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�e grey wolf optimizer (GWO) algorithm is a recently developed, novel, population-based optimization technique that is
inspired by the hunting mechanism of grey wolves. �e GWO algorithm has some distinct advantages, such as few algorithm
parameters, strong global optimization ability, and ease of implementation on a computer. However, the paramount challenge is
that there are some cases where the GWO is prone to stagnation in local optima. �is drawback of the GWO algorithm may be
attributed to an insu�ciency in its position-updated equation, which disregards the positional interaction information about the
three best grey wolves (i.e., the three leaders). �is paper proposes an improved version of the GWO algorithm that is based on a
dynamically dimensioned search, spiral walking predation technique, and positional interaction information (referred to as the
DGWO). In addition, a nonlinear control parameter strategy, i.e., the control parameter that is nonlinearly increased with an
increase in iterations, is designed to balance the exploration and exploitation of the GWO algorithm.�e experimental results for
23 general benchmark functions and 3 well-known engineering optimization design applications validate the e�ectiveness and
feasibility of the proposed DGWO algorithm. �e comparison results for the 23 benchmark functions show that the proposed
DGWO algorithm performs signi�cantly better than the GWO and its improved variant for most benchmarks. �e DGWO
provides the highest solution precision, strongest robustness, and fastest convergence rate among the compared algorithms in
almost all cases.

1. Introduction

�e rapid development of arti�cial intelligence (AI) is
primarily attributed to the considerable progress of com-
putational intelligence (CI). CI that is based on complex
systems mainly consists of two categories [1], i.e., single-
solution-based metaheuristics and population-based meta-
heuristics. Both single-solution-based algorithms and pop-
ulation-based algorithms employ a variety of mechanisms
and are designed to solve extremely challenging problems in
di�erent complex systems.

Single-solution-based metaheuristics are usually only
suitable for speci�c complex optimization problems because
of their single particle scale and weak coordination capa-
bility. A heuristic based on simulated annealing (SA) is
designed to solve the machine reassignment problem [2].
�e threshold-accepting (TA) metaheuristic method is

applied to solve the job shop scheduling problem of de-
hydration plants [3]. �e microcanonical annealing (MA)
algorithm is proposed for remote sensing image segmen-
tation [4].�e tabu search (TS) metaheuristic is collaborated
with a regenerator-reducing procedure to solve the re-
generator location problem [5]. �e guided local search
(GLS) approach is introduced for multiuser detection in
ultra-wideband systems [6]. �e dynamically dimensioned
search (DDS) is introduced for automatic calibration in
watershed simulation models [7–11].

Compared with single-solution-based algorithms, the
research and applications of population-based algorithms
are more extensive because of the following three main
advantages [11, 12]: more information can be obtained to
guide the trial solutions toward a promising area within the
search space by a set of trial solutions; local optimization can
be e�ectively avoided because of the interaction of a set of
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trial solutions; and in terms of exploration ability, pop-
ulation-based heuristic algorithms are superior to single-
solution-based heuristic algorithms. 0e genetic algorithm
(GA) is used to address the characterization of hyperelastic
materials [12, 13]. Particle swarm optimization (PSO) is
attributed to improving and evaluating the performance of
automated engineering design optimization [13, 14]. Dif-
ferential evolution (DE) is presented for mobile robots to
avoid obstacles [14, 15]. 0e dragonfly algorithm (DA) has
been improved to train multilayer perceptrons [15, 16].
Shuffled complex evolution (SCE) is designed to optimize
the load balancing of gateways in wireless sensor networks
[16, 17]. 0e dolphin echolocation algorithm (DEA) is ap-
plied to design a steel frame structure [17, 18]. 0e bat al-
gorithm (BA) is introduced to optimize the placement of a
steel plate shear wall [18, 19], and the artificial bee colony
(ABC) algorithm is presented to image steganalysis [19, 20].
0e grey wolf optimizer (GWO) is adopted for parameter
estimation in surface waves [20, 21].

0e GWO is one of the most impressive swarm in-
telligence algorithms and is the only algorithm that is based
on leadership hierarchy theory; it was introduced byMirjalili
et al. [22]. 0e GWO algorithm has three advantages
[23, 24]: it has universal applicability to some real-life op-
timization problems; it is insensitive to derived information
in the initial search; and it requires fewer algorithm pa-
rameters for adjustment. 0ese features render it a simple,
flexible, adaptable, usable, and stable algorithm [24, 25].
0erefore, since the GWO was proposed, researchers have
conducted a considerable amount of in-depth research and
applications. Regarding the improvements in research on
the GWO algorithm, researchers tend to improve the per-
formance of the GWO from four aspects [25]: position-
updating mechanisms, new control parameters, encoding
scheme of individuals, and population structure and hier-
archy. Typical study cases are listed as follows: Mittal et al.
[26] used the exponential decay function a to enhance the
exploration process in the GWO. However, this algorithm
suffers premature convergence. Kishor and Singh [27]
proposed a modified version of the GWO by incorporating a
simple crossover operator between two randomly selected
individuals. However, this technique has low capacity in
solving high-dimensional complex problems. A complex-
valued encoding strategy was employed by Luo et al. [28] to
substitute a typical real-valued strategy that was adopted in
the standard GWO and propose a complex-encoded GWO.
0e main shortcoming of this method is that it suffers
premature convergence. Yang et al. [29] used an effective
cooperative hunting group and a random scout group
strategy to propose a novel grouped grey wolf optimizer.
0is approach employs a complex mechanism. Xu et al. [30]
proposed a chaotic dynamic weight grey wolf optimizer
(CDGWO), in which a new position-updated equation,
formed by employing a chaotic map and dynamic weight,
was built to guide the search process for potential candidate
solutions. Gupta and Deep [23] proposed a novel random
walk grey wolf optimizer (RW-GWO); in the RW-GWO, the
random walk strategy was used for improving the search
ability of the GWO. However, it shows low solution

accuracy. In addition, an improved grey wolf optimization
(VW-GWO) algorithm based on variable weight strategies
and the social hierarchy in the searching positions was
presented by Gao and Zhao [31]. However, it employs a
complex methodology. In terms of successful applications of
the GWO, representative application research can be
summarized as flow shop scheduling [32], machine learning
[33–36], economic load dispatch [37], robotics and path
planning [38, 39], channel estimation in wireless commu-
nication systems [40], and other applications detailed in
References [24, 25]. 0eoretical and practical research has
shown the potential of the GWO algorithm in real life.
However, numerous studies and experimental results con-
cluded that the optimization performance of the GWO al-
gorithm needs improvement. Specifically, the trial solution
diversity would be hampered by the three best wolves that
were identified in the accumulative search [12]. Many
metaheuristics, such as the GWO, can be easily trapped in
the local optima when solving multimodal optimization
problems, where multiple global optimum solutions exist
[41] and the linear control parameter strategy is not the
perfect design for balancing the exploration and exploita-
tion. 0ese drawbacks may lead to an undesirable optimal
performance of the algorithm [27, 42]. In addition, existing
research on the GWO algorithm does not discuss im-
provements in the performance of the GWO algorithm by
considering the positional interaction information among
the three leaders (i.e., the first three best wolves). In the
actual hunting process, however, better predation efficiency
can be obtained only when positional information is
communicated among the three leaders. In this paper, the
positional interaction information refers to the information
communication among the three leaders in their predation
process as reflected by the relative change in position. In
addition to not considering the positional interaction in-
formation among the three leaders of the grey wolves,
existing research does not explore other predation methods,
such as spiral walking hunting, which may help hunting and
increase the chance of jumping out of the local optima for
the GWO algorithm. In summary, the GWO algorithm is a
strong algorithm but suffers from the abovementioned
shortcomings. Considering the drawbacks of the GWO al-
gorithm, this paper decided to improve upon it.

Based on this analysis, this paper improves the GWO
algorithm from the following three aspects: a hunting model
is built based on the spiral walking, a position-updated
equation is rebuilt based on the positional interaction in-
formation among the three leaders of grey wolves, and a
nonlinear control parameter is designed to replace the linear
control parameter of the standard GWO algorithm. 0e
proposed algorithm is tested on 23 classical benchmark
problems, CEC2014 suite, and three well-known engineering
optimization problems. 0e experimental results reveal that
the proposed method is robust, efficient, and superior
compared to other algorithms.

0e remaining sections of the paper are organized as
follows: 0e original GWO algorithm and DDS are briefly
overviewed in Section 2. In Section 3, the dynamically di-
mensioned search grey wolf optimizer, which is based on the

2 Complexity



deep search strategy (DGWOD), is proposed. 0e principle
of searching the GWO by the DDS is detailed, and the
position-updated equations, which are based on the deep
search strategy and the nonlinear control parameter equa-
tion, are constructed. Section 4 provides the experimental
results and a discussion of a set of well-known test functions.
0is paper is concluded and future research directions are
presented in Section 5.

2. Overview of GWO and DDS

2.1. Standard GWO Algorithm. In this section, four parts of
the basic GWO algorithm [22] inspired by the complete
process of hunting the grey wolf for preying are described.

2.1.1. Foundation of the Social Hierarchy. In the GWO al-
gorithm, the search is executed by the joint guidance of the
first three best grey wolves (i.e., α, β, and δ), and the po-
sitions of the ω grey wolves (solutions) are constantly ad-
justed with the guidance of the first three best grey wolves
with an increase in the iteration number.

2.1.2. Encircling Prey. Grey wolves hunt their prey by
encircling them, which is considered to be wise behavior. To
describe the principle of this predation from the perspective
of a mathematical model, Mirjalili et al. [22] constructed the
following equation:

D
→

� C
→

· X
→

p(t) − X
→

(t)


, (1)

X
→

(t + 1) � X
→

p(t) − A
→

· D
→

, (2)

A
→

� 2 a
→

· r
→

1 − a
→

, (3)

C
→

� 2 · r
→

2, (4)

where t is the current number of iterations, X
→

(t + 1) is the
position vector of the grey wolf at the (t + 1) th iteration, the
symbol “·” indicates dot product, X

→
p(t) is the position

vector of the prey at the (t) th iteration, D
→

is a vector that is
relative to the position of the prey X

→
p(t), A

→
and C

→
are the

coefficient vectors, a
→ is a vector whose values are linearly

decreased from 2 to 0 over iterations, and r
→

1 and r
→

2 are
randomly generated vectors whose values lie between 0 and 1.

2.1.3. Hunting. As described in Section 2.1.2, the action of
the grey wolf that encircles its prey provides the leader of the
grey wolf group with necessary position information and
forces the prey into promising areas. After the leader of the
grey wolf group receives the position information about the
prey, the next step is to guide omega (ω) wolves to conduct
the hunting. To describe the hunting behaviors of grey
wolves from the perspective of a mathematical model, we
assumed that X

→
α, X

→
β, and X

→
δ represent the positions of the

α wolf, β wolf, and δ wolf, respectively. 0erefore, the

mathematical models for grey wolf hunting are described as
follows:

X
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→
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→

1 · D
→

α, (5)
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→
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→
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→

2 · D
→

β, (6)

X
→

3 � X
→
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→

3 · D
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δ, (7)

X
→
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1
3

X
→

1 + X
→
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D
→

α, D
→

β, and D
→

δ are calculated using equation (1) as
follows:
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→
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→
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, (9)

D
→

β � C
→

2 · X
→
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→

(t)


, (10)

D
→

δ � C
→

3 · X
→

δ(t) − X
→

(t)


. (11)

2.1.4. Attacking Prey. In the GWO algorithm, the behaviors
of grey wolves that attack their prey are controlled by
constant changes in the value of the linear control parameter
a
→. According to equation (3), the expression of the vector A

→

is correlated with the parameter a
→. When the value of a

linearly decreases from 2 to 0, the value of the vector A
→

also
decreases. When |A

→
|≤ 1, the hunting of a grey wolf will

occur at any position between its current position and that of
its prey. When |A

→
|> 1, wolves will search the entire solution

space to locate the prey (optima).0erefore, |A
→

| represents a
controlling parameter vector that causes exploration and
exploitation. We determine that different values of the
control parameter a

→ have a different role in the exploration
and exploitation of the GWO algorithm. According to
Reference [42], a larger a

→ is favorable for global exploration,
while a smaller a

→ facilitates local exploitation.0erefore, the
control parameter a

→ has an important role in balancing the
exploration and exploitation of the GWO algorithm.
However, for the standard GWO algorithm, several studies
have shown that the value of the control parameter a

→

linearly changes and the design of the position-updated
equation will cause some drawbacks, such as premature
convergence of the algorithm and powerlessness when
solving multimodal problems [12, 27, 42].

Based on this description, the pseudocode of the GWO
algorithm is shown in Algorithm 1.

2.2. DDS Algorithm. 0e DDS algorithm is a powerful
single-solution-based metaheuristic algorithm, which was
employed for calibration problems that arise in watershed
simulation models. DDS was developed by Tolson and
Shoemaker in 2007 [7] and was proposed for optimization
problems that are bound constrained. 0us, achieving ex-
cellent optimization results for bounded constrained global
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optimization problems is the advantage of the DDS
algorithm.

DDS is a point-to-point stochastic-based heuristic global
search algorithm with no parameter tuning; global solutions
are obtained by scaling within a user-specified maximum
number of function evaluations (MaxIter) [43]. Since it is a
simple model that is easily programmed and a global search
algorithm, many researchers have focused their great at-
tention on it. At the beginning, when the number of iter-
ations is small, the global search of the algorithm is
dominant. As the number of iterations approached the
maximum, the algorithm evolved into a local search.0e key
idea for the DDS algorithm to transit from a global search to
a local search is to dynamically and probabilistically re-
ducing the number of dimensions to be perturbed in the
neighborhood of the current best solution [11, 43]. 0e
operation to dynamically and probabilistically reduce the
number of dimensions to be perturbed can be summarized
as follows: in each iteration, the jth variable is randomly
selected with the probability Pt fromm decision variables for
inclusion in the neighborhood Iperturb. 0e probability Pt is
expressed as

Pt � 1 −
ln(t)

ln(MaxIter)
, (12)

where t indicates the current iteration and MaxIter repre-
sents the maximum number of iterations.

At each iteration t, a new potential solution X
→new

(t) is

obtained by perturbing the current best X
→best

(t) in ran-
domly selected dimensions. 0ese perturbation magnitudes
are sampled using the standard normal random variable
N(0, 1) and reflecting decision variable bounds as [11]

X
→new

j (t) �
X
→best

j (t) + r × μ→j × ubj − lbj , if j ∈ Iperturb,

X
→best

j (t), otherwise,

⎧⎪⎪⎨

⎪⎪⎩

(13)

where j � 1, 2, . . . , m; r is a scalar neighborhood size per-
turbation factor; μ→j is a random vector that is generated for
the jth variable to be perturbed; ubj and lbj correspond to

the upper bound and lower bound of the jth variable; and

X
→new

j (t) and X
→best

j (t) denote the jth variable of the trial
potential solution and the current best solution, respectively.

To accurately choose the best solution between the

current best X
→best

(t) and the trial potential X
→new

(t) for the
next iteration, the greedy search method is employed. 0e

current best solution X
→best

(t) will be replaced by the trial
solution X

→new
(t) if the objective function value of X

→new
(t) is

smaller than that of X
→best

(t), i.e., f(X
→new

(t))<f(X
→best

(t));
otherwise, the current best solution X

→new
(t) is reserved for

the next iteration. 0e pseudocode description of the DDS
algorithm is presented in Algorithm 2 [11].

3. Proposed Algorithm

As presented in the previous sections, the GWO algorithm
encounters a few drawbacks, such as premature convergence
and a low capability to handle the difficulties of a multimodal
search landscape [25]. To overcome these weaknesses, the
most effective improvement is to increase the diversity of
candidate solutions and further improve the balance be-
tween exploration and exploitation during the iteration. In
terms of increasing the diversity of candidate solutions,
inspired by the core idea of the DDS algorithm, this study
adopts two improved strategies to increase the performance
of the GWO algorithm. One approach is to dynamically and
probabilistically reduce the number of dimensions to be
perturbed in the neighborhood, which enables candidate
solutions to be perturbed between the current solutions and
each of the three best solutions. Another method is to use the
positional interaction information about the first three best
grey wolf individuals (i.e., α, β, and δ) in the process of
encircling and preying on the prey to perform a deep search.
0e position-updated equation of the GWO algorithm,
which is based on the dynamically dimensioned perturba-
tion and position interaction information, is proposed,
which is referred to as the DGWO. To balance the explo-
ration and exploitation of the GWO algorithm, the in-
troduction of the search mechanism of the DDS algorithm
enables the GWO algorithm to gradually transform from a

Input: population size N and the maximum number of iterations MaxIter
Output: optimal individual position X

→
α and best fitness values f(X

→
α)

(1) Randomly initialize N individuals’ position to construct a population
(2) Calculate the fitness value of each individual and find α, β, and δ
(3) while t≤MaxIter or stopping criteria not met do
(4) for each individual do
(5) Update current individuals’ position according to equation (8)
(6) end
(7) Update a

→, A
→

i, and C
→

i, i � 1, 2, 3
(8) Evaluate the fitness value of each individual
(9) Update α, β, and δ
(10) end while

ALGORITHM 1: Pseudocode of the GWO algorithm.
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global search to a local search with an increase in the number
of iterations. 0e GWO algorithm has a strong exploration
ability in the initial search stage and a strong exploitation
ability in the subsequent stage of iteration. 0e nonlinear
control parameter a

→′ is proposed to replace the linear
control parameter a

→ of the standard GWO algorithm. 0is
nonlinear control parameter strategy produces a GWO al-
gorithmwith a strong exploitation ability in the early stage of
searching and a strong exploration ability in the subsequent
stage of searching. 0erefore, the introduction of the DDS
and the nonlinear control parameter strategy strengthens the
balance between exploration and exploitation of the GWO
algorithm, and positional interaction information is utilized
to conduct in-depth search and ensure the diversity of the
candidate solution.

3.1. Two Ways to Hunt Prey Are Freely Switched Using DDS.
As described in Section 2.1.3, a grey wolf hunts by direct
encirclement. However, though actual observation, we
found that, in addition to the previously mentioned
hunting strategy, the grey wolf also approaches its prey by
spiral walking when hunting. 0is way of spiral walking
around the prey is often considered to be a very effective
way to hunt [44]. Although we have determined that a
grey wolf hunts by direct encirclement and spiral walking,
a reasonable conversion of these two hunting methods has
not been performed via research. 0e traditional method
is to randomly convert between those two hunting
methods by equal probability [44]. In an actual situation,
the conversion probability between these two methods is
not equal. A reasonable conversion method is that the grey

Input: scalar neighborhood size perturbation factor r � 0.2, maximum number of iterations MaxIter, number of variables
(dimension) m, and upper bounds ub and lower bounds lb

Output: X
→best

and fbest

(1) Initialization
X
→0

� [x0
1, x0

2, . . . , x0
m], x0

i � lbj + rand · (ubj − lbj)

Set t� 1, X
→best

� X0, fbest � f(X
→best

), Iperturb � [0, 0, . . . , 0]

(2) while t≤MaxIter do
(3) Compute the probability of perturbing the decision variables Pt using equation (12)
(4) for j � 1 to m do
(5) Generate uniform random numbers, rand(j)

(6) if rand(j)<Pt then
(7) Set Iperturb(j) � 1
(8) end if
(9) end for
(10) Generate a standard normal random vector, μ→

(11) for j � 1 to m do

(12) X
→new

j � X
→best

j + (ubj − lbj) · Iperturb(j) · r · μ→ //equation (13)
(13) end for
(14) for j � 1 to m do
(15) if X

→new
j < lbj then

(16) Set X
→new

j � lbj + (lbj − X
→new

j )

(17) if X
→new

j > ubj then
(18) Set X

→new
j � lbj

(19) end if
(20) end if
(21) if X

→new
j > ubj then

(22) Set X
→new

j � ubj − (X
→new

j − ubj)

(23) if X
→new

j < lbj then

(24) Set X
→new

j � ubj

(25) end if
(26) end if
(27) end for
(28) Evaluate f(X

→new
)

(29) if f(X
→new

)<fbest then
(30) Set X

→best
� X

→new
, fbest � f(X

→new
)

(31) end if
(32) Set t � t + 1
(33) end while

ALGORITHM 2: Pseudocode of the DDS algorithm.
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wolf can freely switch between these two hunting methods
during its predation process. 0us, the grey wolf has the
best hunting effect, that is, to ensure that the grey wolf
achieves the best prey (global optimum) in the best sit-
uation or obtains the relatively better prey (global ap-
proximation solution) in poorer conditions. We
determined that the DDS method employs the conversion
technique that we expected. According to Section 2.2, the
core principle of the DDS algorithm is to transit the search
from global to local by dynamically and probabilistically
reducing the number of dimensions to be perturbed in the
neighborhood of the current best solution, which causes
the DDS to converge to the desired region to locate the
global optimum in the best case or a reasonable local
optimum in the worst case. Based on this analysis, the
DDS method is introduced in the GWO algorithm to
conduct free switching of the hunting behavior between
direct encirclement and spiral walking to improve the
quality of the solution of the GWO algorithm. 0e
implementation steps are described as follows:

(i) First, at each iteration t, D
→

α, D
→

β, and D
→

δ are cal-
culated using equations (9)–(11).

(ii) Second, at each iteration t, D
→new

α , D
→new

β , and D
→new

δ are
computed using the following equations:

d
→

α � X
→

α(t) − r
→

3 · X
→

(t)


, (14)

d
→

β � X
→

β(t) − r
→

4 · X
→

(t)


, (15)

d
→

δ � X
→

δ(t) − r
→

5 · X
→

(t)


, (16)

D
→new

α � X
→

(t) + r · d
→

α · exp − 2π · d
→

α  · cos π · d
→

α ,

(17)

D
→new

β � X
→

(t) + r · d
→

β · exp − 2π · d
→

β  · cos π · d
→

β ,

(18)

D
→new

δ � X
→

(t) + r · d
→

δ · exp − 2π · d
→

δ  · cos π · d
→

δ .

(19)

(iii) Finally, using the ideas of the DDS algorithm to
transition the search from global to local, D

→
α, D

→
β,

and D
→

δ are recalculated using the following
equations:

D
→

α,j �
D
→new

α,j , if Pt > rand(j),

D
→

α,j, otherwise,

⎧⎪⎨

⎪⎩
(20)

D
→

β,j �
D
→new

β,j , if Pt > rand(j),

D
→

β,j, otherwise,

⎧⎪⎨

⎪⎩
(21)

D
→

δ,j �
D
→new

δ,j , if Pt > rand(j),

D
→

δ,j, otherwise,

⎧⎪⎨

⎪⎩
(22)

where r
→

3, r
→

4, and r
→

5 are random vectors between 0 and 1
and r is a scalar neighborhood size perturbation factor,
whose value is 0.2 in this paper.

3.2. Position-Updated Equation Based on the Positional In-
teraction Information. As described in the original literature
[22] of the GWO algorithm, the alpha (α) wolf is the su-
preme leader of the grey wolf pack and is primarily re-
sponsible for commanding all wolves to hunt, sleep, and
wake. 0e leader in the second tier is referred to as the beta
(β) wolf, which is controlled by α and is responsible for
commanding the remaining wolves. 0e third tier of lead-
ership entails the delta (δ)wolf, who has to submit to α and β
but dominate the ω wolf. ω is the common wolf and has the
subordinate role of listening to the orders of the first three
leaders. 0is top-down leadership mechanism of the grey
wolf pack enables the GWO algorithm to have strong ex-
ploration ability. As previously described, the cooperative
hunting behavior of the grey wolf group is outstanding. One
situation is that the first three best grey wolves (leaders)
directly lead the ω wolf to hunt. In another situation, the α
wolf commands the β wolf and the δ wolf to hunt and the β
wolf commands the δ wolf to hunt. 0e leadership re-
lationship between these three leaders usually occurs via the
relative position changes, that is, positional interaction in-
formation. In the standard GWO algorithm, however, only
the former case is considered and the latter case is dis-
regarded, which is very important for the hunting of the grey
wolf group. Based on this shortcoming of the standard GWO
algorithm, we design a position-updated equation that is
based on positional interaction information as

X
→

11 � X
→

α(t) − r
→

6 · A
→

1 · X
→

β(t), (23)

X
→

22 � X
→

β(t) − r
→

7 · A
→

2 · X
→

δ(t), (24)

X
→

33 � X
→

α(t) − r
→

8 · A
→

3 · X
→

δ(t), (25)
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X
→

j(t + 1) �

w1 ·
1
3

· X
→

11,j + X
→

22,j + X
→

33,j  + w2 ·
1
3

X
→

1,j + X
→

2,j + X
→

3,j , if Pn > rand(j),

w2 ·
1
3

· X
→

11,j + X
→

22,j + X
→

33,j  + w1 ·
1
3

X
→

1,j + X
→

2,j + X
→

3,j , otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(26)

where X
→

11, X
→

22, and X
→

33 indicate the positional interaction
information about the three leaders; r

→
6, r

→
7, and r

→
8 are

random vectors between 0 and 1; and w1 and w2 are the
position weights.

3.3. Nonlinear Control Parameter Design. As previously
presented, the DDS algorithm has a strong global search
ability (i.e., strong exploration) at the initial search stage and
a strong local search ability (i.e., exploitation) in the sub-
sequent search stage. In addition, the exploration and
exploitation of the GWO algorithm are primarily con-
trolled by the control parameter a

→. When a
→ linearly

decreases from 2 to 0, the algorithm exhibits strong ex-
ploration and weak exploitation in the initial stage of
searching and exhibits strong exploitation and weak ex-
ploration in the subsequent stage. Since both the GWO
algorithm and DDS algorithm have strong exploration in
the initial iteration and strong exploitation in the sub-
sequent iteration, introducing the search mechanism of the
DDS algorithm into the GWO algorithm has further ag-
gravated the imbalance between the exploration and the
exploitation of the GWO algorithm. 0erefore, an imbal-
ance between exploration and exploitation occurs at dif-
ferent search stages of the algorithm. To address this
problem, we designed the new nonlinear control parameter
a
→′, which nonlinearly increases from − 2 to 2, to substitute
the linear control parameter a

→ of the standard GWO al-
gorithm. In the initial search phase, because the population
has a higher diversity, small a

→′ values are needed to en-
hance the exploitation capability and accelerate conver-
gence. In contrast, in the later stage of the search, since the
diversity decreases in the population, larger a

→′ values
facilitate exploration and can help the search agents to be
away from the local optimum.0erefore, the new nonlinear
control parameter a

→′ can ensure the relative strong ex-
ploitation at the initial iteration and a strong exploration in
the subsequent iteration of the GWO algorithm. 0e
nonlinear control parameter a

→′ is designed as

a
→′ � 2 − 4 · exp −

t

MaxIter
  · cos −

π
2

·

�������
t

MaxIter



 ,

(27)

where t and MaxIter indicate the current iteration and the
maximum iteration number, respectively.

Figure 1 shows the transition between exploration and
exploitation that was caused by the adaptive values of the
control parameters a

→ and a
→′. As shown in Figure 1, with

respect to the GWO algorithm, half of the iterations are
adapted to exploration (|A

→
|> 1) and the rest of the iterations

are devoted to exploitation (|A
→

|≤ 1). However, with regard

to the DGWO algorithm, the number of iterations used for
exploration and exploitation is 60.2% and 39.8%,
respectively.

3.4. Framework and Pseudocode of the DGWO Algorithm.
In this paper, the proposed hunt strategy of spiral walking is
added to the GWO algorithm to enhance the ability of the
predation. 0is strategy is freely switched between the
original encirclement methods using the search mechanism
of DDS. 0is method combines the proposed nonlinear
control parameter strategy and the position-updated
equation, which considers the positional interaction in-
formation, and develops the DGWO algorithm. 0e pseu-
docode of the proposed DGWO algorithm is shown in
Algorithm 3.

3.5. Time Complexity of DGWO. 0e time complexities of
the DGWO and GWO are summarized as follows:

(1) In the initialization phase, the DGWO and GWO
require O(N×m) time, where N represents the
population size and m represents the dimension of
the problem

(2) Calculation of the control parameters of the DGWO
and GWO requires O(N×m) time

(3) Update of the agents’ position-updated equations of
the DGWO and GWO requires O(N×m) time

(4) Evaluation of the fitness value of each agent requires
O(N×m) time

Based on the above analysis, for each generation, the
total time complexity is O(N×m), and given a maximum
number of iterations, the total time complexity of the
DGWO and GWO is O(N×m×MaxIter), where MaxIter
indicates the maximum number of iterations.

3.6. Analysis and Comparison of the Diversity between GWO
and DGWO. From equations (5) to (8), we can know that
the grey wolves update their position under the leadership of
the three best wolves. However, when the three fittest
wolves get into local optimum, the whole search agents will
all concentrate in this region, which leads to the decrease in
diversity in the population, and the algorithm easily falls
into local optimum. Based on this point, the DGWO al-
gorithm is proposed to enhance the diversity of the GWO
algorithm. To analyze and compare the diversity between
the GWO and the DGWO, we choose the Sphere function
as the benchmark test problem to see the difference in
diversity between the GWO and the DGWO at different
iterations. We set the population size as 30, the dimension
of the problem as 2, and the upper and lower boundaries of
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the problem as 10 and − 10, respectively. 0e diversity
distributions of the DGWO and GWO at different itera-
tions are plotted in Figure 2.

From Figure 2(a), when the number of iterations is 2, both
the DGWO and GWO have high diversity individuals. How-
ever, from Figures 2(b) to 2(d), the DGWO algorithm shows
better diversity of solutions than the GWO algorithm. 0is
comparison confirms that the DGWO algorithm has higher
diversity of solutions than the standard GWO algorithm.

4. Results and Discussion

4.1. Test Function Selection and Control Parameter Settings.
In this section, to validate the performance of the proposed
DGWO algorithm, 23 benchmark problems with various
complexity and sizes are collected from studies [21, 23, 43].0e
characteristics of the selected test functions are summarized in
Table 1, where fmin denotes the global optimal value. In this
table, the key to test functions, the mathematical expression of

Exploration
Exploitation

GWO with linear
control parameter a

DGWO with Eq.(27)

–2.0

–1.5

–1.0

–0.5

0

0.5

1.0

1.5

2.0

V
al

ue
s o

f a

50 100 150 200 250 300 350 400 450 5000
Iteration

Figure 1: Updating the values of control parameters a
→ and a

→′ over the course of iterations.

Input: population size N, scalar neighborhood size perturbation factor r, maximum number of iterations MaxIter, number of
variables m, and upper bounds ub and lower bounds lb
Output: optimal individual position X

→
α and best fitness value f(X

→
α)

(1) Randomly initialize N individuals’ position r to construct a population
(2) Calculate the fitness value of each individual, find α, β, and δ, and set t � 0
(3) while t≤MaxIter do
(4) Compute the probability (Pn) of perturbing the decision variables using equation (12) and the value of the nonlinear control

parameter a
→′ using equation (27)

(5) Generate uniform random numbers rand(j) ∈ [0, 1]

(6) for i� 1 to N do
(7) for j� 1 to m do
(8) if Pn(t)< rand(j) then
(9) Calculate D

→new
α , D

→new
β , and D

→new
δ according to equations (14)–(19)

(10) Calculate X
→

11, X
→

22, and X
→

33 using equations (23)–(25)
(11) Calculate X

→
1, X

→
2, and X

→
3 using equations (5)–(7)

(12) Update current individuals’ position according to equation (26)
(13) else
(14) Calculate D

→
α, D

→
β, and D

→
δ according to equations (9)–(11)

(15) Calculate X
→

11, X
→

22, and X
→

33 using equations (23)–(25)
(16) Calculate X

→
1, X

→
2, and X

→
3 using equations (5)–(7)

(17) Update current individuals’ position according to equation (26)
(18) end if
(19) end for
(20) end for
(21) Update a

→′, A
→

i, and C
→

i, i� 1, 2, 3
(22) Evaluate the fitness value of each individual
(23) Update α, β, and δ
(24) Set t � t + 1
(25) end while

ALGORITHM 3: Pseudocode of the proposed DGWO algorithm.
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Figure 2: Continued.
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The fittest search agent
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Figure 2: Search agents’ distribution observed at different iterations in the DGWO and GWO for solving Sphere function (m� 2). (a)
Number of iterations t� 2. (b) Number of iterations t� 4. (c) Number of iterations t� 6. (d) Number of iterations t� 12.

Table 1: Description of 23 classic benchmark functions.

Key Function Range m C fmin

f1 
n
i�1x

2
i

[− 100, 100] 10, 30, 50, 100 U 0
f2 

n
i�1|xi| + 

n
i�1|xi| [− 10, 10] 10, 30, 50, 100 U 0

f3 
n
i�1(

i
j�1xj)

2 [− 100, 100] 10, 30, 50, 100 U 0
f4 maxi |xi|, 1≤ i≤ n  [− 100, 100] 10, 30, 50, 100 U 0
f5 

n− 1
i�1 [100(xi+1 − x2

i )2 + (xi − 1)2] [− 30, 30] 10, 30, 50, 100 U 0
f6 

n
i�1([xi + 0.5])2 [− 100, 100] 10, 30, 50, 100 U 0

f7 
n
i�1ix

4
i + random[0, 1) [− 128, 128] 10, 30, 50, 100 U 0

f8 
n
i�1 − xi sin(

���
|xi|


) [− 500, 500] 10, 30, 50, 100 M − 418.9829×D

f9 
n
i�1(x2

i − 10 cos(2πxi) + 10) [− 5.12, 5.12] 10, 30, 50, 100 M 0

f10
− 20 exp(− 0.2

���������
1/n

n
i�1x

2
i


) −

exp(1/n
n
i�1cos(2πxi)) + 20 + e

[− 32, 32] 10, 30, 50, 100 M 0

f11 1/4000
n
i�1x

2
i − 

n
i�1cos(xi/

�
i

√
) + 1 [− 600, 600] 10, 30, 50, 100 M 0

f12
π/n 10 sin(πy1) + 

n− 1
i�1 (yi − 1)2[1 + 10 sin2(πyi+1)

+(yn − 1)2]} + 
n
i�1u(xi, 10, 100, 4)

[− 50, 50] 10, 30, 50, 100 M 0

f13

1/10 sin{

2(3πx1) + 
n
i�1(xi − 1)2[1 + sin2(3πxi + 1)] +

(xn − 1)2[1 + sin2(2πxn+ 1)]} + 
n
i�1u(xi, 5, 100, 4)

[− 50, 50] 10, 30, 50, 100 M 0

f14 (1/500 + 
25
j�1(1/j + 

2
i�1(xi − aij)

6))− 1 [− 65, 65] 2 F 1
f15 

11
i�1[ai − (xi(b2i + bix2)/b

2
i + bix3 + x4)]

2 [− 5, 5] 4 F 0.0003
f16 4x2

1 − 2.1x4
1 + (1/3)x6

1+ x1x2 − 4x2
2+ 4x4

2 [− 5, 5] 2 F − 1.0316

f17
(x2 − (5.1/4π2)x2

1+

(5/π)x1 − 6)2 + 10(1 − (1/8π))cos x1 + 10
[− 5, 5] 2 F 0.398

f18

[1 + (x1+ x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 + 6x1x2+

3x2
2)] × [30 + (2x1 − 3x2)

2 × (18−

32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)]

[− 2, 2] 2 F 3

f19 − 
4
i�1ci exp(− 

3
j�1aij(xj − pij)

2) [1, 3] 3 F − 3.86
f20 − 

4
i�1ci exp(− 

6
j�1aij(xj − pij)

2) [0, 1] 6 F − 3.32
f21 − 

5
i�1[(X − ai)(X − ai)

T + ci]
− 1 [0, 10] 4 F − 10.1532

f22 − 
7
i�1[(X − ai)(X − ai)

T + ci]
− 1 [0, 10] 4 F − 10.4029

f23 − 
10
i�1[(X − ai)(X − ai)

T + ci]
− 1 [0, 10] 4 F − 10.5363

m: dimension; C: category; U: unimodal; M: multimodal; F: fixed-dimension multimodal.
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each benchmark test problem, the boundary of variables, the
dimensions of the solution, and the category of each function
are detailed. 0ese test problems were divided into three
categories: unimodal, multimodal, and fixed-dimension mul-
timodal. In Table 1, f1 − f7 are unimodal problems that are
used to benchmark the exploitation of algorithms because they
have one global optimum and no local optima. Conversely,
functions f8 − f23 are multimodal and fixed-dimension
multimodal problems, which are helpful in examining ex-
ploration and local optima avoidance of algorithms, since they
have a large number of local optima [26, 42].

0e same control parameter settings for the GWO and
DGWO algorithms are listed in Table 2, where “m” repre-
sents the dimension of the problem, “N” represents the size
of the population, “MaxIter” represents the maximum
number of iterations, “w1” and “w2” represent the position
weight values, and “R” represents the independent simu-
lation experiment times for each test problem.0e proposed
DGWO and standard GWO algorithms were coded in
MATLAB R2015a. All simulation experiments were per-
formed on a personal computer with Windows 10 64 bit
professional OS and 4GB RAM.

4.2. Impact of Position Weights w1 and w2. As described in
Section 3.2, the strategy of the modified position-updated
equation (i.e., equation (26)) has an important role in
balancing between exploration and exploitation in the
evolution process. However, in equation (26), w1 and w2 are
two crucial position weights for improving the optimization
performance of the DGWO. In this section, to further in-
vestigate the impact of the position weight coefficients w1
and w2, several independent experiments were designed and
conducted. We varied the values of w1 and w2and kept other
algorithm’s parameters fixed for all benchmark functions.
Values w1 � 0.1, w2 � 0.9, w1 � 0.3, w2 � 0.7, w1 � 0.5,
w2 � 0.5, w1 � 0.7, w2 � 0.3, and w1 � 0.9, w2 � 0.1 are
selected to conduct experiments using 23 test functions.
Among these test functions, the dimension of 13 test
problems (f1–f13) is 30. All experimental results are reported
in Table 3. ‘‘Mean’’ and ‘‘St. dev.’’ values are two perfor-
mance evaluation indexes shown in Table 3.

As shown in Table 3, the comprehensive optimization
performance of the DGWO algorithm with position weights
w1 � 0.1 and w2 � 0.9 is superior to that of other algorithms.
Compared with the DGWO with w1 � 0.1 and w2 � 0.9, the
proposed DGWO algorithm with position weights w1 � 0.3
and w2 � 0.7 achieved better and similar results for 9
functions (i.e., f4–f8, f12–f14, and f16) and 3 functions (i.e., f11,
f17, and f18), respectively, and achieved worse results for 11
functions (i.e., f1–f3, f9-f10, f15, and f19–f23). Compared with
the DGWO with w1 � 0.1 and w2 � 0.9, the DGWO with
w1 � 0.5 and w2 � 0.5 obtained better and similar results for
6 problems (i.e., f5–f7, f12-f13, and f16) and 3 problems (i.e., f11
f14, and f18), respectively, and presented worse optimization
results for 14 functions (i.e., f1–f4, f8–f10, f15, f17, and f19–f23).
Compared with the DGWO with w1 � 0.1 and w2 � 0.9, the
DGWO method with w1 � 0.7 and w2 � 0.3 attained better
results for 6 functions (i.e., f5, f12–f14, f16, and f20), obtained

similar results for two functions (i.e., f11 and f18), and ob-
tained worse results for 15 functions (i.e., f1–f4, f6–f10, f15, f17,
f19, and f21–f23). Compared with the DGWO algorithm with
w1 � 0.1 and w2 � 0.9, the DGWO with w1 � 0.9 and w2 �

0.1 achieved better optimization performance for 4 functions
(f5, f14, f16, and f20), achieved similar results for one function
(i.e., f18), and achieved worse results for the remaining
functions. Based on this analysis, the optimization perfor-
mance of the DGWOworsens as the position weight value w1
increases and w2 decreases. 0erefore, considering all w1 and
w2 values, we concluded that setting the position weight
values w1 � 0.1 and w2 � 0.9 for the DGWO algorithm was
an ideal choice, and the position weights w1 and w2 of the
DGWO algorithm were set as 0.1 and 0.9, respectively, in the
next experiments.

0e convergence curves of the average objective function
values of the DGWO with different position weight values
w1 and w2 for 10 typical benchmark functions are plotted in
Figure 3.

4.3. Effectiveness Analysis of the Two Components in DGWO.
In the DGWO algorithm, two main components, namely,
the modified position-updated equation and the nonlinear
control parameter strategy, are proposed. To validate the
effectiveness of these two components in improving the
optimization performance of the DGWO, two experiments
were conducted for 23 benchmark functions recorded in
Table 1. Among those functions, the dimension of f1–f13 is
30. 0e algorithm parameters are set the same as in Table 2.
In the first experiment, the DGWO employed the modified
position-updated equation (i.e., equation (26)), and the
linear control parameter a

→ that is similar to that in the study
of Mirjalili et al. [22] is referred to as the DGWO-1. In the
second experiment, the DGWO only used the nonlinear
control parameter strategy (i.e., equation (27)), and the
position-updated equation (8) is referred to as the DGWO-2.
Two statistical criteria, “Mean’’ and ‘‘St. dev.,’’ and the results
of the DGWO-1, DGWO-2, and DGWO are shown in
Table 4. Sign-rank sum tests at 0.05 and 0.1 significance levels
were performed between the DGWO and each of DGWO-1
and DGWO-2.

From Table 4, compared to the DGWO, the DGWO-1
achieved better results on 6 functions (i.e., f4, f6, f8, f16, f21,
and f22), showed similar or approximate performance on 3
test functions (i.e., f9, f10, and f11), and provided slightly
poorer results on the rest of the test functions. It should be
emphasized that the DGWO-1 could obtain very compet-
itive optimization results compared to the DGWO, and its
performance is not significantly inferior to that of the
DGWO. We attribute the first experiment results to the fact
that the modified position-updated equation has more ad-
vantages in balancing between exploration and exploitation
and could ensure more potential solution diversity in the
evolution process. 0erefore, we can conclude that the
performance differences between the DGWO and the
DGWO-1 were not significant. From the results of the
second experiment, it is found that the DGWO surpassed the
DGWO-2 on 19 test functions and obtained similar results
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Table 3: Experimental results of the DGWO using different position weight values w1 and w2 for 23 functions.

Function
w1 � 0.1, w2 � 0.9 w1 � 0.3, w2 � 0.7 w1 � 0.5, w2 � 0.1 w1 � 0.7, w2 � 0.3 w1 � 0.9, w2 � 0.1
Mean St. dev. Mean St. dev. Mean St. dev. Mean St. dev. Mean St. dev.

f1 2.38E − 241 0.00E+ 00 2.70E − 220 0.00E+ 00 8.78E − 173 0.00E+ 00 1.64E − 109 8.92E+ 109 3.62E − 56 1.53E − 55
f2 1.39E − 127 7.05E − 127 2.10E − 118 1.06E − 117 2.38E − 90 1.25E − 89 1.05E − 58 4.64E − 58 3.81E − 32 1.29E − 31
f3 9.45E − 232 0.00E+ 00 9.94E − 217 0.00E+ 00 1.71E − 168 0.00E+ 00 2.40E − 107 5.95E − 105 5.61E − 35 2.93E − 34
f4 3.11E − 88 1.70E − 87 2.69E − 89 1.43E − 88 7.19E − 71 2.55E − 70 4.14E − 42 1.10E − 41 4.80E − 04 1.43E − 03
f5 2.85E+ 01 1.28E − 01 2.82E+ 01 1.63E − 01 2.79E+ 01 2.71E − 01 2.64E+ 01 5.05E − 01 2.59E+ 01 3.03E − 01
f6 9.70E − 06 4.71E − 06 7.73E − 06 3.38E − 06 8.52E − 06 2.51E − 06 2.19E − 05 7.35E − 06 1.84E − 04 5.37E − 05
f7 1.66E − 04 1.40E − 04 1.26E − 04 8.78E − 05 1.30E − 04 1.03E − 04 1.69E − 04 1.11E − 04 5.48E − 04 2.99E − 04
f8 − 1.06E+ 04 2.43E+ 03 − 1.16E+ 04 1.85E+ 03 − 8.34E+ 03 2.63E+ 03 − 4.81E+ 03 9.26E+ 02 − 3.51E+ 03 4.46E+ 02
f9 0.00E+ 000 0.00E+ 00 2.78E+ 00 7.09E+ 00 2.05E+ 00 4.23E+ 00 3.18E+ 00 1.28E+ 00 5.22E+ 00 1.72E+ 01
f10 8.88E − 16 0.00E+ 00 3.02E − 15 1.77E − 15 4.44E − 15 0.00E+ 00 4.68E − 15 9.01E − 16 8.94E − 15 2.63E − 15
f11 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 2.35E − 03 5.60E − 03
f12 1.79E − 06 2.19E − 06 5.43E − 07 3.72E − 07 6.73E − 07 3.03E − 07 1.48E − 06 4.76E − 07 1.22E − 05 3.15E − 06
f13 2.49E − 05 2.75E − 05 7.63E − 06 7.09E − 06 9.13E − 06 4.55E − 06 2.18E − 05 8.46E − 06 1.58E − 03 4.23E − 03
f14 2.94E+ 00 1.43E+ 00 2.55E+ 00 4.04E+ 00 2.94E+ 00 4.42E+ 00 2.17E+ 00 3.56E+ 00 2.64E+ 00 3.29E+ 00
f15 3.56E − 04 2.31E − 04 4.70E − 04 4.64E − 04 5.18E − 04 4.92E − 04 1.79E − 03 5.09E − 03 1.24E − 03 3.71E − 03
f16 − 1.0302 5.17E − 03 − 1.0313 1.00E − 03 − 1.0316 9.56E − 05 − 1.0316 1.91E − 05 − 1.0316 3.03E − 06
f17 0.3980 2.11E − 04 0.3980 6.02E − 05 0.3979 7.36E − 05 0.3979 3.39E − 05 0.3979 1.16E − 05
f18 3 2.41E − 04 3 1.07E − 03 3 6.36E − 04 3 2.71E − 04 3 1.24E − 04
f19 − 3.8590 5.87E − 03 − 3.8501 1.27E − 02 − 3.8533 8.33E − 03 − 3.8577 3.16E − 03 − 3.8612 1.09E − 03
f20 − 3.1725 5.27E − 02 − 3.1402 7.59E − 02 − 3.1681 6.65E − 02 − 3.2156 7.58E − 02 − 3.2394 6.61E − 02
f21 − 10.0984 1.56E − 01 − 9.7434 1.12E+ 00 − 8.3562 2.40E+ 00 − 8.9645 2.19E+ 00 − 7.3721 2.90E+ 00
f22 − 10.2969 2.58E − 01 − 9.8997 1.00E+ 00 − 9.5178 2.01E+ 00 − 10.0489 1.34E+ 00 − 9.7407 1.73E+ 00
f23 − 10.5307 2.94E − 02 − 10.3556 9.87E − 01 − 10.1956 1.30E+ 00 − 10.1751 1.37E+ 00 − 10.3090 1.01E+ 00
− 13 15 16 18
+ 9 6 6 5
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Figure 3: Continued.

Table 2: Experimental parameter settings for the GWO and DGWO.

Algorithm
Parameter

m N MaxIter w1 w2 R

GWO 10, 30, 50, 100 30 500 — — 30
DGWO 10, 30, 50, 100 30 500 0.1 0.9 30
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Figure 3: Continued.

Complexity 13



on function f18. To better understand this phenomenon, we
need to know that the nonlinear control parameter strategy
was specifically designed for the modified position-updated
equation and is not suitable for independent use in the
search process. 0us, the performance of the DGWO sig-
nificantly outperformed that of the DGWO-2.

0e convergence curves of the average objective function
values of the DGWO, DGWO-1, and DGWO-2 on 10 typical

test functions are plotted in Figure 4. From Table 4 and
Figure 4, we can conclude that the two components of the
DGWO are able to compensate for each other to improve the
optimization performance of the GWO.

4.4. Performance Comparison with the Standard GWO
Algorithm. We independently tested each problem 30 times
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Figure 3: Convergence curves of the DGWO with different weights w1 and w2 on 10 typical test functions. (a) f1. (b) f2. (c) f3. (d) f9. (e) f10.
(f ) f15. (g) f17. (h) f21. (i) f22. (j) f23.

Table 4: Experimental comparison results of the DGWO, DGWO-1, and DGWO-2 on 23 functions (m� 30).

Function DGWO-1 (Mean± St. dev.) DGWO-2 (Mean± St. dev.) DGWO (Mean± St. dev.)
f1 1.43E − 237± 0.00E+ 00 8.73E − 32± 1.16E − 31 2.38E − 241± 0.00E+ 00
f2 5.60E − 118± 3.06E − 149 3.84E − 19± 5.74E − 19 1.39E − 127± 7.05E − 127
f3 6.40E − 230± 0.00E+ 00 2.74E − 04± 1.27E − 03 9.45E − 232± 0.00E − 00
f4 1.10E − 110± 5.94E − 110 3.34E − 01± 2.48E − 01 3.11E − 88± 1.70E − 87
f5 2.85E+ 01± 8.56E − 02 2.84E+ 01± 6.98E − 01 2.85E+ 01± 1.28E − 01
f6 7.66E − 06± 7.36E − 06 2.42E+ 00± 7.32E − 01 9.70E − 06± 4.71E − 06
f7 1.74E − 04± 1.23E − 04 4.35E − 03± 2.11E − 03 1.66E − 04± 1.40E − 04
f8 − 1.22E+ 04± 1.08E+ 03 − 5.97E+ 03± 8.42E+ 02 − 1.06E+ 04± 2.43E+ 03
f9 0.00E+ 00± 0.00E+ 00 2.48E+ 01± 1.24E+ 01 0.00E+ 00± 0.00E+ 00
f10 8.88E − 16± 0.00E+ 00 1.15E − 14± 3.73E − 15 8.88E − 16± 0.00E+ 00
f11 0.00E+ 00± 0.00E+ 00 7.43E − 03± 1.11E − 02 0.00E+ 00± 0.00E+ 00
f12 3.82E − 06± 4.75E − 06 2.27E − 01± 1.85E − 01 1.79E − 06± 2.19E − 06
f13 5.47E − 05± 5.82E − 05 1.60E+ 00± 4.21E − 01 2.49E − 05± 2.75E − 05
f14 4.89E+ 00± 5.60E+ 00 6.69E+ 00± 5.01E+ 00 2.94E+ 00± 4.43E+ 00
f15 3.76E − 04± 3.04E − 04 5.11E − 03± 8.56E − 03 3.56E − 04± 2.31E − 04
f16 − 1.0316± 1.77E − 05 − 1.0316± 2.83E − 08 − 1.0303± 5.17E − 03
f17 0.3987± 1.00E − 03 0.3979± 6.65E − 07 0.3980± 2.11E − 04
f18 3.0007± 1.22E − 03 3.0001± 8.14E − 05 3.0001± 2.41E − 04
f19 − 3.8566± 5.02E − 03 − 3.8617± 1.71E − 03 − 3.8590± 5.87E − 03
f20 − 3.12163± 6.50E − 02 − 3.2543± 8.34E − 02 − 3.1725± 5.27E − 02
f21 − 10.1433± 1.22E − 02 − 8.1941± 2.93E+ 00 − 10.0984± 1.56E − 01
f22 − 10.3958± 6.49E − 03 − 9.8783± 1.73E+ 00 − 10.2969± 2.58E − 01
f23 − 10.5221± 2.25E − 02 − 10.0848± 1.75E+ 00 − 10.5334± 2.94E − 02
Losses (− ) 14 19
Wins (+) 6 3
Approximations (≈) 3 1
Detected differences (α) — 0.05
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Figure 4: Continued.
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to obtain four statistical criteria for comparing the perfor-
mance of the algorithms; that is, “Best” indicates the best
value, “Worst” represents the worst value, “Mean” denotes
the average best values, and “St. dev.” indicates the standard
deviation value. 0e simulation experimental results are
described in Table 5.

As shown in Table 5, the DGWO has a better optimi-
zation performance for the seven unimodal benchmarks,
with the exception of f5 and compared with the standard
versions of the GWO, since the DGWO provides the best
“Best,” “Worst,” “Mean,” and “St. dev.” values for 6 of 7
unimodal benchmarks. For the six multimodal benchmarks
(f8–f13) in Table 5, none of the standard versions of the GWO
has a better optimization performance than the DGWO
algorithm for all test problems using the “Mean” statistical
criterion. As observed in Table 5, the DGWO algorithm
achieved a better performance than the GWO for 5 fixed-
dimension multimodal test functions (i.e., f14, f20–f23) and
provided slightly better results than the GWO for functions
f16, f18, and f19. For function f16, however, the GWO obtained
better results than the DGWO.

0e percentage of problems solved by the GWO and
DGWO is recorded in Table 6. It should be noted that

when we use a certain algorithm to solve the 13 test
functions (i.e., f1–f13) and 10 test functions (i.e., f14–f23)
listed in Table 1, if the error between the actual value and
its theoretical value is 10− 5 and 10− 3, respectively, then this
problem can be regarded as having been successfully
solved. From Table 6, it can be seen that, for functions f1,
f2, f10, f16, f18, and f23, the DGWO and GWO obtained the
same percentage of solving problems. On 13 test problems
(i.e., f3, f4, f6–f9, f11–f15, and f21-f22), the DGWO has shown
a higher percentage than the GWO. However, the GWO
has shown a higher percentage than the DGWO for
functions f17, f19, and f20.

To obtain an intuitive cognition of the convergence rate
of the DGWO and GWO algorithms, Figure 5 shows the
convergence curves of the DGWO and GWO for 12 typical
test functions with m� 10, 30, 50, and 100. As shown in
Figure 5, the DGWO algorithm achieved a faster conver-
gence than the standard GWO algorithm for all 12 test
problems. 0is finding verifies that the position-updated
strategy and the nonlinear control parameter proposed in
this paper can achieve faster search and excellent optimi-
zation performance of the DGWO algorithm for low- and
high-dimensional problems.
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Figure 4: Convergence curves of the DGWO, DGWO-1, and DGWO-2 on ten typical test functions. (a) f1. (b) f2. (c) f3. (d) f7. (e) f9. (f ) f11.
(g) f13. (h) f15. (i) f22. (j) f23.
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Table 5: Results obtained by the DGWO and GWO algorithms on 23 test problems.

Key m
GWO DGWO

Best Worst Mean St. dev. Best Worst Mean St. dev.

f1

10 7.89E − 61 5.72E − 55 3.02E − 56 1.07E − 55 0.00E − 00 7.08E − 298 2.36E − 299 0.00E − 00
30 1.48E − 29 4.31E − 27 8.83E − 28 1.09E − 27 1.63E − 287 5.44E − 240 2.38E − 241 0.00E − 00
50 4.89E − 21 1.30E − 19 4.62E − 20 3.83E − 20 2.18E − 244 1.88E − 203 6.27E − 205 0.00E − 00
100 1.97E − 13 2.88E − 12 1.05E − 12 6.38E − 13 1.43E − 183 1.01E − 163 8.19E − 169 0.00E − 00

f2

10 7.44E − 35 2.11E − 32 3.62E − 33 4.99E − 33 7.09E − 190 4.34E − 154 1.45E − 155 7.92E − 155
30 2.82E − 17 2.79E − 16 1.22E − 16 6.95E − 17 3.74E − 148 3.86E − 126 1.39E − 127 7.05E − 127
50 8.15E − 13 5.92E − 12 2.64E − 12 1.31E − 12 4.61E − 132 5.38E − 109 1.80E − 110 9.81E − 110
100 1.37E − 08 1.43E − 07 4.59E − 08 2.38E − 08 1.26E − 102 1.84E − 63 1.62E − 84 8.48E − 84

f3

10 1.07E − 29 9.17E − 24 5.56E − 25 1.78E − 24 0.00E − 00 9.71E − 299 3.24E − 300 0.00E − 00
30 5.46E − 11 3.20E − 04 2.06E − 05 5.95E − 05 1.67E − 260 2.83E − 230 9.45E − 232 0.00E − 00
50 2.20E − 03 1.69E+ 00 2.68E − 01 3.45E − 01 2.45E − 209 1.65E − 169 6.52E − 171 0.00E − 00
100 4.99E+ 01 1.80E+ 03 5.60E+ 02 5.34E+ 02 7.91E − 144 3.02E − 18 1.01E − 19 5.52E − 19

f4

10 6.43E − 20 2.03E − 17 2.64E − 18 4.31E − 18 1.06E − 150 3.41E − 129 1.25E − 130 6.22E − 130
30 9.39E − 08 3.48E − 06 7.97E − 07 7.84E − 07 1.30E − 106 9.33E − 87 3.11E − 88 1.70E − 87
50 4.84E − 05 1.55E − 03 3.28E − 04 3.51E − 04 9.12E − 88 1.21E − 76 8.25E − 78 2.36E − 77
100 9.62E − 02 1.25E+ 00 5.42E − 01 3.25E − 01 1.08E − 65 9.02E − 42 3.01E − 43 1.65E − 42

f5

10 5.33E+ 00 8.04E+ 00 6.61E+ 00 5.88E − 01 4.09E − 01 8.39E+ 00 3.10E+ 00 2.31E+ 00
30 2.55E+ 01 2.87E+ 01 2.69E+ 01 7.47E+ 01 2.82E+ 01 2.87E+ 01 2.85E+ 01 1.28E − 01
50 4.59E+ 01 4.87E − 01 4.74E+ 01 8.18E − 01 4.83E+ 01 4.85E+ 01 4.84E+ 01 7.31E − 02
100 9.61E+ 01 9.85E+ 01 9.77E+ 01 7.81E − 01 9.80E+ 01 9.80E+ 01 9.80E+ 01 9.99E − 03

f6

10 9.48E − 07 2.53E − 01 2.47E − 02 7.55E − 02 2.96E − 08 4.66E − 06 5.84E − 07 8.37E − 07
30 2.50E − 01 2.00E+ 00 7.73E − 01 3.91E − 01 1.48E − 06 1.73E − 05 9.70E − 06 4.71E − 06
50 1.25E+ 00 3.70E+ 00 2.58E+ 00 6.23E+ 00 9.62E − 06 2.05E − 04 5.16E − 05 4.87E − 05
100 8.21E+ 00 1.19E − 01 1.01E+ 01 8.45E − 01 8.52E − 05 1.12E − 03 3.28E − 04 2.40E − 04

f7

10 9.10E − 05 2.14E − 03 7.23E − 04 5.93E − 04 1.14E − 05 3.40E − 04 1.24E − 04 9.64E − 05
30 8.25E − 04 3.97E − 03 1.98E − 03 9.59E − 04 2.88E − 05 6.20E − 04 1.66E − 04 1.40E − 04
50 1.13E − 04 8.73E − 03 3.17E − 03 1.58E − 03 8.94E − 06 9.17E − 04 2.31E − 04 2.28E − 04
100 3.02E − 03 2.18E − 02 8.20E − 03 4.02E − 03 2.51E − 06 1.93E − 03 2.62E − 04 3.68E − 04

f8

10 − 3.38E+ 03 − 2.05E+ 03 − 2.64E+ 03 3.12E+ 02 − 4.19E+ 03 − 2.33E+ 03 − 3.85E+ 03 5.85E+ 02
30 − 7.81E+ 03 − 3.32E+ 03 − 6.02E+ 03 9.48E+ 02 − 1.26E+ 04 − 5.66E+ 03 − 1.05E+ 03 2.43E+ 03
50 − 1.08E+ 04 − 4.16E+ 03 − 9.23E+ 04 1.22E+ 03 − 2.10E+ 04 − 8.76E+ 03 − 1.59E+ 04 3.94E+ 03
100 − 1.99E+ 04 − 5.36E+ 03 − 1.57E+ 04 3.05E+ 03 − 4.19E+ 04 − 1.56E+ 04 − 2.28E+ 04 5.58E+ 03

f9

10 0.00E − 00 7.13E+ 00 9.06E − 01 1.98E+ 00 0.00E − 00 0.00E − 00 0.00E − 00 0.00E − 00
30 5.68E − 14 9.58E+ 00 2.91E+ 00 3.16E+ 00 0.00E − 00 0.00E − 00 0.00E − 00 0.00E − 00
50 1.14E − 13 2.86E+ 01 5.00E+ 00 5.99E+ 00 0.00E − 00 0.00E − 00 0.00E − 00 0.00E − 00
100 2.80E − 07 3.73E+ 00 1.12E+ 00 7.67E+ 00 0.00E − 00 0.00E − 00 0.00E − 00 0.00E − 00

f10

10 4.44E − 15 7.99E − 15 7.52E − 15 1.23E − 15 8.88E − 16 8.88E − 16 8.88E − 16 0.00E − 00
30 6.84E − 14 1.47E − 13 1.07E − 13 1.45E − 14 8.88E − 16 8.88E − 16 8.88E − 16 0.00E − 00
50 1.44E − 11 1.12E − 10 3.98E − 11 2.59E − 11 8.88E − 16 8.88E − 16 8.88E − 16 0.00E − 00
100 4.91E − 08 1.96E − 07 1.10E − 07 4.08E − 08 8.88E − 16 8.88E − 16 8.88E − 16 0.00E − 00

f11

10 0.00E − 00 9.22E − 02 1.96E − 02 2.00E − 02 0.00E − 00 0.00E − 00 0.00E − 00 0.00E − 00
30 0.00E − 00 5.14E − 02 5.48E − 03 1.13E − 02 0.00E − 00 0.00E − 00 0.00E − 00 0.00E − 00
50 0.00E − 00 3.17E − 02 2.59E − 03 7.27E − 03 0.00E − 00 0.00E − 00 0.00E − 00 0.00E − 00
100 1.34E − 13 3.69E − 02 7.97E − 03 1.27E − 02 0.00E − 00 0.00E − 00 0.00E − 00 0.00E − 00

f12

10 3.25E − 07 2.03E − 02 4.91E − 03 8.54E − 03 1.38E − 08 1.58E − 06 3.09E − 07 3.33E − 07
30 1.96E − 02 1.05E − 01 4.80E − 02 2.31E − 02 1.34E − 07 8.29E − 06 1.79E − 06 2.19E − 06
50 4.83E − 02 3.93E − 01 1.14E − 01 6.21E − 02 4.71E − 07 1.72E − 05 3.12E − 06 3.31E − 06
100 1.87E − 01 4.65E − 01 2.93E − 01 6.46E − 02 4.04E − 06 7.82E − 05 1.61E − 05 1.43E − 05

f13

10 2.99E − 06 1.01E − 01 9.94E − 03 3.03E − 02 3.31E − 08 9.79E − 06 2.09E − 06 2.46E − 06
30 2.93E − 01 1.20E+ 00 6.78E − 01 2.39E − 01 5.30E − 07 1.09E − 04 2.49E − 05 2.75E − 05
50 1.34E+ 00 2.93E+ 00 2.15E+ 00 4.24E − 01 1.75E − 05 4.30E − 04 1.12E − 04 8.81E − 05
100 6.01E+ 00 8.03E+ 00 6.89E+ 00 4.38E − 01 1.86E − 04 2.34E − 03 9.13E − 04 5.72E − 04

f14 2 0.9980 1.08E+ 01 3.2259 3.15E+ 00 0.9980 1.27E+ 00 2.9434 4.43E+ 00
f15 4 0.0003 2.04E − 02 0.0090 1.01E − 02 0.0003 1.58E − 03 0.0003 2.31E − 04
f16 2 − 1.0316 − 1.0316 − 1.0316 2.50E − 08 − 1.0316 − 1.0096 − 1.0303 5.17E − 03
f17 2 0.3979 0.3979 0.3979 1.22E − 06 0.3979 0.3990 0.3980 2.11E − 04
f18 2 3.0000 3.0001 3.0000 2.58E − 05 3.0000 3.0013 3.0001 2.41E − 04
f19 3 − 3.8628 − 3.8549 − 3.8613 2.74E − 03 − 3.8626 − 3.8360 − 3.8590 5.87E − 03
f20 6 − 3.3220 − 2.8404 − 3.2626 1.06E − 01 − 3.2959 − 3.1034 − 3.1725 5.27E − 02
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4.5. Performance Comparison with the Modified GWO
Algorithm. To further compare the optimization perfor-
mance of the proposed DGWO algorithm with that of other
improved GWO variants, i.e., the modified grey wolf op-
timizer (mGWO) algorithm [26], the grey wolf optimizer,
which is based on the Powell local optimization (PGWO)
method [45], and the exploration-enhanced grey wolf op-
timizer (EEGWO) algorithm [42], the parameters of the
mGWO, PGWO, and EEGWO algorithms were established
as follows: their population size was set to 30, and the
maximum number of iterations was 500. 0e 23 benchmark
test functions were selected fromTable 1.0e dimensions for
13 test functions (f1–f13) were set to 10, 30, 50, and 100. Each
algorithm was independently run 30 times using each test
function for their corresponding dimension. 0e mean
(denoted by “Mean”) and standard deviation (denoted by
“St. dev.”) of the fitness value are the two statistical criteria
used to evaluate the performance of the algorithm. 0e
simulation results of these four algorithms are recorded in
Table 7.

As shown in Table 7, the DGWO obtained the best
“Mean” and “St. dev.” for functions f1, f2, f3, f8, and f13 with

low dimensions (m� 10 and 30) and high dimensions
(m� 50 and 100) compared with the mGWO, PGWO, and
EEGWO. For the test problems f4 and f7 withm� 30, 50, and
100, the EEGWO achieved the best results among the four
modified GWO algorithms, and the DGWO achieved
slightly worse results than the EEGWO but better results
than the mGWO and PGWO. For functions f9, f10, and f11,
the DGWO and EEGWO achieved the same results and are
better than the mGWO and PGWO; note that the DGWO
and EEGWO can obtain theoretical optima (0) for functions
f9 and f11. 0e PGWO obtained the best results on test
problems f5, f6, and f12 with all dimensions (m� 10, 30, 50,
and 100) and attained the global theoretical optima (0) on
problem f6. However, the DGWO obtained the second best
results for functions f5, f6, and f12, which are similar to the
results of the PGWO. For functions f14 to f23 with a fixed
number of dimensions, the DGWO achieved the best results
for 7 test functions (f14, f15, f17, f19, and f21–f23). Compared to
the mGWO, the PGWO attained almost the same results for
functions f16 and f20, which are better than those of the
DGWO and EEGWO. On test function f18, the mGWO and
PGWO obtained the best fitness values. In addition, the

Table 5: Continued.

Key m
GWO DGWO

Best Worst Mean St. dev. Best Worst Mean St. dev.
f21 4 − 10.1530 − 5.0552 − 9.4765 1.7505 − 10.1532 − 9.5340 − 10.0984 1.56E − 01
f22 4 − 10.4027 − 5.0877 − 10.2240 9.70E − 01 − 10.4028 − 9.4206 − 10.2969 2.58E − 01
f23 4 − 10.5360 − 2.4217 − 10.2642 1.4812 − 10.5364 − 10.3753 − 10.5334 2.94E − 02

Table 6: Percentage of problems solved by the GWO and DGWO.

Function
GWO (%) DGWO (%)
Dimension Dimension

10 30 50 100 10 30 50 100
f1 100 100 100 100 100 100 100 100
f2 100 100 100 100 100 100 100 100
f3 100 96 0 0 100 100 100 100
f4 100 100 23 0 100 100 100 100
f5 0 0 0 0 0 0 0 0
f6 80 0 0 0 100 100 80 6
f7 3 0 0 0 50 46 26 33
f8 0 0 0 0 73 46 36 3
f9 60 36 33 9 100 100 100 100
f10 100 100 100 100 100 100 100 100
f11 26 73 86 70 100 100 100 100
f12 73 0 0 0 100 100 100 100
f13 90 0 0 0 100 96 50 0
f14 40 83
f15 43 96
f16 100 100
f17 100 96
f18 100 100
f19 100 90
f20 66 0
f21 0 66
f22 53 80
f23 96 96
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Figure 5: Continued.
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Figure 5: Convergence curves of the GWO and DGWO with m� 10, 30, 50, and 100 on 12 typical test functions. (a) f1. (b) f2. (c) f3. (d) f4.
(e) f6. (f ) f7. (g) f8. (h) f9. (i) f10. (j) f11. (k) f12. (l) f13.
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Table 7: Results obtained by the three GWO variants and DGWO on 23 test problems.

Function m
mGWO PGWO EEGWO DGWO

Mean St. dev. Mean St. dev. Mean St. dev. Mean St. dev.

f1

10 1.39E − 74 6.61E − 74 1.65E − 75 3.98E − 75 1.81E − 245 0.00E − 00 2.36E − 299 0.00E − 00
30 3.90E − 36 8.61E − 36 1.01E − 53 1.14E − 53 3.23E − 201 0.00E − 00 2.38E − 241 0.00E − 00
50 8.64E − 26 9.26E − 26 1.77E − 48 1.78E − 48 5.31E − 192 0.00E − 00 6.27E − 205 0.00E − 00
100 2.40E − 16 1.40E − 16 5.99E − 44 4.77E − 44 2.87E − 182 0.00E − 00 8.19E − 169 0.00E − 00

f2

10 3.49E − 43 7.29E − 43 6.20E − 41 1.83E − 40 1.51E − 123 5.46E − 123 1.45E − 155 7.92E − 155
30 8.16E − 22 4.82E − 22 2.69E − 28 1.53E − 28 2.74E − 102 2.95E − 102 1.39E − 127 7.05E − 127
50 6.72E − 16 5.42E − 16 3.26E − 25 7.98E − 26 6.15E − 97 9.14E − 97 1.80E − 110 9.81E − 110
100 2.12E − 10 9.47E − 11 2.09E − 22 6.37E − 23 7.23E − 92 9.38E − 92 1.62E − 84 8.48E − 84

f3

10 9.97E − 33 2.68E − 32 1.41E − 40 3.29E − 40 1.68E − 244 0.00E − 00 3.24E − 300 0.00E − 00
30 1.82E − 06 7.68E − 06 5.16E − 18 2.34E − 17 1.62E − 201 0.00E − 00 9.45E − 232 0.00E − 00
50 8.38E − 02 2.12E − 01 1.04E − 08 2.32E − 08 1.25E − 190 0.00E − 00 6.52E − 171 0.00E − 00
100 1.16E+ 03 1.90E+ 03 1.37E − 01 1.32E − 01 4.18E − 180 0.00E − 00 1.01E − 19 5.52E − 19

f4

10 1.59E − 25 4.70E − 25 1.24E − 28 3.35E − 28 3.31E − 123 1.29E − 122 1.25E − 130 6.22E − 130
30 1.44E − 09 2.07E − 09 3.11E − 21 2.06E − 21 3.39E − 102 5.25E − 102 3.11E − 88 1.70E − 87
50 9.12E − 06 1.06E − 05 6.59E − 02 3.61E − 01 4.73E − 97 8.96E − 97 8.25E − 78 2.36E − 77
100 1.11E − 00 1.00E − 00 2.21E+ 01 1.40E+ 01 2.96E − 92 2.25E − 92 3.01E − 43 1.65E − 42

f5

10 6.63E − 00 6.38E − 01 4.62E − 01 1.39E − 00 8.91E − 00 5.51E − 02 3.09E − 00 2.31E − 00
30 2.68E+ 01 7.19E − 01 1.18E − 01 2.73E − 00 2.89E+ 01 2.35E − 02 2.85E − 01 1.28E − 01
50 4.72E + 01 6.63E − 01 2.96E+ 01 7.25E − 00 4.89E+ 01 1.66E − 02 4.84E+ 01 7.32E − 02
100 9.79E+ 01 4.48E − 01 8.67E+ 01 2.19E+ 01 9.89E+ 01 1.79E − 02 9.80E+ 01 9.99E − 03

f6

10 5.57E − 06 2.37E − 06 0.00E − 00 0.00E − 00 1.31E − 00 2.45E − 01 5.84E − 07 8.37E − 07
30 5.97E − 01 2.94E − 01 0.00E − 00 0.00E − 00 6.11E − 00 3.04E − 01 9.70E − 06 4.71E − 06
50 2.57E − 00 6.05E − 01 0.00E − 00 0.00E − 00 1.07E+ 01 6.03E − 01 5.16E − 05 4.87E − 05
100 9.53E − 00 1.05E − 00 0.00E − 00 0.00E − 00 2.31E+ 01 5.84E − 01 3.28E − 04 2.40E − 05

f7

10 4.48E − 04 3.02E − 04 7.13E − 04 5.41E − 04 6.13E − 05 4.72E − 05 1.24E − 04 9.64E − 05
30 1.31E − 03 7.25E − 04 2.05E − 03 9.42E − 04 7.70E − 05 7.05E − 05 1.66E − 04 1.40E − 04
50 2.19E − 03 1.13E − 03 3.59E − 03 1.68E − 03 5.67E − 05 6.06E − 05 2.31E − 04 2.28E − 04
100 4.75E − 03 1.88E − 03 6.93E − 03 2.34E − 03 7.88E − 05 5.60E − 05 2.62E − 04 3.68E − 04

f8

10 − 2.60E+ 03 3.16E+ 02 − 2.92E+ 03 3.05E+ 02 − 1.18E+ 03 2.35E+ 02 − 3.85E+ 03 5.86E+ 02
30 − 5.51 + 03E 1.47E+ 03 − 7.79E+ 03 8.40E+ 02 − 2.11E+ 03 4.82E+ 02 − 1.06E+ 03 2.43E+ 03
50 − 8.51E+ 03 1.47E+ 03 − 1.28E+ 04 1.38E+ 03 − 2.85E+ 03 5.25E+ 02 − 1.59E+ 04 3.94E+ 03
100 − 1.57E+ 04 2.45E+ 03 − 2.49E+ 04 1.74E+ 03 − 4.13E+ 03 9.09E+ 02 − 2.28E+ 04 5.58E+ 03

f9

10 9.06E − 01 3.49E − 00 1.00E+ 01 8.23E − 00 0.00E − 00 0.00E − 00 0.00E − 00 0.00E − 00
30 7.58E − 15 2.47E − 14 1.71E+ 02 4.31E+ 01 0.00E − 00 0.00E − 00 0.00E − 00 0.00E − 00
50 3.40E − 02 1.86E − 01 3.26E+ 02 5.89E+ 01 0.00E − 00 0.00E − 00 0.00E − 00 0.00E − 00
100 5.35E − 01 1.71E − 00 6.95E+ 02 9.52E+ 01 0.00E − 00 0.00E − 00 0.00E − 00 0.00E − 00

f10

10 4.56E − 15 6.49E − 16 4.20E − 15 9.01E − 16 8.88E − 16 0.00E − 00 8.88E − 16 0.00E − 00
30 2.32E − 14 4.27E − 15 4.56E − 15 6.49E − 16 8.88E − 16 0.00E − 00 8.88E − 16 0.00E − 00
50 1.45E − 13 5.01E − 14 4.44E − 15 0.00E − 00 8.88E − 16 0.00E − 00 8.88E − 16 0.00E − 00
100 1.45E − 09 7.57E − 10 1.40E+ 01 8.04E − 00 8.88E − 16 0.00E − 00 8.88E − 16 0.00E − 00

f11

10 1.31E − 02 2.19E − 02 6.67E − 02 9.37E − 02 0.00E − 00 0.00E − 00 0.00E − 00 0.00E − 00
30 2.82E − 03 7.94E − 03 1.48E − 02 3.65E − 02 0.00E − 00 0.00E − 00 0.00E − 00 0.00E − 00
50 4.56E − 04 2.50E − 03 1.19E − 02 4.22E − 02 0.00E − 00 0.00E − 00 0.00E − 00 0.00E − 00
100 1.32E − 03 5.02E − 03 0.00E − 00 0.00E − 00 0.00E − 00 0.00E − 00 0.00E − 00 0.00E − 00

f12

10 4.63E − 03 9.95E − 03 4.91E − 32 2.04E − 33 5.36E − 01 1.73E − 01 3.09E − 07 3.33E − 07
30 4.89E − 02 2.87E − 02 1.65E − 32 1.70E − 33 5.57E − 01 2.13E − 01 1.79E − 06 2.19E − 06
50 9.40E − 02 3.20E − 02 9.76E − 33 6.89E − 34 1.03E − 00 7.70E − 02 3.12E − 06 3.31E − 06
100 2.68E − 01 5.55E − 02 1.04E − 03 5.68E − 03 1.11E − 00 4.21E − 02 1.61E − 05 1.43E − 05

f13

10 1.24E − 02 3.23E − 02 3.25E − 03 1.78E − 02 7.83E − 01 1.17E − 01 2.09E − 06 2.46E − 06
30 5.23E − 01 2.00E − 01 2.33E − 02 5.10E − 02 2.99E − 00 3.12E − 02 2.49E − 05 2.75E − 05
50 1.79E − 00 2.58E − 00 7.32E − 02 9.48E − 02 4.99E − 00 1.61E − 03 1.12E − 04 8.81E − 05
100 6.21E − 00 4.17E − 01 1.61E − 01 2.40E − 01 9.99E − 00 2.12E − 03 9.13E − 04 5.72E − 04

f14 2 4.3347 3.70E+ 00 4.3244 4.35E+ 00 10.2709 2.74E+ 00 2.9434 4.43E+ 00
f15 4 0.0032 6.86E − 03 0.0005 4.16E − 04 0.0049 2.97E − 03 0.0003 2.31E − 04
f16 2 − 1.0316 1.02E − 07 − 1.0316 1.42E − 08 − 0.9661 5.57E − 02 − 1.0303 5.17E − 03
f17 2 0.3979 1.18E − 06 0.3979 5.87E − 12 1.7185 1.23E+ 00 0.3980 2.11E − 04
f18 2 3.0000 5.43E − 05 3.0000 4.61E − 07 20.0084 2.05E+ 01 3.0001 2.41E − 04
f19 3 − 3.8619 2.06E − 03 − 3.8628 8.57E − 08 − 3.2895 3.11E − 01 − 3.8590 5.80E − 04
f20 6 − 3.2436 7.74E − 02 − 3.2744 5.92E − 02 − 1.5884 4.50E − 01 − 3.1725 5.27E − 02
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EEGWO algorithm exhibits poor optimization performance
on functions f14 to f23.

From Table 7, we can see that the EEGWO provides very
competitive results compared to the DGWO, and it is
challenging to determine which algorithm is better.
0erefore, it is necessary to conduct an appropriate statis-
tical analysis to see whether the obtained results of the
employed algorithms are significant at a given confidence
interval. In this paper, the sign test is adopted, which is
obtained from references [11, 46]. 0e statistical results are
recorded in Table 8. It should be noted that these statistical
analysis results are conducted based on the average results of
the 20 independently obtained best results. As seen from
Table 8, the DGWO is significantly better than the GWO,
mGWO, and PGWO on unimodal and multimodal test
functions at a significance level of 0.05 but shows a non-
significant performance difference on 10 fixed-dimension
multimodal benchmark functions. In addition, when
compared to the EEGWO, the DGWO provides a non-
significant performance difference on 13 unimodal and
multimodal test functions but obtains significantly better
results on 10 fixed-dimension multimodal benchmark
functions at a significance level of 0.1.

0e percentages of problems solved by the mGWO,
PGWO, and EEGWO are recorded in Table 9. Compared to
the mGWO, the DGWO obtained the same percentage on
six functions (i.e., f1, f2, f5, f16, f18, and f23) and a higher
percentage on thirteen functions (i.e., f3-f4, f6–f9, f11–f13, f15,
and f21-f22), while the DGWO showed a lower percentage
on three functions (i.e., f17, f19, and f20). Compared to the
PGWO, the DGWO provided the same and higher per-
centage on five functions (i.e., f1, f2, f6, f11, and f18) and
eleven functions (i.e., f3-f4, f7–f12, f14-f15, and f23), re-
spectively; on the contrary, the PGWO showed a higher
percentage than the DGWO on six functions (i.e., f5, f17, f19,
and f20–f22). For function f13, the DGWO showed a higher
percentage than the PGWO when the dimensions were 10,
30, and 50 but obtained a lower percentage when the di-
mension was 100. Compared to the EEGWO, the DGWO
achieved the same and higher percentage on nine functions
(i.e., f1–f5, f9–f11, and f20) and twelve functions (i.e., f8, f12-
f13, f14–f19, and f21–f23), respectively. For function f7,
however, the EEGWO obtained a higher percentage than
the DGWO.

To investigate the convergence speed of the three
modified versions of the GWO mentioned in this paper and
the proposed DGWO algorithm for low-dimensional and
high-dimensional problems, Figure 6 plots the convergence
curves of 10 typical functions (f1–f4, f6-f7, f9-f10, and f12-f13)
with dimensions of 30 and 100. For functions f1–f4, f7, and f9,
the DGWO and EEGWO achieve the fastest convergence

speed, whereas the EEGWO achieves a faster convergence
speed for high-dimensional functions; however, the DGWO
attains a better convergence speed for low-dimensional
problems. 0e PGWO has a fast convergence speed for
functions f6 and f12, and the DGWO ranked second. 0e
DGWO exhibits the fastest convergence speed for functions
f10 and f13, and the EEGWO shows the same convergence
speed for function f10. 0ese analysis results verify that the
proposed DGWO achieves excellent convergence perfor-
mance for both low-dimensional problems and high-di-
mensional problems.

In addition to the abovementioned GWO versions, an
interesting GWO variant named “GWO-EPD” [47] has
successfully caught our attention because it exhibits some
similarities and differences compared with our proposed
DGWO algorithm. 0e GWO-EPD algorithm has some
features that are similar to those of the DGWO algorithm,
such as dynamically removing some inferior solutions and
repositioning them by adopting alpha, beta, and delta
wolves. However, the differences between those two algo-
rithms are also easy to distinguish. For example, in the
DGWO, some variables of the current best solution are
removed and repositioned by using probability that was
modeled as equation (12), while in GWO-EPD, half of the
worst search agents are eliminated and reinitialized with
equal probability. In addition, in the DGWO, the variables
are repositioned by employing the modified position-
updated equation (see equation (26)); however, in GWO-
EDP, the mechanism of EDP is applied in the GWO al-
gorithm to randomly reinitialize its worst search agents. To
further verify the scalability of the DGWO, we compared it
with GWO-EPD on 13 test functions (i.e., f1–f13), and the
results are recorded in Table 1, with dimensions from 30 to
100. All of the DGWO parameters were kept the same as
those defined in the above section. 0e parameter values of
GWO-EPD were kept the same as in its original papers. In
addition, the maximum number of iterations and population
size were set as 500 and 30, respectively, and 30 independent
runs were executed for each test function. 0e experimental
results are presented in Table 10.

As seen from Table 10, for m� 30, compared to the
GWO-EPD algorithm, the DGWO provided better results
on eleven functions (i.e., f1–f4, f6-f7, and f9–f13). Similarly, for
m� 100, when compared to GWO-EPD, the DGWO also
offered better results on eleven functions (i.e., f1–f4, f6-f7, and
f9–f13). However, better results for f5 and f8 were obtained by
the GWO-EPD algorithm. In summary, the increase in
dimensions has little impact on the performance of the
DGWO algorithm. Even when suffering from large-scale
optimization problems, the DGWO still worked well and
obtained promising results.

Table 7: Continued.

Function m
mGWO PGWO EEGWO DGWO

Mean St. dev. Mean St. dev. Mean St. dev. Mean St. dev.
f21 4 − 8.5891 2.69E+ 00 − 8.9728 2.18E+ 00 − 0.6512 2.36E − 01 − 10.0984 1.56E − 01
f22 4 − 10.2238 9.70E − 01 − 10.0513 1.34E+ 00 − 0.6848 2.16E − 01 − 10.2969 2.58E − 01
f23 4 − 10.5334 1.79E − 03 − 9.9085 1.96E+ 01 − 0.9298 2.72E − 01 − 10.5334 2.94E − 02
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Table 9: Percentage of problems solved by the mGWO, PGWO, and EEGWO.

Function
mGWO (%) PGWO (%) EEGWO (%)
Dimension Dimension Dimension

10 30 50 100 10 30 50 100 10 30 50 100
f1 100 100 100 100 100 100 100 100 100 100 100 100
f2 100 100 100 100 100 100 100 100 100 100 100 100
f3 100 100 6 0 100 100 100 0 100 100 100 100
f4 100 100 100 0 100 100 96 0 100 100 100 100
f5 0 0 0 0 6 0 0 0 0 0 0 0
f6 100 0 0 0 100 100 100 100 0 0 0 0
f7 13 0 0 0 0 0 0 0 83 70 73 70
f8 0 0 0 0 0 0 0 0 0 0 0 0
f9 90 96 96 83 6 0 0 0 100 100 100 100
f10 100 100 100 100 100 100 100 10 100 100 100 100
f11 53 86 96 93 33 80 90 100 100 100 100 100
f12 80 0 0 0 100 100 100 96 0 0 0 0
f13 86 0 0 0 96 66 30 13 0 0 0 0
f14 23 43 0
f15 16 66 0
f16 100 100 0
f17 100 100 0
f18 100 100 0
f19 100 100 0
f20 46 60 0
f21 0 76 0
f22 26 93 0
f23 96 90 0
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Figure 6: Continued.
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Figure 6: Continued.
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4.6. Performance Comparison with Other State-of-the-Art
Algorithms (m� 30). In this section, we compared the
DGWO to seven recently proposed state-of-the-art pop-
ulation-based optimization methods, such as the autono-
mous particles groups for particle swarm optimization
(AGPSO) [48], the improved PSO with time-varying ac-
celerator coefficients (IPSO) [49], the improved PSO algo-
rithm based on asymmetric time-varying acceleration
coefficients (MPSO) [50], the time-varying acceleration
coefficients particle swarm optimization (TACPSO) [51], the
hybrid differential evolution with biogeography-based op-
timization (DEBBO) [52], the hybrid whale optimization
algorithm with simulated annealing (WOA-SA) [53], and
the salp swarm algorithm (SSA) [54]. All DGWO parameters
were kept the same as those listed in Section 4.1. 0e pa-
rameter settings of the seven algorithms are listed as follows:
the population size is 30, the maximum number of iterations
is 500, and the other algorithm parameters are the same as in
their original papers.

To compare the optimization performance of the seven
algorithms, the results are achieved over 30 independent
runs. 0e best (denoted by “Best”), average (denoted by
“Mean”), and standard deviation (denoted by “St. dev.”) of
the best solution in the last iteration are collected in Ta-
ble 11. 0e best obtained results are highlighted in boldface
type.

Table 11 shows the results for 23 test functions. As
presented in this table, the DGWO had the best results for
three of seven unimodal benchmark problems (i.e., f3, f4, and
f7). For function f6, the DGWO performed slightly worse
than the SSA and obtained the second best result. For
functions f1 and f2, theWOA-SA achieved the global optimal
values (0), and the DGWOprovided solutions near 0. For the
multimodal benchmark functions f8–f13, the DGWO pre-
sented the best results, with the exception of functions f12
and f13. For functions f8, f12, and f13, the DEBBO obtained
almost the same results as the DGWO. Compared to the
WOA-SA, the DGWOobtained similar and worse results for
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Figure 6: Convergence curves of the four different GWO variants withm� 30 and 100 on 10 typical test functions. (a) f1. (b) f2. (c) f3. (d) f4.
(e) f6. (f ) f7. (g) f9. (h) f10. (i) f12. (j) f13.

Table 10: Mean and St. dev. results of the DGWO and GWO-EPD for thirteen functions (m� 30 and 100).

Function GWO-EPD with m� 30 DGWO with m� 30 GWO-EPD with m� 100 DGWO with m� 100
Mean± St. dev. Mean± St. dev. Mean± St. dev. Mean± St. dev.

f1 6.75E − 25± 1.16E − 24 2.36E − 299 ± 0.00E + 00 3.64E − 01± 5.28E − 01 8.19E − 165 ± 0.00E+ 00
f2 4.52E − 15± 3.98E − 15 1.45E − 155 ± 7.92E − 155 3.00E − 02± 3.04E − 02 1.62E − 84 ± 8.48E − 84
f3 2.89E − 04± 6.38E − 04 3.24E − 300 ± 0.00E + 00 2.50E+ 00± 1.99E+ 00 1.01E − 19 ± 5.52E − 19
f4 5.41E − 02± 5.16E − 02 1.25E − 130 ± 6.22E − 130 4.87E − 02± 4.92E − 02 3.01E − 43 ± 1.65E − 42
f5 2.02E − 01 ± 3.50E − 01 3.10E+ 00± 2.85E+ 00 2.10E+ 01 ± 4.34E + 01 9.80E+ 01± 9.99E − 03
f6 2.34E − 01± 1.93E − 01 5.84E − 07 ± 8.37E − 07 2.24E+ 02± 1.29E+ 01 3.28E − 04 ± 2.40E − 04
f7 3.87E − 03± 2.59E − 03 1.24E − 04 ± 9.64E − 05 2.31E − 02± 2.20E − 02 2.62E − 04 ± 3.68E − 04
f8 − 1.26E+ 04± 1.63E − 01 − 3.85E+ 03± 5.86E+ 02 − 4.19E+ 05 ± 1.50E + 01 − 2.28E+ 04± 5.58E+ 03
f9 1.57E − 08± 8.57E − 08 0.00E+ 00± 0.00E + 00 2.80E − 01± 4.20E − 01 0.00E + 00± 0.00E + 00
f10 2.46E − 11± 1.32E − 10 8.88E − 16 ± 0.00E + 00 1.33E − 02± 1.33E − 02 8.88E − 16 ± 0.00E + 00
f11 1.53E − 03± 5.05E − 03 0.00E+ 00± 0.00E + 00 3.22E − 02± 1.23E − 01 0.00E + 00± 0.00E + 00
f12 3.45E − 02± 1.35E − 02 3.09E − 07 ± 3.33E − 07 7.70E − 01± 7.58E − 02 1.61E − 05 ± 1.43E − 05
f13 3.20E − 04± 1.94E − 04 9.13E − 04 ± 5.72E − 04 7.07E − 02± 2.07E − 01 9.13E − 04 ± 5.72E − 04
0e bold values in GWO-EPDwith m� 30 are losses ( − ): 10, wins ( + ): 2, approximations (� ): 1, and detected differences (α): 0.05.0e bold values in GWO-
EPD with m� 100 are losses (− ): 11, wins ( + ): 2, approximations (� ): 0, and detected differences (α): 0.05.
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Table 11: Comparison results of the DGWO and other seven algorithms on 23 test functions (m� 30).

Test function AGPSO IPSO MPSO TACPSO DEBBO WOA-SA SSA DGWO

f1

Best 1.04E − 03 1.75E − 04 9.29E − 03 8.09E − 04 1.04E − 05 0.00E+ 00 3.49E − 08 1.63E − 287
Mean 2.42E − 01 1.12E − 01 1.00E+ 03 2.35E − 01 3.48E − 05 0.00E+ 00 2.03E − 07 2.38E − 241
St. dev. 1.05E+ 00 4.89E − 01 3.05E+ 03 8.70E − 01 1.93E − 05 0.00E+ 00 2.52E − 07 0.00E+ 00

f2

Best 1.78E − 02 3.78E − 02 1.00E+ 01 6.65E − 02 2.11E − 04 0.00E+ 00 2.78E − 01 3.74E − 148
Mean 5.99E+ 00 6.04E − 00 3.84E+ 01 8.35E − 01 3.63E − 04 0.00E+ 00 2.13E+ 00 1.39E − 127
St. dev. 7.61E+ 00 7.69E − 00 1.99E+ 01 1.84E+ 00 9.71E − 05 0.00E+ 00 1.56E+ 00 7.05E − 127

f3

Best 2.64E+ 02 6.23E+ 02 1.09E+ 03 1.66E+ 02 6.45E+ 03 1.70E − 02 3.81E+ 02 1.67E − 260
Mean 4.26E+ 03 6.65E+ 03 1.95E+ 04 1.09E+ 03 1.59E+ 04 5.46E − 01 1.59E+ 03 9.45E − 232
St. dev. 4.97E+ 03 5.40E+ 03 9.13E+ 03 1.47E+ 03 3.40E+ 03 3.06E − 01 1.02E+ 03 0.00E+ 00

f4

Best 7.93E+ 00 4.34E+ 00 7.86E+ 00 2.78E+ 00 4.25E+ 00 2.53E − 02 6.69E+ 00 1.30E − 106
Mean 1.63E+ 01 1.03E+ 01 2.00E+ 01 9.64E+ 00 6.76E+ 00 7.82E − 01 1.09E+ 01 3.11E − 88
St. dev. 4.77E+ 00 3.58E+ 00 5.87E+ 00 3.44E+ 00 1.64E+ 00 4.02E − 01 3.71E+ 00 1.70E − 87

f5

Best 2.47E+ 01 7.40E+ 01 7.83E+ 01 2.91E+ 01 2.53E+ 01 0.00E+ 00 4.51E+ 00 2.82E+ 01
Mean 3.29E+ 02 3.45E+ 03 1.26E+ 04 3.20E+ 03 5.09E+ 01 3.03E+ 01 1.49E+ 02 2.85E+ 01
St. dev. 7.38E+ 02 1.64E+ 04 3.09E+ 04 1.64E+ 04 3.13E+ 01 2.82E+ 01 3.48E+ 02 1.28E − 01

f6

Best 1.51E − 03 1.64E − 04 3.74E − 03 4.87E − 04 1.09E − 05 3.39E − 04 3.72E − 08 1.48E − 06
Mean 7.83E − 02 7.14E − 02 3.30E+ 02 1.73E − 01 3.32E − 05 8.44E − 04 2.09E − 07 9.70E − 06
St. dev. 9.30E − 02 2.78E − 01 1.81E+ 03 3.42E − 01 1.93E − 05 3.07E − 04 3.00E − 07 4.71E − 06

f7

Best 4.63E − 02 3.38E − 02 3.89E − 02 4.32E − 02 2.04E − 02 1.50E − 02 4.64E − 02 2.88E − 05
Mean 1.14E − 01 7.41E − 02 1.25E+ 00 8.62E − 02 4.22E − 02 4.93E − 02 1.78E − 01 1.66E − 04
St. dev. 5.01E − 02 3.05E − 02 2.89E+ 00 3.67E − 02 1.41E − 02 2.39E − 02 7.96E − 02 1.40E − 04

f8

Best − 7.83E+ 03 − 7.77E+ 03 − 7.44E+ 03 − 7.20E+ 03 − 1.22E+ 04 − 8.86E+ 03 − 6.31E+ 03 − 1.24E+ 04
Mean − 9.30E+ 03 − 9.23E+ 03 − 8.85E+ 03 − 8.52E+ 03 − 1.25E+ 04 − 1.03E+ 04 − 7.36E+ 03 − 1.26E+ 04
St. dev. 7.09E+ 02 7.04E+ 02 7.51E+ 02 7.72E+ 02 1.09E+ 02 8.47E+ 02 6.76E+ 02 2.43E+ 03

f9

Best 4.38E+ 01 3.68E+ 01 7.76E+ 01 2.81E+ 01 2.36E+ 01 0.00E+ 00 2.09E+ 01 0.00E+ 00
Mean 8.39E+ 01 9.73E+ 01 1.34E+ 02 7.11E+ 01 3.27E+ 01 0.00E+ 00 5.13E+ 01 0.00E+ 00
St. dev. 2.65E+ 01 2.84E+ 01 3.37E+ 01 2.27E+ 01 5.66E+ 00 0.00E+ 00 1.68E+ 01 0.00E+ 00

f10

Best 2.26E+ 00 6.08E − 03 6.78E − 01 9.33E − 01 7.68E − 04 8.88E − 16 1.16E+ 00 8.88E − 16
Mean 3.69E+ 00 2.23E+ 00 7.37E+ 00 2.34E+ 00 1.34E − 03 8.88E − 16 2.78E+ 00 8.88E − 16
St. dev. 8.02E − 01 9.89E − 01 6.23E+ 00 9.60E − 01 5.11E − 04 0.00E+ 00 7.52E − 01 0.00E+ 00

f11

Best 1.00E − 02 2.46E − 03 1.16E − 02 2.84E − 03 1.53E − 05 0.00E+ 00 9.26E − 04 0.00E+ 00
Mean 1.50E − 01 9.81E − 02 6.31E+ 00 1.12E − 01 1.20E − 03 0.00E+ 00 1.47E − 02 0.00E+ 00
St. dev. 1.22E − 01 1.26E − 01 2.29E+ 01 1.74E − 01 2.76E − 03 0.00E+ 00 1.34E − 02 0.00E+ 00

f12

Best 9.88E − 01 1.09E − 01 5.83E − 01 6.81E − 04 1.22E − 06 2.04E − 05 2.81E+ 00 4.04E − 06
Mean 4.18E − 00 1.47E+ 00 3.59E+ 00 1.92E+ 00 9.46E − 06 6.36E − 05 6.75E+ 00 1.61E − 05
St. dev. 2.48E − 00 1.28E+ 00 1.77E+ 00 1.55E+ 00 9.45E − 06 5.37E − 05 3.10E+ 00 1.43E − 05

f13

Best 1.30E+ 00 1.89E − 03 2.19E − 01 3.10E − 02 8.50E − 06 1.35E − 32 1.92E − 01 1.86E − 04
Mean 9.78E+ 00 4.00E+ 00 9.39E+ 00 4.62E+ 00 4.46E − 05 1.35E − 32 1.63E+ 01 9.13E − 04
St. dev. 7.45E+ 00 6.42E+ 00 6.58E+ 00 4.26E+ 00 2.39E − 05 5.57E − 48 1.43E+ 01 5.72E − 04

f14

Best 0.9980 0.9980 0.9980 0.9980 0.9980 0.9980 0.9980 0.9980
Mean 0.9980 0.9980 0.9980 0.9980 1.0900 7.4300 1.3900 2.9400
St. dev. 1.70E − 16 1.60E − 16 7.14E − 17 2.30E − 16 3.03E − 01 5.13E+ 00 8.86E − 01 4.43E+ 00

f15

Best 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0004 0.0003
Mean 0.0021 0.0013 0.0043 0.0012 0.0020 0.0032 0.0015 0.0003
St. dev. 4.98E − 03 3.63E − 03 7.34E − 03 3.64E − 03 5.00E − 03 1.19E − 02 3.57E − 03 2.31E − 04

f16

Best − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316
Mean − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316
St. dev. 6.12E − 16 6.05E − 16 6.25E − 16 5.83E − 16 6.65E − 16 1.80E − 10 4.87E − 14 5.17E − 03

f17

Best 0.3979 0.3979 3.9789 0.3979 0.3979 0.3979 0.3979 0.3979
Mean 0.3989 0.3979 3.9789 0.3979 0.3979 0.3979 0.3979 0.3980
St. dev. 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00 5.82E − 06 7.11E − 14 2.11E − 04

f18

Best 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000
Mean 3.0000 3.0000 3.0000 3.0000 3.0000 4.8000 3.0000 3.0000
St. dev. 2.27E − 15 2.46E − 15 2.48E − 15 1.59E − 15 1.36E − 15 6.85E+ 01 2.64E − 13 2.41E − 04

f19

Best − 3.8629 − 3.8628 − 3.8628 − 3.8628 − 3.8628 − 3.8628 − 3.8628 − 3.8626
Mean − 3.8628 − 3.8628 − 3.8628 − 3.8628 − 3.8628 − 3.8628 − 3.8628 − 3.8590
St. dev. 2.61E − 15 2.61E − 15 2.64E − 15 2.63E − 15 2.71E − 15 4.17E − 09 1.23E − 10 5.87E − 03

f20

Best − 3.3220 − 3.3220 − 3.3220 − 3.3220 − 3.3220 − 3.3220 − 3.3220 − 3.2959
Mean − 3.2643 3.2600 − 3.2691 − 3.2467 − 3.2903 − 3.2903 − 3.2136 − 3.1725
St. dev. 6.38E − 02 6.41E − 02 6.78E − 02 5.83E − 02 5.35E − 02 5.35E − 02 5.03E − 02 5.27E − 02
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three functions (f9–f11) and one function (f13), respectively.
Table 11 also shows the results for 10 fixed-dimension
multimodal benchmark functions (f14–f23). As shown in
Table 11, the results of the AGPSO, IPSO, MPSO, and
TACPSO are equal for four functions (f14, f16, f18, and f20)
and better than those of the DGWO. However, the DGWO
achieved the best results of all algorithms for six fixed-di-
mension unimodal benchmark problems (i.e., f15, f17, f19, and
f21–f23). 0e WOA-SA and SSA obtained similar results for
function f20 and are better than the other algorithms.

0e percentages of problems solved by the seven state-
of-the-art algorithms are listed in Table 12. As seen from this
table, the AGPSO, IPSO,MPSO, and TACPSO have all failed
to solve thirteen test functions (i.e., f1–f13) but completely
solved all five test functions (i.e., f14 and f16–f19). Of the
thirteen functions f1–f13, nine functions are completely
solved by the DGWO, three functions are fully solved by the
DEBBO, six functions are fully solved by the WOA-SA, and
two functions are fully solved by the SSA. Of the ten
functions f14–f23, four functions are completely solved by the
DEBBO and SSA, three functions are fully solved by the

WOA-SA, and two functions are fully solved by the DGWO.
However, for functions f15 and f22-f23, the DGWO has
achieved the highest percentage.

Figure 7 plots the convergence curves of the average
objective function values of the algorithms for some typical
test problems, where f1, f3, f4, and f7 are unimodal functions,
f9, f10, and f11 are multimodal benchmark functions, and f15,
f21, and f23 are fixed-dimension multimodal benchmark
functions. As observed from these curves, the DGWO has
the best convergence rates for all 10 classic benchmark
functions. Note that unimodal test problems are suitable for
benchmarking the convergence ability of algorithms since
they have only one global minimum and do not have local
minima in the search space [48]. Since multimodal and
fixed-dimension multimodal benchmark functions have
more than one local optimal solution, they are suitable for
benchmarking the capability of algorithms in avoiding local
minima [48]. As indicated by the results, the DGWO per-
forms better than the seven compared algorithms on both
the unimodal and multimodal benchmark functions. 0e
DGWO achieves superior results because the candidate

Table 11: Continued.

Test function AGPSO IPSO MPSO TACPSO DEBBO WOA-SA SSA DGWO

f21

Best − 10.1532 − 10.1532 − 10.1532 − 10.1532 − 10.1532 − 10.1532 − 10.1532 − 10.1532
Mean − 6.1332 − 6.6316 − 6.3807 − 5.8073 − 8.3101 − 5.2251 − 6.8967 − 10.0984
St. dev. 3.06E+ 00 3.06E+ 00 3.07E+ 00 3.27E+ 00 2.94E+ 00 9.31E − 01 3.42E+ 00 1.56E − 01

f22

Best − 10.4029 − 10.4029 − 10.4029 − 10.4029 − 10.4029 − 5.0877 − 10.4029 − 10.4029
Mean − 7.5123 − 8.9999 − 8.4546 − 8.3648 − 9.2703 − 5.0877 − 9.0951 − 10.2969
St. dev. 3.26E+ 00 2.63E+ 00 2.88E+ 00 3.21E+ 00 2.59E+ 00 3.18E − 07 2.70E+ 00 2.58E − 01

f23

Best − 10.5364 − 10.5364 − 10.5364 − 10.5364 − 10.5364 − 5.1285 − 10.5364 − 10.5364
Mean − 9.0557 − 9.8342 − 9.1913 − 8.4994 − 10.0064 − 5.1285 − 8.9619 − 10.5307
St. dev. 2.79E+ 00 2.15E+ 00 2.78E+ 00 3.22E+ 00 2.00E+ 00 1.86E − 12 2.96E+ 00 2.94E − 02

Table 12: Percentage of problems solved by the GWO and DGWO.

Function AGPSO (%) IPSO (%) MPSO (%) TACPSO (%) DEBBO (%) WOA-SA (%) SSA (%) DGWO (%)
f1 0 0 0 0 100 100 100 100
f2 0 0 0 0 0 100 0 100
f3 0 0 0 0 0 0 0 100
f4 0 0 0 0 0 0 0 100
f5 0 0 0 0 0 3 0 0
f6 0 0 0 0 100 0 100 100
f7 0 0 0 0 0 0 0 46
f8 0 0 0 0 60 0 0 46
f9 0 0 0 0 0 100 0 100
f10 0 0 0 0 0 100 0 100
f11 0 0 0 0 50 100 0 100
f12 0 0 0 0 100 80 0 100
f13 0 0 0 0 96 100 0 96
f14 100 100 100 100 90 20 80 83
f15 10 53 3 70 10 60 0 96
f16 100 100 100 100 100 100 100 100
f17 100 100 100 100 100 100 100 96
f18 100 100 100 100 100 90 100 100
f19 100 100 100 100 100 100 100 90
f20 53 50 60 36 70 70 16 0
f21 33 40 36 30 70 3 50 66
f22 53 76 66 70 80 0 80 80
f23 76 90 80 70 90 0 76 96
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Figure 7: Continued.
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particles have diversity in the population and the balance
between exploration and exploitation during the iteration is
achieved by the strategies of the modified position-updated
equation (i.e., equation (26)) and nonlinear control pa-
rameter (i.e., equation (27)).

To further investigate the optimization performance of
the DGWO on some standard and complex benchmark
problems, we compared it with the TACPSO, IPSO, and
GWO on a CEC2014 benchmark test suite with the di-
mension 30.0e parameter settings of the DGWO and other
selected algorithms were the same as mentioned above. 0e
maximum number of iterations for the DGWO was 5×104,
and for each problem, 20 independent runs were imple-
mented. 0e experiment results are shown in Table 13.

From Table 13, it can be seen that, of the unimodal test
functions (f1–f3), the proposed DGWO achieves the best
performance on f1 and f2. Of the 13 multimodal functions
(f4–f16), the DGWO shows better results on 11 benchmark
test functions and similar results on two test functions (i.e.,
f13 and f16). Of the 6 hybrid functions (f17–f22), the DGWO

gives the best results on four functions (f17, f19, f21, and f22),
while it becomes the second best algorithm for function f18.
Of the 8 composition functions (f23–f30), the proposed
DGWO gives the best results on all test functions except for
function f26 but provides the worst result on function f26.

From the statistical analysis listed in Table 13, the
DGWO performs better than the TACPSO at a significance
level of 0.05 and better than the IPSO and GWO at a sig-
nificance level of 0.1.

4.7. Experiment onReal-World Engineering Problems. In this
section, several classic real-world engineering optimization
problems were selected to validate the practical optimization
performance of our proposed algorithm. 0e DGWO and
GWO methods were applied to solve three well-known
constrained engineering design problems, including Him-
melblau’s problem, the gear train design, and the pressure
vessel design. It is noted that the penalty function methods
were employed to address the constrained optimization
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Figure 7: Convergence curves of the algorithms on the 10 classic benchmark functions. (a) f1. (b) f3. (c) f4. (d) f7. (e) f9. (f ) f10. (g) f11. (h) f15.
(i) f21. (j) f23.
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problems [55]. DGWO and GWOparameters for these three
real-world engineering optimization applications were
provided as follows: the population size was 30, the maxi-
mum number of iterations was 1000, and each problem was
run independently 30 times.

4.7.1. Himmelblau’s Nonlinear Optimization Problem.
Himmelblau’s problem is a well-known benchmark non-
linear constrained optimization problem that was developed
by Himmelblau [56]. 0is type of optimization is performed
to find the decision vector Y � [y1, y2, y3, y4, y5]. To obtain
the minimize function f, the objective function f is modeled as

minimize f(Y) � 5.3578547y2
3 + 0.8356891y1y5

+ 37.293239y1 − 40792.141

s.t. 0≤g1(Y)≤ 92

90≤g2(Y)≤ 110

20≤g3(Y)≤ 25,

(28)

where
g1(Y) � 85.334407 + 0.0056858y2y5 + 0.0006262y1y4

− 0.0022053y3y5,

g2(Y) � 80.51249 + 0.0071317y2y5 + 0.0029955y1y2

− 0.0021813y2
3,

g3(Y) � 9.300961 + 0.0047026y3y5 + 0.0012547y1y3

+ 0.0019085y3y4,

78≤y1 ≤ 102, 33≤y2 ≤ 45, 27≤y3, y4, y5 ≤ 45.

(29)

Several researchers have employed different algorithms
to solve this problem, such as the generalized reduced
gradient (GRG) [56], the genetic algorithm (GA) [57], GA
solution based on a global reference (GA-G) [58], and GA
solution based on a local reference (GA-L) [58]. Table 14
illustrates the results of the best run obtained by the DGWO
and the previously mentioned methods. Table 14 reveals that
the results achieved by employing the DGWO algorithm are
better than those of the previously reported best feasible

Table 13: Comparison between the DGWO and other algorithms on CEC2014 benchmark functions.

Function TACPSO IPSO GWO DGWO
Mean± St. dev. Mean± St. dev. Mean± St. dev. Mean± St. dev.

f1 1.30E+ 08± 9.99E+ 07 7.75E+ 07± 2.13E+ 07 8.59E+ 07± 6.67E+ 07 5.79E+ 07± 2.74E+ 07
f2 1.64E+ 10± 1.10E+ 10 2.55E+ 09± 2.69E+ 09 2.31E+ 09± 2.32E+ 09 2.18E+ 09± 2.02E±09
f3 5.18E+ 04± 2.89E+ 04 8.77E+ 03± 7.99E+ 03 3.39E+ 04± 8.81E+ 03 3.56E+ 04± 9.79E+ 03
f4 1.98E+ 03± 1.49E+ 03 6.64E+ 02± 8.69E+ 01 6.55E+ 02± 1.07E+ 02 6.63E+ 02± 1.17E+ 02
f5 5.21E+ 02± 1.91E − 01 5.20E+ 02± 2.83E − 01 5.21E+ 02± 5.65E − 02 5.20E+ 02± 5.74E − 02
f6 6.24E+ 02± 2.79E+ 00 6.19E+ 02± 3.24E+ 00 6.14E+ 02± 3.42E+ 00 6.13E+ 02± 2.57E+ 00
f7 8.79E+ 02± 7.77E+ 01 7.26E+ 02± 1.95E+ 01 7.17E+ 02± 1.27E+ 01 7.10E+ 02± 1.21E+ 01
f8 9.23E+ 02± 2.23E+ 01 8.76E+ 02± 1.62E+ 01 8.77E+ 02± 2.04E+ 01 8.67E+ 02± 2.37E+ 01
f9 1.07E+ 03± 2.66E+ 01 1.02E+ 03± 3.08E+ 01 9.98E+ 02± 2.24E+ 01 9.76E+ 02± 2.08E+ 01
f10 4.49E+ 03± 5.73E+ 02 3.68E+ 03± 6.16E+ 02 3.18E+ 03± 6.01E+ 02 3.11E+ 03± 4.96E+ 02
f11 5.22E+ 03± 6.52E+ 02 4.52E+ 03± 5.19E+ 02 3.94E+ 03± 7.09E+ 02 3.79E+ 03± 5.93E+ 02
f12 1.21E+ 03± 3.09E − 01 1.20E+ 03± 3.13E − 01 1.20E+ 03± 1.06E+ 00 1.20E+ 03± 1.15E+ 00
f13 1.30E+ 03± 1.29E+ 00 1.30E+ 03± 8.80E − 01 1.30E+ 03± 1.08E − 01 1.30E+ 03± 1.41E − 01
f14 1.45E+ 03± 2.09E+ 01 1.41E+ 03± 1.17E+ 01 1.40E+ 03± 5.06E+ 00 1.40E+ 03± 4.99E+ 00
f15 4.17E+ 04± 7.37E+ 04 1.64E+ 03± 2.10E+ 02 1.67E+ 03± 4.72E+ 02 1.57E+ 03± 4.15E+ 02
f16 1.61E+ 03± 5.48E − 01 1.61E+ 03± 5.32E − 01 1.61E+ 03± 7.61E − 01 1.61E+ 03± 6.28E − 01
f17 4.14E+ 06± 2.87E+ 06 5.17E+ 06± 7.06E+ 05 2.31E+ 06± 3.48E+ 05 2.13E+ 06± 3.93E+ 05
f18 9.93E+ 07± 2.70E+ 08 6.91E+ 06± 2.61E+ 05 9.28E+ 07± 2.00E+ 07 2.14E+ 07± 3.13E+ 06
f19 2.01E+ 03± 6.35E+ 01 1.94E+ 03± 3.13E+ 01 1.94E+ 03± 2.46E+ 01 1.94E+ 03± 3.00E+ 01
f20 1.74E+ 04± 1.73E+ 04 5.26E+ 03± 2.62E+ 03 2.01E+ 04± 7.77E+ 03 1.95E+ 04± 9.63E+ 03
f21 7.15E+ 05± 8.92E+ 05 1.68E+ 05± 1.21E+ 05 7.15E+ 05± 9.20E+ 04 1.42E+ 05± 2.92E+ 04
f22 2.86E+ 03± 1.96E+ 02 2.71E+ 03± 1.53E+ 02 2.60E+ 03± 1.35E+ 02 2.56E+ 03± 1.76E+ 02
f23 2.68E+ 03± 3.88E+ 01 2.63E+ 03± 1.21E+ 01 2.64E+ 03± 1.18E+ 01 2.63E+ 03± 1.18E+ 01
f24 2.68E+ 03± 1.64E+ 01 2.64E+ 03± 1.19E+ 01 2.60E+ 03± 1.68E − 03 2.60E+ 03± 1.53E − 03
f25 2.72E+ 03± 5.08E+ 00 2.71E+ 03± 5.77E+ 00 2.71E+ 03± 4.82E+ 00 2.71E+ 03± 5.24E+ 00
f26 2.72E+ 03± 6.35E+ 01 2.73E+ 03± 6.23E+ 01 2.74E+ 03± 4.87E+ 01 2.75E+ 03± 5.08E+ 01
f27 3.78E+ 03± 8.68E+ 01 3.53E+ 03± 2.48E+ 02 3.35E+ 03± 1.06E+ 02 3.35E+ 03± 1.19E+ 02
f28 4.50E+ 03± 6.12E+ 02 4.36E+ 03± 3.87E+ 02 4.03E+ 03± 3.52E+ 02 3.96E+ 03± 2.93E+ 02
f29 1.64E+ 07± 1.47E+ 07 2.18E+ 07± 1.68E+ 07 6.46E+ 06± 2.21E+ 06 1.01E+ 06± 2.13E+ 06
f30 1.14E+ 05± 7.79E+ 04 6.04E+ 04± 6.63E+ 04 4.09E+ 04± 1.72E+ 04 4.07E+ 04± 2.37E+ 04
Losses (− ) 26 19 20
Wins (+) 2 4 2
Approximations (≈) 2 7 8
Detected differences (α) 0.05 0.1 0.1
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solution and that the DGWO could provide very competitive
results compared to the GWO.

4.7.2. Gear Train Design Problem. 0e gear train design
problem has four integer variables and was initially in-
troduced by Sandgran [59]. 0e task of solving this problem
is to determine the optimal number of teeth of the gearwheel
between 12 and 60 to minimize the gear ratio of the gear
train displayed in Figure 8. 0e optimization model of
this problem, with the decision vector Y � [Td, Tb,

Ta, Tf] � [y1, y2, y3, y4], is formulated as follows:

minimize f(Y) �
1

6.931
−

y1y2

y3y4
 

2

,

12≤y1, y2, y3, y4 ≤ 60, yi ∈ Z
+
,

(30)

where the gear ratio � y1y2/y3y4.
Table 15 shows the optimization results of the best run

of the gear train design problem, which is solved by dif-
ferent algorithms and the proposed DGWO algorithm. 0e
statistical results of these algorithms and the results of the
GSA-GA and CS algorithms proposed by Gandomi et al.
[60] and Garg [61], which are shown in Table 16 with
studies [60, 61], conclude that the result proposed by the
DGWO algorithm is superior to the results of the two
algorithms, and the worst (Worst), mean (Mean), and
standard deviation (St. dev.) are low. 0e results obtained
by the DGWO are slightly better than those by the GWO
and are significantly better than those reported by different
methods in [59–62].

4.7.3. Pressure Vessel Design Problem. In this problem, a
cylindrical pressure vessel is mounted on both ends by
hemispherical balls, and its cylinder is formulated by
combining two longitudinal welds, as described in Figure 9
[63].0e four decision variables, which include the thickness
of the pressure vessel (Ts), thickness of the head (Th), inner
radius of the vessel (R), and length of the cylindrical section
of the vessel (L), are selected to be optimized to achieve the
minimized total cost of the pressure vessel. 0erefore, the
formulation for this problem consists of four variables
Y � [Ts, Th, R, L], which are modeled as follows:

minimize f(Y) � 0.6224y1y3y4 + 1.7781y2y
2
3

+3.1661y2
1y4 + 19.84y2

1y3

s.t. g1(Y) � − y1 + 0.0193y3 ≤ 0

g2(Y) � − y2 + 0.00954y3 ≤ 0

g3(Y) � − πy2
3y4 −

4
3
πy

3
3 + 1296000≤ 0

g4(Y) � y4 − 240≤ 0

1 × 0.0625≤y1, y2 ≤ 99 × 0.0625 10≤y3, y4 ≤ 200.

(31)

0e results obtained for this problem are computed by
the proposed DGWO method and are compared with the
results of the best run achieved by other algorithms in
Table 17. 0e practical optimization performance of the
DGWO algorithm is superior to that of existing approaches
but slightly worse than that of the GWO. 0e statistical
results after 30 independent runs are recorded in Table 18,
which further validates the finding that the standard de-
viation of the proposed DGWO method is less than that of
other algorithms except for the result reported in [64] and
the worst result is better than that of the compared algo-
rithms. In addition, the DGWO could obtain very close best
and average results to the GWO and is better than other
compared algorithms.

4.8. Several Insights for Applying the DGWO Algorithm.
As discussed above, the optimization performance of the
DGWO algorithm has been validated on several classical
well-known benchmark functions. As seen from Table 3, the
different position weight values w1 and w2 play an important
role in improving the optimization performance of different
types of problems. If the objective problems are a kind of
unimodal or multimodal problem (such as f1–f13), the
values of w1 and w2 can be 0.1 and 0.9 or 0.3 and 0.7, re-
spectively, and both of these two strategies can obtain rel-
atively high-quality solutions. If the objective problems are a

Table 14: Comparison results of the best Himmelblau’s nonlinear optimization problem obtained by different algorithms.

Methods
Design variables

f(Y)
Constraints

y1 y2 y3 y4 y5 0≤g1 ≤ 92 90≤ g2 ≤ 110 20≤g1 ≤ 25

GRG [8] 78.62 33.44 31.07 44.18 35.22 − 30373.95 90.52 NA 20.13
GA [9] 80.39 35.07 32.05 40.33 33.34 − 30005.70 91.66 99.53690 20.03
GA-G [10] 80.61 34.21 31.34 42.05 34.85 − 30175.80 92.00 NA 20.00
GA-L [10] 81.49 34.09 31.24 42.20 34.37 − 30182.27 90.57 NA 20.12
GWO 78.01 33.00 30.0063 45.00 36.7570 − 30662.42 92.00 94.91 20.00
Present study 78.00 33.00 30.0468 45.00 36.71 − 30653.30 91.99 94.89 20.01
NA: not available.
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kind of fixed-dimension multimodal problem (such as
f14–f23), w1 � 0.1 and w2 � 0.9 can achieve better results
than other position weight values. In addition, from Table 4,

we can observe that the DGWO-1 algorithm, which
employed the modified position-updated equation (i.e.,
equation (26)) and the linear control parameter a

→, can

D

Td

B
A

Tb

Ta Tf

F
Driver Follower

Figure 8: Structure of the gear train design problem.

Table 15: Comparison results of the best gear train design problem obtained by different algorithms.

Variables Sandgren [59] Deb and Goyal [62] Gandomi et al. [60] Garg [61] GWO Present study
Td(y1) 18 19 19 19 19 19
Tb(y2) 22 16 16 16 16 16
Ta(y3) 45 49 43 43 43 43
Tf(y4) 60 43 49 49 49 49
Gear ration 0.15 0.14 0.14 0.14 0.14 0.14
f(Y) 5.71× 10− 6 2.70×10− 12 2.70×10− 12 2.70×10− 12 2.70×10− 12 2.70×10− 12

Table 16: Statistical results of different algorithms for the gear train design problem.

Algorithms Best Worst Mean St. dev.
Gandomi et al. [60] 2.70×10− 12 2.36×10− 9 1.98×10− 9 3.56×10− 9

Garg [61] 2.70×10− 12 3. 30×10− 9 1.22×10− 9 8.77×10− 10

GWO 2.70×10− 12 1.36×10− 9 6.25×10− 9 6.22×10− 10

Present study 2.70×10− 12 1.36×10− 9 5.65×10− 10 5.72×10− 10

Th

R

L Ts

R

Figure 9: Structure of the pressure vessel design problem.

Table 17: Comparison results of the best pressure vessel design problem obtained by different algorithms.

Algorithms
Decision variables Cost

y1 y2 y3 y4 f(Y)

Sandgren [59] 1.13 0.63 47.70 117.70 8129.10
Kannan and Kramer [63] 1.13 0.63 58.29 43.69 7198.04
Coello [64] 0.81 0.44 40.32 200.00 6288.75
He and Wang [65] 0.81 0.44 42.09 176.75 6061.08
Kaveh and Talatahari [66] 0.81 0.44 42.10 176.57 6059.09
Gandomi et al. [60] 0.81 0.44 42.10 176.64 6059.71
GWO 0.78 0.39 40.36 199.46 5890.18
Present study 0.80 0.40 41.58 183.25 5938.78
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provide very competitive results for unimodal and multi-
modal problems and slightly poorer results on fixed-di-
mension multimodal problems. 0erefore, if the objective
problems are unimodal or multimodal problems, the control
parameter of the DGWO can adopt both a

→ and a
→′; oth-

erwise, if the objective problems are fixed-dimension mul-
timodal problems, we recommend that the practitioners use
the nonlinear control parameter strategy proposed in this
paper (i.e., equation (27)).

5. Conclusions

In this paper, an improved version of the GWO (referred to
as the DGWO) algorithm is proposed to solve continuous
numerical optimization problems. First, the DDS method is
introduced into the GWO algorithm to perturb a set of
dimensions of the first three best solutions to increase the
diversity of a particle and to enhance the exploration ability
of the GWO algorithm. 0is method realizes the predation
mode of freely switching between direct encirclement and
spiral walking. Second, the position interaction information
about the three leaders (i.e., α, β, and δ) in the predation
process is further considered, and the position-updated
equation that is based on this information is proposed to
increase the ability of the GWO algorithm to jump out of the
local optimum. Finally, the proposed nonlinear control
parameter strategy is designed to enhance the exploitation
ability of the GWO algorithm, as well as the convergence
precision and convergence rate. Based on the three im-
provements to the GWO algorithm, the balance between
exploration and exploitation, convergence precision, and
convergence rate have been enhanced. Twenty-three
benchmark test problems, the CEC2014 benchmark suite,
and three classic real-world engineering design applications
were employed to verify the practical optimization perfor-
mance of the proposed DGWO technique. First, the ex-
perimental results on unimodal functions show the
exploitation ability of the DGWO, which helps accelerate the
convergence speed and enhance the solution accuracy.
Second, the exploration capability of the DGWO was
demonstrated by the results on the multimodal functions.
0ird, the results from fixed-dimension multimodal func-
tions and composite functions show that the DGWO suc-
ceeds in jumping out of local optima by balancing the
exploration and exploitation. 0e simulations confirmed
that the DGWO could find very competitive optimization

results compared to recent GWO variants and state-of-the-
art heuristic algorithms. However, the optimization per-
formance of the DGWO algorithm for Himmelblau’s
nonlinear engineering design problem is not very compet-
itive but shows excellent results for the gear train design
problem and the pressure vessel design problem. Although
several experiments have demonstrated that the DGWO is
efficient, effective, and robust, it also has several obvious
shortcomings, such as the greater number of parameters that
need to be adjusted compared with the original GWO al-
gorithm, the poor optimization performance on the complex
problems that are included in the CEC2014 suite, and the
percentage of problems solved is not 100% guaranteed.

In future works, there are two main aspects that need to
be implemented. An interesting research point is to further
simplify the spiral walking predation technique and to
improve the positional interaction information strategy to
propose a variant of the GWO with a simpler algorithm
structure and higher optimization performance. In addition,
we intend to utilize the proposed DGWO algorithm for
solving multiobjective optimization problems and economic
load dispatch problems and training neural networks in our
future research.
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Table 18: Statistical results of different algorithms for the pressure vessel design problem.

Algorithms Best Worst Mean St. dev.
Sandgren [59] 8129.10 N/A N/A N/A
Kannan and Kramer [63] 7198.04 N/A N/A N/A
Coello [64] 6288.75 6308.15 6293.84 7.41
He and Wang [65] 6061.08 6363.80 6147.13 86.46
Kaveh and Talatahari [66] 6059.09 6135.33 6075.26 41.68
Gandomi et al. [60] 6059.71 6495.35 6447.74 502.69
GWO 5890.18 6674.46 5938.88 141.64
Present study 5938.78 6113.47 6013.93 85.53
N/A: not available.
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