to be

ztI
t

� − μI
t

+ βm〈a〉(1 + λ(m − 1))I
t

+ βmθt
,

ztθ
t

� − μθt
+ βm 〈a2〉 + λ〈a〉

2
(m − 1)􏽨 􏽩I

t
+ βm〈a〉θt

,

(29)

with It � pIt
A + (1 − p)It

B and θt � pθt
A + (1 − p)θt

B. +e
corresponding Jacobian matrix J is given by

J �
− μ + βm〈a〉(1 + λ(m − 1)) βm

βm 〈a2〉 + λ〈a〉2(m − 1)􏽨 􏽩 − μ + β〈a〉m
⎡⎣ ⎤⎦, (30)

and the two eigenvalues of J are

Λ(1,2) � − μ +
βm(λ(m − 1) + 2)〈a〉 ± βm

�������������������������������
(λ(m − 1) + 2)2〈a〉2 + 4 〈a2〉 − 〈a〉2􏼐 􏼑

􏽱

2
.

(31)

+us, the critical condition (27) for the presence of an
endemic state is

β
μ
>

2

m(λ(m − 1) + 2)〈a〉 + m
�������������������������������
(λ(m − 1) + 2)2〈a〉2 + 4 〈a2〉 − 〈a〉2􏼐 􏼑

􏽱 . (32)
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Particularly, with λ � λ1, the results for the cases of p � 0
and p � 1 are also included in (32).

Furthermore, if λ � 0, no interaction between neighbor

nodes will be allowed and equation (32) will recover the result
(β/μ)> (1/(m(〈a〉 +

����
〈a2〉

􏽰
))) for AD networks. In addition,

if λ � 1, an interaction between any two neighbor nodes can be
expected in each group. +en, equation (32) gives (β/μ)>

(2/(m(m + 1)〈a〉 + m

��������������������������

(m + 1)2〈a〉2 + 4(〈a2〉 − 〈a〉2)

􏽱

)),
which is degenerated to the results of the SAD model in [26].

Next, we discuss the case where the number of nodes of
both types is the same. With p � 0.5, the master equation
(25) can be reduced as

ztI
t � − μIt + βm〈a〉 1 +

λ1 + λ2
2

(m − 1)􏼢 􏼣It + βmθt,

ztθ
t � − μθt + βm 〈a2〉 +

λ1 + λ2
2

〈a〉
2
(m − 1)􏼢 􏼣It + βm〈a〉θt.

(33)

Following the analysis steps of equation (29), we can
derive the eigenvalues of J determined by system (33). +at
is,

Λ(1,2) � − μ +
βm λ1 + λ2( 􏼁/2( 􏼁(m − 1) + 2( 􏼁〈a〉 ± βm

����������������������������������������

λ1 + λ2( 􏼁/2( 􏼁(m − 1) + 2( 􏼁
2
〈a〉2 + 4 〈a2〉 − 〈a〉2􏼐 􏼑

􏽱

2
. (34)

+us, the critical condition (27) is given by

β
μ
>

2

m λ1 + λ2( 􏼁/2( 􏼁(m − 1) + 2( 􏼁〈a〉 + m

����������������������������������������

λ1 + λ2( 􏼁/2( 􏼁(m − 1) + 2( 􏼁
2
〈a〉2 + 4 〈a2〉 − 〈a〉2􏼐 􏼑

􏽱 . (35)

Comparing equations (32) and (35), we can see that the
case of a uniform mixing of two types of nodes is equivalent
to the case of λ � ((λ1 + λ2)/2) without homophily effect.

4. Numerical Simulations

In this section, we perform numerical simulations to in-
vestigate the epidemic spreading process on CAD networks.
For simplicity, we consider five activity rates of the nodes,
i.e., a ∈ 0.5, 0.6, 0.7, 0.8, 0.9{ } [24], and the activity rate
distribution obeys F(a)∝ a− 2. Accordingly, the proportions
of nodes with the activity rate 0.5, 0.6, 0.7, 0.8, and 0.9 are
0.344, 0.239, 0.176, 0.135, and 0.106, respectively. At each
time step, the number of edges generated by an active node is
chosen to be m � 5. In the following simulations, the size of
network, the recovery rate, and the initial fraction of ran-
domly chosen infectious nodes in the population are set to be
N � 5,000, μ � 0.5, and I0 � 0.1, respectively. If not speci-
fied, we assume the proportion of type A nodes, the in-
teraction probabilities for two neighbor nodes of the same
type, and different types to be p � 0.6, λ1 � 0.5, and λ2 � 0.1,
respectively. All the Monte Carlo simulation results are
averaged over 40 independent realizations.

Firstly, we compare the performance of the statistical model
and the classical MF model on characterizing the SIS epidemic
spreading process. To this end, we depict the time evolution of
the fraction of infectious nodes in the network. Under different
infection rate β, the evolution curves based on the statistical
model (17), the classical MF model (19) and the Monte Carlo
simulations are recorded. +e results are presented in Figure 4.
It is observed that the statistical model captures the evolution

curve for all four values of β, while the classical MF model
approximates the simulation results only for the case of
β � 0.01.+is is consistent with the analysis in Section 2, as the
approximation adopted in the classical MF model is accurate
only when the effective infection rate is below the epidemic
threshold. Furthermore, as shown in Figures 4(b)–4(d), the
classical MF model provides an upper bound for the infection
level in simulations. +e difference between this upper bound
and the actual infection level increases as the infection rate β
increases. According to the results of Figure 4, we can conclude
that analyzing the statistical properties of the instantaneous
network is beneficial to accurately characterize the contagion
process in the time-varying networks.

Next, we investigate the impact of homophily-driven
group interactions on the final steady state of the epidemic
spreading.+e growth of the final fraction of infectious nodes
I∞ versus the infection rate β is presented in Figure 5. It is
shown that I∞ decreases with the increasing p from 0 to 0.5.
Since p describes the proportion of type A nodes in the
network, an increasing p≤ 0.5 indicates more uniform
mixing of both type nodes.+is implies that any two neighbor

nodes in any groups are more likely to be of different types.
Due to the homophily effect, it is expected that there are less
group interactions among nodes. Consequently, as shown in
Figure 5, the contagion process in the network is impeded and
the epidemic threshold is enhanced with an increasing p.
Furthermore, noting that the definition of typeA and type B is
exchangeable, the effect of a varying p from 0.5 to 1 is the same
as a varying 1 − p from 0 to 0.5. +is fact, together with the
observation in Figure 5, demonstrates that the impact of
homophily effect on the contagion process is the greatest
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when p � 0.5. In fact, this result can be obtained by analyzing
the average probability of an interaction between any two
neighbor nodes. +at is, for the given λ1 and λ2, the value of
λ1(p2 + (1 − p)2) + 2λ2p(1 − p) reaches its minimum with
p � 0.5. In addition, as illustrated in Figure 5, the epidemic
thresholds suggested by the Monte Carlo simulations and the
statistical model are close to the theoretical values given by
equation (27). +is observation, in turn, validates our ana-
lytical results presented in Section 3.

Furthermore, we consider the contagion processes on
the AD networks, the SAD networks, and the proposed CAD

networks. According to the analysis in Section 3, the AD
model and the SADmodel are indeed two special cases of the
CADmodel and they are obtained by letting λ1 � λ2 � 0 and
λ1 � λ2 � 1, respectively.

In Figure 6, we depict the growth of the final fraction of
infectious nodes I∞ versus the infection rate β in the three
networks. Obviously, the group interactions between two
neighbor nodes promote the contagion process in the
network. Compared with the AD network, the epidemic
threshold decreases in both CAD and SAD networks.
Specifically, the critical infection rates corresponding to the

Monte Carlo
Classical MF model
Statistical model
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(a)

Monte Carlo
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(b)
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Statistical model

0
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(d)

Figure 4: +e time evolution of the fraction of infectious nodes of the type A (marked with blue), type B (marked with green), and both two
types (marked with red). +e circles, solid lines, and dotted lines represent the results of Monte Carlo simulations, the classical MF model,
and the statistical model, respectively. (a) β� 0.01. (b) β� 0.05. (c) β� 0.1. (d) β� 0.15.
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epidemic threshold are satisfied with βADc > β
CAD
c > β

SAD
c . In

addition, the theoretical results of the epidemic threshold
given by equations (32) and (35) are approximate to the
simulation results.

Finally, we investigate the impacts of the infection rate β
and the group interaction probabilities λ1 and λ2 on the ep-
idemic threshold. Figure 7 presents a comparison between the
theoretical and numerical values of the epidemic threshold for
different parameter combinations, where the numerically
obtained steady-state infection density is color coded and
shown as the background. Here, we assume λ2 is proportional
to λ1, i.e, λ2 � τλ1, and the proportionality factors τ are

chosen as 0.1, 0.5, and 1 in Figures 7(a)–7(c), respectively. For
a fixed parameter set, the dashed curve represents the the-
oretical value of λc

1 as a function of the infection rate β based
on equation (27). +e markers are the corresponding nu-
merical results of λc

1. From Figure 7, the theoretical results
agree with the simulation results for all three cases of τ. For
each τ, there are two critical values of β, i.e., β1c and β2c . When
β< β1c or β> β2c , the epidemic threshold is not related to λ1.
Specifically, the epidemics will vanish from the network with
β< β1c or it breaks out with β> β2c . When β1c < β< β

2
c , it is

observed that λc
1 decreases with an increase of β. Here, β1c is

obtained under λ1 � 1 and is determined by the value of λ2.
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Figure 5:+e final fraction of infectious nodes as a function of the infection rate β for different proportions of typeA nodes, p. +e epidemic
thresholds suggested by the Monte Carlo simulation and the statistical model are recorded as soon as I∞ is slightly than 0.01 (the critical
value above which the realization is considered as endemic). +e analytical values of the epidemic threshold given by equation (27) are
labeled by yellow pentagons.
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Figure 6: +e final fraction of infectious nodes as a function of the infection rate β in AD networks, CAD networks, and SAD networks.
Here, we chose p � 0.5 for the CAD networks to illustrate the theoretical results of equation (35). +e epidemic thresholds suggested by the
Monte Carlo simulations, the statistical model, and the theoretical analysis are recorded and labeled following the same step as in Figure 5.
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Given the three candidates of τ in Figure 7, we can see that β1c
decreases with an increase of τ due tomore group interactions
between nodes with different types. Moreover, since the CAD
network turns into the AD network with λ1 � λ2 � 0, β2c is
exactly the epidemic threshold in the AD network.

5. Conclusions

In this paper, we investigate the effect of group interactions
involving more than two individuals on the contagion
process in the time-varying networks. We consider that the
interactions are affected by the individual attribute. +e
homophily effects on interaction patterns are studied. A new
networkmodel that extends the paradigmatic activity-driven
model to the framework of simplicial complex networks is
presented. +e statistical properties of the instantaneous
network based on this model are explored and incorporated
in characterizing the epidemic spreading process. Results
show that these properties provide a more accurate de-
scription of the evolution of epidemic. Furthermore, it is
demonstrated that the homophily-driven group interactions
have a profound impact on the epidemic threshold. Our
results generalize the existing results of the epidemic
threshold on two paradigms of activity-driven network
models. However, the proposedmodel also comes with some
limitations. Here, we consider that the activity rate of a node
is independent of its type. Future workmay explore a general
activity probability distribution that incorporates the effect
of different node types. Moreover, we assume that the in-
fection rates through pairwise interaction and multinode
interaction are the same. +is model can be further de-
veloped by exploring different infection rates for different
interaction patterns.
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J. Kertész, “Emergence of communities in weighted net-
works,” Physical Review Letters, vol. 99, no. 22, Article ID
228701, 2007.

0

0.2

0.4

0.6

0.8

1

λ1

0.04 0.06 0.08 0.10.02
β

0

0.1

0.2

0.3

0.4

0.5

(a)

0

0.2

0.4

0.6

0.8

1

λ1

0.04 0.06 0.08 0.10.02
β

0

0.1

0.2

0.3

0.4

0.5

(b)

0

0.2

0.4

0.6

0.8

1

λ1

0.04 0.06 0.08 0.10.02
β

0

0.1

0.2

0.3

0.4

0.5

(c)

Figure 7:+e final fraction of infectious nodes as a function of the infection rate β and the group interaction probabilities λ1 and λ2. In each
subgraph, the curve with markers represents the dependence of the predicted critical value λc

1 for the onset of the epidemic on the infection
rate β. λc

1 suggested by Monte Carlo simulations is obtained in the same way as deriving the critical value of β in Figure 5. (a) λ2 � 0.1λ1;
(b) λ2 � 0.5λ1; (c) λ2 � λ1.

12 Complexity
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