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This paper is not only concerned with the problem of finite-time synchronization control for a class of nonlinear coupling
multi-weighted complex networks (NCMWCNs) with switching topology but also an attempt at using the derived results and
Lyapunov stability theory to study the impact of nonlinear coupling function on finite-time synchronization dynamics of the raised
network model. Firstly, different from the existing related results, based on the existing and new finite-time theories, two finite-
time synchronization controllers are, respectively, designed to make the considered network achieve finite-time synchronization.
Secondly, according to the obtained results, several finite-time synchronization dynamics criteria are established to show that
nonlinear coupled function and the switching of outer-coupling matrix are how to impact finite-time synchronization dynamics.
Finally, two illustrated examples are provided to verify the effectiveness of theoretical results proposed in this paper.

1. Introduction

During recent years, many researchers have paid close
attention to synchronization dynamics problems of complex
networks because synchronization dynamics is one of the
most important collective behavior of complex networks [1–
3] and many practical systems, including sensor network,
communication network, neural networks, social network,
and so on [4–6], can be modeled by complex networks.
Therefore,many valuable andmeaningful results for synchro-
nization dynamics problems of complex networks have been
obtained [7–13]. For example, based on passivity theory and
Lyapunov stability theory, Kaviarasan et al. [7] investigated
robust asymptotic synchronization of complex dynamical
networkswith uncertain inner coupling and successive delays
via state feedback delayed control scheme. In [8], pinning
synchronization problem is proposed for nonlinear coupling
complex networks by Liu and Chen. Under the pinning
control technique, the authors not only derived several

global synchronization criteria for considered networks but
also discussed the effect of nonlinear coupling function
for synchronization dynamics from simulation aspect. By
making use of pinning control strategies, Kaviarasan et al.
[9] studied the problem of global synchronization on singular
complex dynamical networks with Markovian switching and
two additive time-varying delays.Moreover, in the real world,
a lot of networks such as QQ networks, E-mail networks,
and transportation networks, can be more properly modeled
by multi-weighted complex networks [14, 15], in which the
coupling forms among nodes are multiple. That is to say, the
nodes in complex networkswithmulti-weights are connected
by more than one weight. Thus, recently, synchronization
and passivity dynamics problems on multi-weighted com-
plex networks have aroused an increasing interest of some
researchers [16–23]. For instance, in [16], Qiu et al. made a
discussion on finite-time synchronization problem of linear
coupling multi-weighted complex networks. Qin et al. [17],
respectively, investigated global synchronization and 𝐻∞
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synchronization of linear coupling multi-weighted complex
networks with fixed and switching topologies by making
use of Lyapunov stability theory and inequality techniques.
Besides these, in fact, due to some factors including external
disturbance, limited communications, and so on [24, 25],
there is inevitable switching in many dynamical systems, in
which the switching may affect synchronization dynamics of
systems. Therefore, it is interesting to study synchronization
dynamics of multi-weighted complex networks with switch-
ing topology.

As a matter of fact, in many practical engineering areas,
it is necessary and meaningful for a coupling dynamical
system to achieve the desired dynamical behaviors in finite
time interval [26–28]. Hence, a lot of results about finite-
time synchronization dynamics problems for coupling sys-
tems have been obtained [29–34]. For example, based on
finite-time control theory, Wang et al. [29] designed finite-
time control rule to achieve global synchronization within
convergence time for a class of linear coupling Markovian
jump complex networks. In [30], the authors investigated
finite-time synchronization problem of linear coupling com-
plex networks and finite-time synchronization criteria were
derived by exploring finite-time stability theory.

In reality, in some cases, nodes of practical coupling
networks are entangled by nonlinear function method [35],
such as the interactions between different neuron elements
in brain dynamical networks and the interactions between
different electrical elements in an electrical gird dynamical
networks. Therefore, recently, the researches on dynamic
behaviors for nonlinear coupling networks including con-
sensus problems of nonlinear coupling multi-agent systems
[35, 36], synchronization problems of nonlinear coupling
neural networks and complex networks [8, 37–40], and so
on [41] have witnessed an increasing interest. Although
some valuable results about dynamic behaviors of nonlinear
coupling networks have been developed (e.g., [8, 35–41]),
in these existing works, the researchers mainly concen-
trated on how to derive sufficient condition criteria for
considered nonlinear coupling systems. It is worth pointing
out that nonlinear coupling function is one of important
factors affecting synchronization dynamics. Regrettably, few
researchers devoted themselves to exploring the impact of
nonlinear coupling function on synchronization dynamics
from theory aspect.

Motivated by the above analysis, the main purpose of
this paper is to investigate the effect of nonlinear coupling
function and outer-coupling matrix switching on finite-
time synchronization dynamics for a class of nonlinear
coupling multi-weighted complex networks (NCMWCNs)
with switching topology based on stability and a novel finite-
time theory. The contributions of our works include the
following three aspects. First, a new class of NCMWCNswith
switching topology is considered. Second, in order to address
the novel finite-time control method proposed, two finite-
time synchronization controllers built on the existing and
a new finite-time synchronization theories are, respectively,
designed to make the considered network model achieve
global synchronization within finite time interval. Third, we
not only derive sufficient condition for ensuring finite-time

synchronization of the NCMWCNs with switching topology
but also give synchronization dynamics criteria on the impact
of nonlinear coupling function and outer-coupling matrix
switching.

Notations. Some necessary notations that will be used
throughout the article are introduced. ‖ ⋅ ‖ refers to the stan-
dard 𝐿2 norm in Euclidean space. The number 𝑁 represents
a positive integer. 𝑅𝑛×𝑚 is the set of real matrices and 𝑅𝑛
denotes the 𝑛-dimensional Euclidean space. The superscript𝑇 denotes the matrix transposition. 𝐼𝑛 ∈ 𝑅𝑛×𝑛 means an 𝑛-
dimensional identity matrix. 𝑋 ≥ 𝑌 > 0 (respectively, 𝑋 >𝑌 > 0), where 𝑋,𝑌 ∈ 𝑅𝑛×𝑛 are symmetric matrices, means
that the matrix 𝑋 − 𝑌 is positive semidefinite (respectively,
positive definite). If 𝐴 is a matrix, 𝜆max(𝐴) and 𝜆min(𝐴)
denote its maximal eigenvalue and its minimum eigenvalue,
respectively. The Kronecker product of matrices 𝐴 ∈ 𝑅𝑚×𝑛
and 𝐵 ∈ 𝑅𝑀×𝑁 is a matrix in 𝑅𝑚𝑀×𝑛𝑁 denoted as 𝐴 ⊗ 𝐵. The
matrix diag() represents diagonal matrix. If the dimensions
of matrices are not explicitly indicated that means they are
suitable for any algebraic operations.

2. Model and Preliminaries

Firstly, consider a class of NCMWCNs with switching topol-
ogy presented by

�̇�𝑖 (𝑡) = 𝑓 (𝑥𝑖 (𝑡)) + 𝑁∑
𝑗=1

𝑐1𝑎1,𝜎(𝑡)𝑖𝑗 Γ1𝑔 (𝑥𝑗 (𝑡))

+ 𝑁∑
𝑗=1

𝑐2𝑎2,𝜎(𝑡)𝑖𝑗 Γ2𝑔 (𝑥𝑗 (𝑡)) + ⋅ ⋅ ⋅

+ 𝑁∑
𝑗=1

𝑐𝜂𝑎𝜂,𝜎(𝑡)𝑖𝑗 Γ𝜂𝑔 (𝑥𝑗 (𝑡)) + 𝑢𝑖 (𝑡) ,
𝑖 = 1, 2, . . . , 𝑁,

(1)

where 𝜎(𝑡) : [0,∞) → 𝑀 = {1, 2, . . . , 𝑠} is the topology
switching signal, which is defined as the switching sequence

𝑆 = {(𝑚0, 𝑡0) , . . . , (𝑚𝑖, 𝑡𝑖) , ⋅ ⋅ ⋅ | 𝑚𝑖 ∈ 𝑀, 𝑖 ∈ N} , (2)

where 𝑡0 is the initial time and 𝑚𝑖 denotes the serial number
of the activated subsystem at 𝑡𝑖. 𝑐𝑙(𝑙 = 1, 2, . . . , 𝜂) represents
the coupling strength and 𝑐𝑙 > 0, Γ𝑙 = diag(𝛾𝑙1, 𝛾𝑙2, . . . , 𝛾𝑙𝑛) > 0
is inner-coupling matrix and Γ𝑙 ∈ 𝑅𝑛×𝑛 and 𝐴𝑙,𝑚 = (𝑎𝑙,𝑚𝑖𝑗 )𝑁×𝑁
is outer-coupling matrix with the coupling weights in the 𝑙th
coupling formand the𝑚th topology. For each𝑚 ∈ 𝑀, there is𝑎𝑙,𝑚𝑖𝑗 = 𝑎𝑙,𝑚𝑗𝑖 > 0 if node i and node j are connected. Otherwise,𝑎𝑙,𝑚𝑖𝑗 = 𝑎𝑙,𝑚𝑗𝑖 = 0. Besides these, 𝑓 : 𝑅𝑛 → 𝑅𝑛 stands
for the activity of 𝑖th node and is a vector-value function,𝑔 : 𝑅𝑛 → 𝑅𝑛 is nonlinear coupling function, and 𝑢𝑖(𝑡) is
the control input of 𝑖th node.

Remark 1. Recently, because multi-weighted complex net-
works can more accurately describe some practical engineer-
ing networks, e.g., public traffic networks and Mobile phone
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networks, some researchers began to pay more and more
attention to dynamical behaviors of multi-weighted complex
networks and have obtained some valuable and meaningful
results [14–23]. However, it should be emphasized that, in
these existing works [14–23], the authors concentrated on
linear coupling multi-weighted complex networks. To the
best of our knowledge, until now, there is still no discussion
on synchronization dynamics problems for the NCMWCNs
with switching topology. Hence, it is very significant to
study finite-time synchronization for the NCMWCNs with
switching topology. Besides this, in the above network model
(1), there is no the restriction which is that outer-coupling
matrix with coupling weights 𝐴𝑙,𝑚 = (𝑎𝑙,𝑚𝑖𝑗 )𝑁×𝑁 must satisfy𝑎𝑙,𝑚𝑖𝑖 = −∑𝑁𝑗=1,𝑗 ̸=𝑖 𝑎𝑙,𝑚𝑖𝑗 . Thus, the considered network model
(1) is more general. Actually, the similar scheme has been
adopted in the literature [21].

Remark 2. From Remark 1, it is obtained that some practical
engineering networks can be more accurately described
by multi-weighted complex networks. For example, in the
network (1), let 𝑔(𝑥𝑗(𝑡)) = 𝑥𝑗(𝑡), 𝜎(𝑡) : [0,∞) → 𝑀 = {1}
and 𝑎𝑙,𝑚𝑖𝑖 = −∑𝑁𝑗=1,𝑗 ̸=𝑖 𝑎𝑙,𝑚𝑖𝑗 , and the network (1) becomes the
addressed network model (1) in [14, 15]. It is clear that the
proposed network model (1) in [14, 15] is one special case
of the network (1) in this paper. According to [14, 15], it is
seen that the effectiveness of the derived results is testified
by the public traffic transfer networks. This reflects that the
public traffic transfer networks in [14, 15] can be expressed by
the network (1) of this paper. Furthermore, compared with
the network model of [14, 15], it is not difficult to find that
the network (1) of this paper can model more general public
traffic transfer networks. Besides this, if the network (1) is
composed of some Kuramoto oscillators [42], the network
(1) becomes nonlinear coupling Kuramoto oscillator network
with multi-weights and switching topology. These above
show the significance of considering the multi-weighted
coupling term and real physical meaning of the network (1).

The synchronization state 𝑠(𝑡) of the network (1) satisfies
̇𝑠 (𝑡) = 𝑓 (𝑠 (𝑡)) + 𝑁∑

𝑗=1

𝑐1𝑎1,𝜎(𝑡)𝑖𝑗 Γ1𝑔 (𝑠 (𝑡))

+ 𝑁∑
𝑗=1

𝑐2𝑎2,𝜎(𝑡)𝑖𝑗 Γ2𝑔 (𝑠 (𝑡)) + ⋅ ⋅ ⋅

+ 𝑁∑
𝑗=1

𝑐𝜂𝑎𝜂,𝜎(𝑡)𝑖𝑗 Γ𝜂𝑔 (𝑠 (𝑡)) ,
(3)

where 𝑠(𝑡) = (𝑠1(𝑡), 𝑠2(𝑡), . . . , 𝑠𝑛(𝑡))𝑇.
Secondly, in order to derive the main results, we need

to give the following Definition 3, some assumptions, and
lemmas.

Definition 3. The network (1) is said to achieve global syn-
chronization within finite time interval 𝑡∗ if there exists a
constant 𝑡∗ > 0 such that lim𝑡→𝑡∗‖𝑥𝑖(𝑡) − 𝑠(𝑡)‖ = 0 and‖𝑥𝑖(𝑡) − 𝑠(𝑡)‖ = 0 for 𝑡 > 𝑡∗, where 𝑖 ∈ {1, 2, . . . , 𝑁} and

𝑠(𝑡) = (𝑠1(𝑡), 𝑠2(𝑡), . . . , 𝑠𝑛(𝑡))𝑇 ∈ 𝑅𝑛 is the synchronization
state of the network (1).

Assumption 4 (see [16]). There exist matrices 𝑄 = diag(𝑞1,𝑞2, . . . , 𝑞𝑛) and 0 < 𝐻 = diag(ℎ1, ℎ2, . . . , ℎ𝑛), such that 𝑓(⋅)
satisfies the following inequality:

(𝜄1 − 𝜄2)𝑇𝐻[𝑓 (𝜄1) − 𝑓 (𝜄2) − 𝑄 (𝜄1 − 𝜄2)]
≤ −𝜅 (𝜄1 − 𝜄2)𝑇 (𝜄1 − 𝜄2) , (4)

where 0 < 𝜅 ∈ 𝑅 and 𝜄1 and 𝜄2 ∈ 𝑅𝑛.
Assumption 5. The coupling function 𝑔(⋅) of the network (1)
satisfies the Lipschitz condition and 𝑔(0) = 0. That means
there exists constant ] > 0 such that ‖𝑔(𝑥)−𝑔(𝑦)‖ ≤ ]‖𝑥−𝑦‖
and ‖𝑔(𝑥)‖ ≤ ]‖𝑥‖, where 𝑥, 𝑦 ∈ 𝑅𝑛.
Remark 6. Note that nonlinear functions 𝑓(⋅) and 𝑔(⋅)
can be linearized by Assumptions 4 and 5, respectively.
Assumption 4 is so-called the QUAD condition (or one-sided
Lipschitz) [43] and Assumption 5 is the Lipschitz condition.
In fact, Assumption 4 is more general than Assumption 5.
Until now, in the research about synchronization problems
of complex networks, the Lipschitz condition and the QUAD
condition have been widely used to process nonlinear func-
tions [1, 14–16, 18, 43, 44].

Lemma 7 (see [45]). Suppose that a positive-definite and
continuous 𝑉(𝑡) satisfies the following condition:

�̇� (𝑡) ≤ −𝑐𝑉𝜂 (𝑡) , 𝑡 ≥ 0, 𝑉 (0) ≥ 0, (5)

where 0 < 𝜂 < 1 and 𝑐 > 0 are constants. �en, one has

𝑉1−𝜂 (𝑡) ≤ 𝑉1−𝜂 (0) − 𝑐 (1 − 𝜂) 𝑡, 0 ≤ 𝑡 ≤ 𝑡∗, (6)

and 𝑉(𝑡) = 0, 𝑡 > 𝑡∗, with 𝑡∗ given by

𝑡∗ = 𝑉1−𝜂 (0)𝑐 (1 − 𝜂) . (7)

Lemma 8 (see [30]). Assume that a continuous and positive-
definite function 𝑉(𝑡) satisfies the following condition:

�̇� (𝑡) ≤ 𝑙 (𝑡) 𝑉 (𝑡) − 𝑘 (𝑡) 𝑉𝜂 (𝑡) , 𝑡 ≥ 𝑡0, 𝑉 (𝑡0) ≥ 0, (8)

where 𝑘(𝑡) > 0 and 𝑙(𝑡) are two functions, 0 < 𝜂 < 1. �en, for
any given 𝑡0, one has

𝑉(𝑡) ≤ 𝑒𝜃(𝑡) [𝑉1−𝜂 (𝑡0)
− (1 − 𝜂) ∫𝑡

𝑡0

𝑘 (𝑠) 𝑒−(1−𝜂)𝜃(𝑠)𝑑𝑠]1/(1−𝜂) ,
(9)

where 𝜃(𝑡) = ∫𝑡
𝑡0
𝑙(𝜏)𝑑𝜏, 𝜃(𝑠) = ∫𝑠

𝑡0
𝑙(𝜏)𝑑𝜏, 𝑡0 ≤ 𝑡 ≤ 𝑡1, and𝑉(𝑡) = 0, 𝑡 > 𝑡1, with 𝑡1 given by

∫𝑡1
𝑡0

𝑘 (𝑠) 𝑒−(1−𝜂)𝜃(𝑠)𝑑𝑠 = 11 − 𝜂𝑉1−𝜂 (𝑡0) . (10)
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Lemma 9. Assume that a continuous and positive-definite
function 𝑉(𝑡) satisfies the following condition:

�̇� (𝑡) ≤ − (𝑐 + 𝑐𝑝 (𝜐)) 𝑉𝜂 (𝑡) , 𝑡 ≥ 0, 𝑉 (0) ≥ 0, (11)

where 𝑐 > 0, 𝑝(𝜐) > 0 and 0 < 𝜂 < 1. �en, one has

𝑉1−𝜂 (𝑡) ≤ 𝑉1−𝜂 (0) − 𝑐 (1 − 𝜂) (1 + 𝑝 (𝜐)) 𝑡,
0 ≤ 𝑡 ≤ 𝑡∗, (12)

and 𝑉(𝑡) = 0, 𝑡 > 𝑡∗ with 𝑡∗ given by

𝑡∗ = 𝑉1−𝜂 (0)𝑐 (1 − 𝜂) (1 + 𝑝 (𝜐)) . (13)

Proof. Let 𝑙(𝑡) = 0, 𝑘(𝑡) = 𝑐 + 𝑐𝑝(𝜐), and 𝑡0 = 0; then
combining Lemma 8, we can obtain Lemma 9.

Lemma 10 (see [46]). If 𝑎1, 𝑎2, . . . , 𝑎𝑛 ≥ 0 and 0 < 𝑝 ≤ 1, then
( 𝑛∑
𝑖=1

𝑎𝑖)
𝑝 ≤ 𝑛∑
𝑖=1

𝑎𝑝𝑖 . (14)

Lemma 11 (see [47]). Assuming one positive definite matrix𝑄 > 0, then
2𝑥𝑇𝑦 ≤ 𝑥𝑇𝑄−1𝑥 + 𝑦𝑇𝑄𝑦, (15)

where 𝑥, 𝑦 ∈ 𝑅𝑛.
3. Main Results

In this section, we, respectively, design two classes of finite-
time synchronization control rules to realize global synchro-
nization in finite time for the network (1). Furthermore,
based on the obtained finite-time synchronization control
rules, several finite-time synchronization dynamics criteria
are established to show that nonlinear coupling function 𝑔(⋅)
and the switching of outer-coupling matrix 𝐴𝑙,𝑚 is how to
impact finite-time synchronization dynamics of the network
(1).

Letting (1) and (3), we have the following error system of
the network (1):

̇𝑒𝑖 (𝑡) = 𝐹 (𝑒𝑖 (𝑡)) + 𝑁∑
𝑗=1

𝑐1𝑎1,𝑚𝑖𝑗 Γ1𝐺 (𝑒𝑗 (𝑡))

+ 𝑁∑
𝑗=1

𝑐2𝑎2,𝑚𝑖𝑗 Γ2𝐺(𝑒𝑗 (𝑡)) + ⋅ ⋅ ⋅

+ 𝑁∑
𝑗=1

𝑐𝜂𝑎𝜂,𝑚𝑖𝑗 Γ𝜂𝐺 (𝑒𝑗 (𝑡)) + 𝑢𝑖 (𝑡) ,
𝑖 = 1, 2, . . . , 𝑁,

(16)

where 𝑒𝑖(𝑡) = 𝑥𝑖(𝑡) − 𝑠(𝑡), 𝐹(𝑒𝑖(𝑡)) = 𝑓(𝑥𝑖(𝑡)) − 𝑓(𝑠(𝑡)), and𝐺(𝑒𝑗(𝑡)) = 𝑔(𝑥𝑗(𝑡))) − 𝑔(𝑠(𝑡))).

3.1. Based on Lemma 7, the Design of Finite-Time Synchroniza-
tion Control Rule for the Network (1)

Theorem 12. Under Assumptions 4 and 5, if there exists

2𝐼𝑁 ⊗ [𝐻𝑄 − 𝜅𝐼𝑛 − Ξ ⊗ 𝐻 + 12
𝜂∑
𝑙=1

𝑐𝑙 (]2 𝜑𝑙,𝑚 𝐼𝑛
+ (𝐴𝑙,𝑚 ⊗ 𝐻Γ𝑙) 𝜑−1𝑙,𝑚 (𝐴𝑙,𝑚 ⊗ 𝐻Γ𝑙)𝑇)] ≤ 0,

(17)

the network (1) can realize finite-time synchronization using the
following controller

𝑢𝑖 (𝑡) = −𝜀𝑖𝑒𝑖 (𝑡) − 𝑐𝐻(𝛽−1)/2sign (𝑒𝑖 (𝑡)) 𝑒𝑖 (𝑡)𝛽 , (18)

where 𝑐 > 0 and 0 < 𝛽 < 1. Moreover, the settling time of
synchronization 𝑡∗𝑇1 satisfies

𝑡∗𝑇1 ≤ 𝑉1−𝜂 (0)2𝑐 (1 − 𝜂) , (19)

where 𝜂 = (1 + 𝛽)/2.
Proof. Consider the following Lyapunov-Krasovskii func-
tional for the network (1) as

𝑉𝑇1 (𝑒 (𝑡) , 𝑡) = 𝑁∑
𝑖=1

𝑒𝑇𝑖 (𝑡)𝐻𝑒𝑖 (𝑡) . (20)

Computing 𝑉+𝑇1(𝑒(𝑡), 𝑡) along the trajectory of error system
(16), we can obtain

𝑉+𝑇1 (𝑒 (𝑡) , 𝑡) = 2 𝑁∑
𝑖=1

𝑒𝑇𝑖 (𝑡)𝐻 ̇𝑒𝑖 (𝑡)

= 2 𝑁∑
𝑖=1

𝑒𝑇𝑖 (𝑡)𝐻[
[𝐹 (𝑒𝑖 (𝑡)) +

𝜂∑
𝑙=1

𝑁∑
𝑗=1

𝑐𝑙𝑎𝑙,𝑚𝑖𝑗 Γ𝑙𝐺(𝑒𝑗 (𝑡)) − 𝜀𝑖𝑒𝑖 (𝑡) − 𝑐𝐻(𝛽−1)/2sign (𝑒𝑖 (𝑡))

⋅ 𝑒𝑖 (𝑡)𝛽]] .

(21)

From Assumption 4, we can get

𝑒𝑇𝑖 (𝑡)𝐻𝐹 (𝑒𝑖 (𝑡)) ≤ 𝑒𝑇𝑖 (𝑡)𝐻𝑄𝑒𝑖 (𝑡) − 𝜅𝑒𝑇𝑖 (𝑡) 𝑒𝑖 (𝑡) . (22)

Applying Lemma 11 and Assumption 5, we have

2 𝑁∑
𝑖=1

𝑒𝑇𝑖 (𝑡)𝐻 𝜂∑
𝑙=1

𝑁∑
𝑗=1

𝑐𝑙𝑎𝑙,𝑚𝑖𝑗 Γ𝑙𝐺 (𝑒𝑗 (𝑡)) = 2 𝜂∑
𝑙=1

𝑐𝑙𝑒𝑇 (𝑡) (𝐴𝑙,𝑚

⊗ 𝐻Γ𝑙) 𝐺 (𝑒 (𝑡)) ≤ 𝜂∑
𝑙=1

𝑐𝑙 {𝐺𝑇 (𝑒 (𝑡)) 𝜑𝑙,𝑚𝐺 (𝑒 (𝑡))
+ 𝑒𝑇 (𝑡) [(𝐴𝑙,𝑚 ⊗ 𝐻Γ𝑙) 𝜑−1𝑙,𝑚 (𝐴𝑙,𝑚 ⊗ 𝐻Γ𝑙)𝑇] 𝑒 (𝑡)}
≤ 𝜂∑
𝑙=1

𝑐𝑙 {]2 𝜑𝑙,𝑚 𝑒𝑇 (𝑡) 𝑒 (𝑡)
+ 𝑒𝑇 (𝑡) [(𝐴𝑙 ⊗ 𝐻Γ𝑙) 𝜑−1𝑙,𝑚 (𝐴𝑙 ⊗ 𝐻Γ𝑙)𝑇] 𝑒 (𝑡)} ,

(23)
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where 𝑒(𝑡) = (𝑒𝑇1 (𝑡), 𝑒𝑇2 (𝑡), . . . , 𝑒𝑇𝑁(𝑡))𝑇, 𝑒𝑖(𝑡) = (𝑒𝑖1(𝑡), 𝑒𝑖2(𝑡),. . . , 𝑒𝑖𝑛(𝑡))𝑇, 𝐺(𝑒(𝑡)) = (𝐺𝑇(𝑒1(𝑡)), 𝐺𝑇(𝑒2(𝑡)), . . . , 𝐺𝑇(𝑒𝑁(𝑡)))𝑇,
and 𝐺(𝑒𝑖(𝑡)) = (𝐺(𝑒𝑖1(𝑡)), 𝐺(𝑒𝑖2(𝑡)), . . . , 𝐺(𝑒𝑖𝑛(𝑡)))𝑇.

Substituting (22)-(23) into (21) and using the inequality
(17) inTheorem 12, we have

𝑉+𝑇1 (𝑒 (𝑡) , 𝑡) ≤ 2𝑒𝑇 (𝑡) (𝐼𝑁 ⊗ 𝐻𝑄) 𝑒 (𝑡) − 2𝜅𝑒𝑇 (𝑡) 𝑒 (𝑡)
+ 𝜂∑
𝑙=1

𝑐𝑙 {]2 𝜑𝑙,𝑚
⋅ 𝑒𝑇 (𝑡) 𝑒 (𝑡) + 𝑒𝑇 (𝑡) [(𝐴𝑙,𝑚 ⊗ 𝐻Γ𝑙) 𝜑−1𝑙,𝑚 (𝐴𝑙,𝑚
⊗ 𝐻Γ𝑙)𝑇] 𝑒 (𝑡)} − 2𝑒𝑇 (𝑡) (Ξ ⊗ 𝐻) 𝑒 (𝑡)
− 2𝑐 𝑁∑
𝑖=1

𝑒𝑇𝑖 (𝑡)𝐻(𝛽+1)/2sign (𝑒𝑖 (𝑡)) 𝑒𝑖 (𝑡)𝛽

≤ 𝑒𝑇 (𝑡)
⋅ {2𝐼𝑁 ⊗ [𝐻𝑄 − 𝜅𝐼𝑛 − Ξ ⊗ 𝐻 + 12

𝜂∑
𝑙=1

𝑐𝑙 (]2 𝜑𝑙,𝑚
⋅ 𝐼𝑛 + (𝐴𝑙,𝑚 ⊗ 𝐻Γ𝑙) 𝜑−1𝑙,𝑚 (𝐴𝑙,𝑚 ⊗ 𝐻Γ𝑙)𝑇)]} 𝑒 (𝑡)
− 2𝑐 𝑁∑
𝑖=1

𝑒𝑇𝑖 (𝑡)𝐻(𝛽+1)/2sign (𝑒𝑖 (𝑡)) 𝑒𝑖 (𝑡)𝛽

≤ −2𝑐 𝑁∑
𝑖=1

𝑒𝑇𝑖 (𝑡)𝐻(𝛽+1)/2sign (𝑒𝑖 (𝑡)) 𝑒𝑖 (𝑡)𝛽 ,

(24)

where Ξ = diag{𝜀1, 𝜀2, . . . , 𝜀𝑁}.
By Lemma 10, we can obtain

− 𝑁∑
𝑖=1

𝑒𝑇𝑖 (𝑡)𝐻(𝛽+1)/2sign (𝑒𝑖 (𝑡)) 𝑒𝑖 (𝑡)𝛽

= − 𝑁∑
𝑖=1

𝑛∑
𝑗=1

ℎ(𝛽+1)/2𝑗

𝑒𝑖𝑗 (𝑡)1+𝛽

= − 𝑁∑
𝑖=1

( 𝑛∑
𝑗=1

ℎ𝑗𝑒2𝑖𝑗 (𝑡))
(1+𝛽)/2

= − 𝑁∑
𝑖=1

(𝑒𝑇𝑖 (𝑡)𝐻𝑒𝑖 (𝑡))(1+𝛽)/2

≤ −( 𝑁∑
𝑖=1

𝑒𝑇𝑖 (𝑡)𝐻𝑒𝑖 (𝑡))
(1+𝛽)/2 .

(25)

Combining (24) and (25), we have

𝑉+𝑇1 (𝑒 (𝑡) , 𝑡) ≤ −2𝑐 (𝑉 (𝑒 (𝑡) , 𝑡))(1+𝛽)/2 . (26)

By Lemma7,𝑉(𝑒(𝑡), 𝑡) converges to zero in finite-time 𝑡∗𝑇1 and𝑡∗𝑇1 is gotten by

𝑡∗𝑇1 ≤ 𝑡∗, (27)

where 𝑡∗ = 𝑉1−𝜂(0)/2𝑐(1 − 𝜂), 𝜂 = (1 + 𝛽)/2. That means the
error vector 𝑒𝑖(𝑡) ∈ 𝑅𝑛(𝑖 = 1, 2, . . . , 𝑁) will converge to zero
within 𝑡∗𝑇1. Thus, we can obtain 𝑒𝑖(𝑡) = 0 if 𝑡 ≥ 𝑡∗𝑇1. According
to Definition 3, we have ‖𝑥𝑖(𝑡) − 𝑠(𝑡)‖ = 0 if 𝑡 ≥ 𝑡∗𝑇1. Hence,
global synchronization of the network (1) will be achieved in
finite-time 𝑡∗𝑇1. This completes the proof.

3.2. Based on Lemma9, theDesign of Finite-Time Synchroniza-
tion Control Rule for the Network (1)

Theorem 13. Under Assumptions 4 and 5, if there exists

2𝐼𝑁 ⊗ [𝐻𝑄 − 𝜅𝐼𝑛 − Ξ ⊗ 𝐻 + 12
𝜂∑
𝑙=1

𝑐𝑙 (]2 𝜑𝑙,𝑚 𝐼𝑛
+ (𝐴𝑙,𝑚 ⊗ 𝐻Γ𝑙) 𝜑−1𝑙,𝑚 (𝐴𝑙,𝑚 ⊗ 𝐻Γ𝑙)𝑇)] ≤ 0,

(28)

the network (1) can realize finite-time synchronization using the
following controller:

𝑢𝑖 (𝑡) = −𝜀𝑖𝑒𝑖 (𝑡)
− 𝑐 (1 + 𝑝 (]))𝐻(𝛽−1)/2sign (𝑒𝑖 (𝑡)) 𝑒𝑖 (𝑡)𝛽 , (29)

where 𝑐 > 0, 𝑝(]) > 0, and 0 < 𝛽 < 1. Moreover, the settling
time of synchronization 𝑡∗𝑇2 satisfies

𝑡∗𝑇2 ≤ 𝑉1−𝜂 (0)2𝑐 (1 − 𝜂) (1 + 𝑝 (])) , (30)

where 𝜂 = (1 + 𝛽)/2.
Proof. Consider the Lyapunov-Krasovskii functional for the
network (1) as

𝑉𝑇2 (𝑒 (𝑡) , 𝑡) = 𝑁∑
𝑖=1

𝑒𝑇𝑖 (𝑡)𝐻𝑒𝑖 (𝑡) . (31)

The next proof is similar to that of Theorem 12.

Remark 14. According to Theorems 12 and 13, although the
controllers (18) and (29) can be, respectively, designed to
realize finite-time synchronization of the network (1), it
is not difficult to find that the synchronization finite-time
estimation approach inTheorem 13 ismore practical than that
ofTheorem 12.This can be testified by 𝑡∗𝑇1 and 𝑡∗𝑇2. According
to inequalities (19) and (30), it is seen that 𝑡∗𝑇2 is closely related
to 𝑝(]); otherwise, 𝑡∗𝑇1 is not. By using Assumption 5, we can
obtain that there is ‖𝑔(𝑥(𝑡))‖/‖𝑥(𝑡)‖ ≤ ]. This shows that
nonlinearity of 𝑔(𝑥(𝑡)) can be reflected by ]. For example,
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assuming that there are 𝑔(1)(𝑥(𝑡)) and 𝑔(2)(𝑥(𝑡)) and non-
linearity of 𝑔(1)(𝑥(𝑡)) is more serious than that of 𝑔(2)(𝑥(𝑡)),
then combining Assumption 5, ‖𝑔(2)(𝑥(𝑡))‖/‖𝑥(𝑡)‖ ≤ ](2) <‖𝑔(1)(𝑥(𝑡))‖/‖𝑥(𝑡)‖ ≤ ](1) must exist, where ](1) > ](2) >0. Thus, more feasible 𝑝(]) can be chosen by using ]. In
order to further investigate the effectiveness of 𝑡∗𝑇1 and 𝑡∗𝑇2,
the following several interesting and useful Corollaries are
derived.

Remark 15. It can be seen fromTheorems 12 and 13 that non-
linear coupling function 𝑔(⋅) of the network (1) is linearized
by the Lipschitz condition in Assumption 5. Actually, from
the process of proving Theorems 12 and 13, it is observed
that some nonlinearity bound conditions such as the sector-
bound nonlinearity condition and the QUAD condition
can replace Assumption 5 to process nonlinear coupling
function 𝑔(⋅) of the network (1). It should be pointed out
that the sector-bound nonlinearity condition and the QUAD
condition [7, 10, 43, 44] are more general that the Lipschitz
condition. Therefore, based on the above two techniques, the
derived results have lower conservatism than Theorems 12
and 13 built on the Lipschitz condition. How do we get the
related results? This is one of interesting topics in the future.

Remark 16. In fact, it can be further obtained that the
conservatism of the proposed method based onTheorems 12
and 13 is closely related to Assumption 4 and Lemmas 7 and
9, the considered Lyapunov-Krasovskii functional, and the
controllers (18) and (29). For example, assume the Lyapunov-
Krasovskii functional for the network (1) 𝑉𝑇1(𝑒(𝑡), 𝑡) =∑𝑁𝑖=1 𝑒𝑇𝑖 (𝑡)𝑒𝑖(𝑡). Thus, in Assumption 4 and Theorems 12 and
13, let 𝐻 = 𝐼; then sufficient conditions for finite-time
synchronization of the network (1) can be obtained. It is
clear that the new derived results have higher conservatism
than Theorems 12 and 13. From the above, it is seen that, in
order to get the results, besides choosing a new 𝑉𝑇1(𝑒(𝑡), 𝑡),
in Assumption 4, 𝐻 is replaced by 𝐼. Although Assump-
tion 4 with 𝐻 = 𝐼 still holds, its conservatism becomes
high. Furthermore, comparing Theorems 12 and 13, it can
also be found that 𝑉+𝑇1(𝑒(𝑡), 𝑡) ≤ −2𝑐(𝑉(𝑒(𝑡), 𝑡))(1+𝛽)/2 and𝑉+𝑇2(𝑒(𝑡), 𝑡) ≤ −2𝑐�̃�(])(𝑉(𝑒(𝑡), 𝑡))(1+𝛽)/2, where 𝑝(]) = 1 +𝑝(]), 𝑝(]) > 0, 𝑐 > 0, and 0 < 𝛽 < 1. Because of𝑉+𝑇2(𝑒(𝑡), 𝑡) < 𝑉+𝑇1(𝑒(𝑡), 𝑡) ≤ −2𝑐(𝑉(𝑒(𝑡), 𝑡))(1+𝛽)/2, Theorem 12
must hold if Theorem 13 holds. Otherwise, the conclusion
does not hold. That means the conservatism of Theorem 12
is higher than that of Theorem 13. This is caused by the
finite-time control scheme of controllers (18) and (29) built
on Lemmas 7 and 9, respectively. This validates that more
feasible control approach can also reduce the conservatism
of the derived results. How to further explore more effective
finite-time control method is another valuable problem.

Remark 17. Notice that if the network (1) is large-scaled,
the dimension of LMIs (17) and (28) in Theorems 12 and
13 becomes high. This causes that it might not be available
to easily realize LMIs (17) and (28) in practice. How do
we establish low-dimensional LMIs conditions? Because of𝐴𝑙,𝑚 ⊗ 𝐻Γ𝑙 = (𝐴𝑙,𝑚 ⊗ 𝐻Γ𝑙)𝑇, according to LMIs (17) and

(28), it is derived that Ψ𝑚 = 𝜆max(𝐻𝑄) − 𝜅 − 𝜆min(Ξ ⊗ 𝐻) +(1/2)∑𝜂
𝑙=1

𝑐𝑙(]2‖𝜑𝑙,𝑚‖+𝜆𝑙,𝑚max(𝜑−1𝑙,𝑚)(𝜆𝑙,𝑚max(A𝑙,𝑚))2, whereA𝑙,𝑚 =𝐴𝑙,𝑚 ⊗ 𝐻Γ𝑙. Letting Ψ𝑚 ≤ 0 hold, then it is clear that Ψ𝑚 ≤0 is larger than LMIs (17) and (28). Thus, low-dimensional
condition in Theorems 12 and 13 is obtained. It needs to be
emphasized that although the condition Ψ𝑚 ≤ 0 is more
practical than the conditions (17) and (28), its conservatism
is higher than LMIs (17) and (28). How do we balance its
conservatism and feasibility? This is a more attractive and
open question.

3.3. Based on �eorems 12 and 13, the Impact Analysis of
Nonlinear Coupling Function 𝑔(⋅) and the Switching of
Outer-Coupling Matrix 𝐴𝑙,𝑚 on Finite-Time Synchroniza-
tion Dynamics of the Network (1)

Corollary 18. Under �eorem 12 and the controller (18), if𝐴𝑙,𝑚 > 0, 𝑒(𝑡) > 0, and 𝐺(𝑒(𝑡)) > 0, or if 𝐴𝑙,𝑚 > 0, 𝑒(𝑡) < 0,
and 𝐺(𝑒(𝑡)) < 0, or if 𝐴𝑙,𝑚 < 0, 𝑒(𝑡) > 0, and 𝐺(𝑒(𝑡)) < 0, or
if 𝐴𝑙,𝑚 < 0, 𝑒(𝑡) < 0, and 𝐺(𝑒(𝑡)) > 0, where 𝑒(𝑡) = 𝑥(𝑡) − 𝑠(𝑡)
and 𝐺(𝑒(𝑡)) = 𝑔(𝑥(𝑡)) − 𝑔(𝑠(𝑡)), with increasing nonlinearity
of nonlinear coupling function 𝑔(𝑥(𝑡)), global synchronization
dynamics of the network (1) within finite-time 𝑡∗𝐶1 will develop
poorer.

Proof. FromTheorem 12, there are

𝑉𝐶1 (𝑒 (𝑡) , 𝑡) = 𝑁∑
𝑖=1

𝑒𝑇𝑖 (𝑡)𝐻𝑒𝑖 (𝑡) , (32)

2 𝑁∑
𝑖=1

𝑒𝑇𝑖 (𝑡)𝐻 𝜂∑
𝑙=1

𝑁∑
𝑗=1

𝑐𝑙𝑎𝑙,𝑚𝑖𝑗 Γ𝑙𝐺 (𝑒𝑗 (𝑡))

= 2 𝜂∑
𝑙=1

𝑐𝑙𝑒𝑇 (𝑡) (𝐴𝑙,𝑚 ⊗ 𝐻Γ𝑙) 𝐺 (𝑒 (𝑡)) .
(33)

Similar to the proof of Theorem 12, we have

𝑉+𝐶1 (𝑒 (𝑡) , 𝑡) ≤ 2𝑒𝑇 (𝑡) (𝐼𝑁 ⊗ 𝐻𝑄) 𝑒 (𝑡) − 2𝜅𝑒𝑇 (𝑡) 𝑒 (𝑡)
+ 2 𝜂∑
𝑙=1

𝑐𝑙𝑒𝑇 (𝑡) (𝐴𝑙,𝑚 ⊗ 𝐻Γ𝑙) 𝐺 (𝑒 (𝑡))
− 2𝑒𝑇 (𝑡) (Ξ ⊗ 𝐻) 𝑒 (𝑡) − 2𝑐 (𝑉 (𝑒 (𝑡) , 𝑡))(1+𝛽)/2 .

(34)

Combining inequalities (23), (24), and (34), there is𝑉+𝐶1(𝑒(𝑡), 𝑡) ≤ 𝑉+𝑇1(𝑒(𝑡), 𝑡) ≤ −2𝑐(𝑉(𝑒(𝑡), 𝑡))(1+𝛽)/2 ≤ 0 under
Theorem 12.

According to equality (33), it is derived that if 𝐴𝑙,𝑚 > 0,𝑒(𝑡) > 0, and 𝐺(𝑒(𝑡)) > 0, or if 𝐴𝑙,𝑚 > 0, 𝑒(𝑡) < 0, and𝐺(𝑒(𝑡)) < 0, or if 𝐴𝑙,𝑚 < 0, 𝑒(𝑡) > 0, and 𝐺(𝑒(𝑡)) < 0, or if𝐴𝑙,𝑚 < 0, 𝑒(𝑡) < 0, and 𝐺(𝑒(𝑡)) > 0, we have
2 𝜂∑
𝑙=1

𝑐𝑙𝑒𝑇 (𝑡) (𝐴𝑙,𝑚 ⊗ 𝐻Γ𝑙)𝐺 (𝑒 (𝑡)) > 0. (35)
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Next, we prove the relationship between nonlinearity of
nonlinear coupling function 𝑔(𝑥(𝑡)) and the equality (35).
Letting 𝑥(𝑡) be fixed, then if nonlinearity of nonlinear
coupling function 𝑔(𝑥(𝑡)) is more serious, ‖𝑔(𝑥(𝑡))‖ must
become larger. This leads to ‖𝐺(𝑒(𝑡))‖ increasing. Therefore,
with increasing nonlinearity of 𝑔(𝑥(𝑡)), 𝐺(𝑒(𝑡)) > 0 and𝐺(𝑒(𝑡)) < 0 will increase and decrease, respectively. This
causes that, under 𝐴𝑙,𝑚 > 0, 𝑒(𝑡) > 0, and 𝐺(𝑒(𝑡)) > 0, or𝐴𝑙,𝑚 > 0, 𝑒(𝑡) < 0, and 𝐺(𝑒(𝑡)) < 0, or 𝐴𝑙,𝑚 < 0, 𝑒(𝑡) > 0,
and 𝐺(𝑒(𝑡)) < 0, or 𝐴𝑙,𝑚 < 0, 𝑒(𝑡) < 0, and 𝐺(𝑒(𝑡)) > 0, the
above equality (35) must be larger if nonlinearity of 𝑔(𝑥(𝑡))
develops more serious. This makes 𝑉+𝐶1(𝑒(𝑡), 𝑡) ≤ 0 increase.
This completes the proof.

Similar to the proof of Corollary 18, we can obtain
Corollaries 19–21.

Corollary 19. Under �eorem 12 and the controller (18), if𝐴𝑙,𝑚 > 0, 𝑒(𝑡) < 0, and 𝐺(𝑒(𝑡)) > 0, or if 𝐴𝑙,𝑚 > 0, 𝑒(𝑡) > 0,
and 𝐺(𝑒(𝑡)) < 0, or if 𝐴𝑙,𝑚 < 0, 𝑒(𝑡) > 0, and 𝐺(𝑒(𝑡)) > 0, or
if 𝐴𝑙,𝑚 < 0, 𝑒(𝑡) < 0, and 𝐺(𝑒(𝑡)) < 0, where 𝑒(𝑡) = 𝑥(𝑡) − 𝑠(𝑡)
and 𝐺(𝑒(𝑡)) = 𝑔(𝑥(𝑡)) − 𝑔(𝑠(𝑡)), with increasing nonlinearity
of nonlinear coupling function 𝑔(𝑥(𝑡)), global synchronization
dynamics of the network (1) within finite-time 𝑡∗𝐶2 will become
better.

Corollary 20. Suppose that function 𝑝(]) is decreasing func-
tion and 𝑝(]) > 0. �en, under �eorem 13 and the controller
(29), if𝐴𝑙,𝑚 > 0, 𝑒(𝑡) > 0, and𝐺(𝑒(𝑡)) > 0, or if𝐴𝑙,𝑚 > 0, 𝑒(𝑡) <0, and 𝐺(𝑒(𝑡)) < 0, or if𝐴𝑙,𝑚 < 0, 𝑒(𝑡) > 0, and 𝐺(𝑒(𝑡)) < 0, or
if 𝐴𝑙,𝑚 < 0, 𝑒(𝑡) < 0, and 𝐺(𝑒(𝑡)) > 0, where 𝑒(𝑡) = 𝑥(𝑡) − 𝑠(𝑡)
and 𝐺(𝑒(𝑡)) = 𝑔(𝑥(𝑡)) − 𝑔(𝑠(𝑡)), with increasing nonlinearity
of nonlinear coupling function 𝑔(𝑥(𝑡)), global synchronization
dynamics of the network (1) within finite-time 𝑡∗𝐶3 will be poorer
and synchronization convergence time 𝑡∗𝐶3 of the network (1)
becomes larger.

Corollary 21. Suppose that function 𝑝(]) is increasing func-
tion and 𝑝(]) > 0. �en, under �eorem 13 and the controller
(29), if𝐴𝑙,𝑚 < 0, 𝑒(𝑡) > 0, and𝐺(𝑒(𝑡)) > 0, or if𝐴𝑙,𝑚 < 0, 𝑒(𝑡) <0, and 𝐺(𝑒(𝑡)) < 0, or if𝐴𝑙,𝑚 > 0, 𝑒(𝑡) > 0, and 𝐺(𝑒(𝑡)) < 0, or
if 𝐴𝑙,𝑚 > 0, 𝑒(𝑡) < 0, and 𝐺(𝑒(𝑡)) > 0, where 𝑒(𝑡) = 𝑥(𝑡) − 𝑠(𝑡)
and 𝐺(𝑒(𝑡)) = 𝑔(𝑥(𝑡)) − 𝑔(𝑠(𝑡)), with increasing nonlinearity
of nonlinear coupling function 𝑔(𝑥(𝑡)), global synchronization
dynamics of the network (1) within finite-time 𝑡∗𝐶4 will become
better and synchronization convergence time 𝑡∗𝐶4 of the network
(1) will be smaller.

Remark 22. In Corollaries 20 and 21, it is seen that function𝑝(]) > 0 is decreasing function and increasing function,
respectively. Why? Similar to the proof of Corollary 18, it
is obtained that, in Corollary 21, if 𝑒(𝑡) ̸= 0, there is∑𝜂
𝑙=1

𝑐𝑙𝑒𝑇(𝑡)A𝑙,𝑚 ∗ 𝐺(𝑒(𝑡)) < 0, where A𝑙,𝑚 = 𝐴𝑙,𝑚 ⊗ 𝐻Γ𝑙.
Moreover, with increasing nonlinearity of nonlinear coupling
function 𝑔(⋅), ∑𝜂

𝑙=1
𝑐𝑙𝑒𝑇(𝑡)A𝑙,𝑚𝐺(𝑒(𝑡)) < 0 becomes smaller.

This causes 𝑉+𝐶4(𝑒(𝑡), 𝑡) ≤ 0 to decrease. Thus, synchroniza-
tion time 𝑡∗𝐶4 will be smaller. Therefore, in inequality (30) of
Theorem 13, let 𝑝(]) > 0 be increasing function and then it

can be realized. In Corollary 20, by using the similar analysis,
it is needed to make 𝑝(]) > 0 be decreasing function.
Remark 23. By Theorem 13 and Corollaries 20 and 21, it is
obtained that the proposed finite-time computing approach
can not only estimate synchronization time of the network
(1) but also reflect that nonlinear coupling function 𝑔(⋅),
coupling matrix𝐴𝑙,𝑚, the initial conditions, and synchroniza-
tion states are how to impact synchronization dynamics of
the network (1). This reveals the relationship between the
multi-weighted coupling term and the finite-time synchro-
nization dynamics in the network (1). Recently, although
some wonderful works about finite-time synchronization
problems of nonlinear coupling systems such as stochastic
chaotic neural networks [2], Lur’e networks [41], and so
on [27] have been developed, synchronization time of the
addressed nonlinear coupling systems can be estimated by
the derived finite-time approaches. Unfortunately, it is pity
that the obtained finite-time results cannot reflect the effect
of coupling term on finite-time synchronization dynamics of
the considered coupling systems. This testifies that compared
with the existing results [2, 27, 41], the main advantage of the
proposed finite-time approach is more feasible.

Corollary 24. Under Corollaries 18 and 20, global synchro-
nization dynamics of the network (1) within finite time 𝑡∗𝑇1
is poorer than that of the network (1) within finite time 𝑡∗𝑇2
and synchronization convergence time 𝑡∗𝑇1 of the network (1)
is larger than synchronization convergence time 𝑡∗𝑇2 of the
network (1).

Proof. From the proof of Corollaries 18 and 20, there must
be 𝑉+𝐶3(𝑒(𝑡), 𝑡) < 𝑉+𝐶1(𝑒(𝑡), 𝑡) ≤ 0. This shows that, under
Corollaries 18 and 20, finite-time synchronization dynamics
of the network (1) with the controller (29) is better than that
of the network (1) with the controller (18). Thus, there must
be 𝑡∗𝑇1 > 𝑡∗𝑇2 > 0. Because of 𝑡∗𝑇1 ≤ 𝑉1−𝜂(0)/2𝑐(1 − 𝜂) and𝑡∗𝑇2 ≤ 𝑉1−𝜂(0)/2𝑐(1 − 𝜂)(1 + 𝑝(])), where 𝑐 > 0 and 𝑝(]) > 0,
we can make 𝑡∗𝑇1 > 𝑡∗𝑇2 > 0 hold. The proof is completed.

Corollary 25. Under Corollaries 19 and 21, global synchro-
nization dynamics of the network (1) within finite-time 𝑡∗𝑇1
is poorer than that of the network (1) within finite-time 𝑡∗𝑇2
and synchronization convergence time 𝑡∗𝑇1 of the network (1)
is larger than synchronization convergence time 𝑡∗𝑇2 of the
network (1).

Proof. Similar to the proof of Corollary 24, we can derive
Corollary 25.

Remark 26. By Corollaries 18–21, it is difficult to obtain
nonlinearity of nonlinear coupling function being how to
impact global synchronization in finite time for the network
(1). The reason is that the impact of nonlinear coupling
function on finite time synchronization dynamics of the
network (1) is not only related to 𝐺(𝑒(𝑡)) > 0 but also
closely connected with 𝐴𝑙,𝑚 > 0, 𝑒(𝑡) < 0, and 𝐺(𝑒(𝑡)) >0, where 𝑒(𝑡) = 𝑥(𝑡) − 𝑠(𝑡) and 𝐺(𝑒(𝑡)) = 𝑔(𝑥(𝑡))) −𝑔(𝑠(𝑡))). All these show that the impact of nonlinear coupling
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function on finite time synchronization dynamics of the
network (1) is decided by the initial state 𝑥(0), nonlinear
coupling function 𝑔(𝑥(𝑡)), synchronization state 𝑠(𝑡), and
coupling matrix 𝐴𝑙,𝑚. Furthermore, Corollaries 24 and 25
further testify that synchronization time estimation scheme
of Theorem 13 is more feasible and reasonable than that
of Theorem 12. Therefore, for nonlinear coupling systems,
how to design more scientific and practical controller is very
meaningful and valuable.

Similar to the proof of Corollary 18 and letting 𝑠1 ∈ 𝑀,(𝑠1 + 1) ∈ 𝑀, then we can also obtain the switching of 𝐴𝑙,𝑚
being how to affect finite-time synchronization dynamics of
the network (1).

Corollary 27. Under �eorem 13 and the controller (29), if𝑒(𝑡) > 0 and 𝐺(𝑒(𝑡)) > 0, or if 𝑒(𝑡) < 0 and 𝐺(𝑒(𝑡)) < 0, where𝑒(𝑡) = 𝑥(𝑡) − 𝑠(𝑡) and 𝐺(𝑒(𝑡)) = 𝑔(𝑥(𝑡)) − 𝑔(𝑠(𝑡)), finite-time
synchronization dynamics of the network (1) based on𝐴𝑙,𝑠1 > 0
and 𝐴𝑙,𝑠1+1 > 0 is poorer than that of the network (1) built on𝐴𝑙,𝑠1 > 0 and 𝐴𝑙,𝑠1+1 < 0 or 𝐴𝑙,𝑠1 < 0 and 𝐴𝑙,𝑠1+1 > 0.
Corollary 28. Under �eorem 13 and the controller (29), if𝑒(𝑡) > 0 and 𝐺(𝑒(𝑡)) < 0, or if 𝑒(𝑡) < 0 and 𝐺(𝑒(𝑡)) > 0, where𝑒(𝑡) = 𝑥(𝑡) − 𝑠(𝑡) and 𝐺(𝑒(𝑡)) = 𝑔(𝑥(𝑡)) − 𝑔(𝑠(𝑡)), finite-time
synchronization dynamics of the network (1) based on𝐴𝑙,𝑠1 < 0
and 𝐴𝑙,𝑠1+1 < 0 is poorer than that of the network (1) built on𝐴𝑙,𝑠1 > 0 and 𝐴𝑙,𝑠1+1 < 0 or 𝐴𝑙,𝑠1 < 0 and 𝐴𝑙,𝑠1+1 > 0.
Corollary 29. Under �eorem 13 and the controller (29), if𝑒(𝑡) > 0 and 𝐺(𝑒(𝑡)) > 0, or if 𝑒(𝑡) < 0 and 𝐺(𝑒(𝑡)) < 0, where𝑒(𝑡) = 𝑥(𝑡) − 𝑠(𝑡) and 𝐺(𝑒(𝑡)) = 𝑔(𝑥(𝑡)) − 𝑔(𝑠(𝑡)), finite-time
synchronization dynamics of the network (1) based on𝐴𝑙,𝑠1 < 0
and 𝐴𝑙,𝑠1+1 < 0 is better than that of the network (1) built on𝐴𝑙,𝑠1 > 0 and 𝐴𝑙,𝑠1+1 < 0 or 𝐴𝑙,𝑠1 < 0 and 𝐴𝑙,𝑠1+1 > 0.
Corollary 30. Under �eorem 13 and the controller (29), if𝑒(𝑡) > 0 and 𝐺(𝑒(𝑡)) < 0, or if 𝑒(𝑡) < 0 and 𝐺(𝑒(𝑡)) > 0, where𝑒(𝑡) = 𝑥(𝑡) − 𝑠(𝑡) and 𝐺(𝑒(𝑡)) = 𝑔(𝑥(𝑡)) − 𝑔(𝑠(𝑡)), finite-time
synchronization dynamics of the network (1) based on𝐴𝑙,𝑠1 > 0
and 𝐴𝑙,𝑠1+1 > 0 is better than that of the network (1) built on𝐴𝑙,𝑠1 > 0 and 𝐴𝑙,𝑠1+1 < 0 or 𝐴𝑙,𝑠1 < 0 and 𝐴𝑙,𝑠1+1 > 0.
Remark 31. Note that there is no function relationship
between 𝑡∗𝑇2 and switching of 𝐴𝑙,𝑚. Therefore, the weakness
of the application of the proposed method is that the impact
of the switching on finite-time synchronization dynamics of
the network (1) cannot be reflected by 𝑡∗𝑇2. This shows that
synchronization finite time estimation approach located in
Theorem 13 still exists in some conservatism. In the future,
it would be very interesting to further investigate the issue.
Besides this, from Corollaries 18–28, there are 𝐴𝑙,𝑚 > 0 or𝐴𝑙,𝑚 < 0. Therefore, one has 𝜆(𝐴𝑙,𝑚) > 0 or 𝜆(𝐴𝑙,𝑚) <0. Letting 𝐴𝑙,𝑚 = [−2, 1, 1; 1, −2, 1; 1, 1, −2], then one gets
that 𝜆(𝐴𝑙,𝑚) is -3, -3, and 0, respectively. This shows that if𝑎𝑙,𝑚𝑖𝑖 = −∑𝑁𝑗=1,𝑗 ̸=𝑖 𝑎𝑙,𝑚𝑖𝑗 , 𝐴𝑙,𝑚 > 0 and 𝐴𝑙,𝑚 < 0 may not hold.
Therefore, if coupling matrix 𝐴𝑙,𝑚 satisfies diffusive coupled

condition, under Theorems 12 and 13, it is difficult to obtain
the impact of nonlinear coupling function 𝑔(⋅) on finite-time
synchronization dynamics of the network (1) from theory
aspect.

Remark 32. Compared with the nonfinite-time control,
finite-time control can improve robust performance and
antidisturbance performance of systems [2]. Therefore,
recently, besides finite-time synchronization control of com-
plex networks, finite-time scaled consensus control of multi-
agent systems has been paid close attention [48, 49]. In [48,
49], based on linear iterations and graph theory, Shang inves-
tigated finite-time scaled consensus control about discrete-
timemulti-agent system. It is seen that [48, 49] and this paper
consider finite-time control problems about coupling sys-
tems. Moreover, it can also be found that [48, 49] addressed
scaled consensus of linear coupling discrete-timemulti-agent
system within finite steps and the derived finite time in
[48, 49] is a positive integer. In this paper, synchronization
of NCMWCNs within finite time 𝑡∗ is proposed and the
obtained finite time 𝑡∗ is a real number and greater than zero.

Remark 33. It is worth noting that because finite time control
is mainly dependent on the initial conditions and fixed-
time control does not rely on the initial conditions [50,
51]; in a few years recently, fixed-time control problems
such as fixed-time synchronization [52], fixed-time group
consensus [50], and fixed-time group tracking [51] began
to be widely studied. For example, in [50, 51], according
to graph theory and Lyapunov stability theory, fixed-time
group consensus and fixed-time group tracking for multi-
agent systems were investigated, respectively. Compared with
coupling function 𝑔(⋅) of the network (1), nonlinear function𝑓(⋅) of the considered multi-agent systems in [50, 51] is
more general. Besides this, in [50, 51], multi-agent systems
were coupled by linear coupling ways. If there is nonlinear
coupling relationship in each agent of multi-agent systems,
how to further explore fix-time consensus is a challenging
and attractive question. Furthermore, from this paper and
[50–52], it is seen that the similarity and difference between
finite-time synchronization and fixed-time synchronization
are as follows: (I) the similarity is how to get synchronization
time for the addressed systems and (II) the difference is that
finite time synchronization is closely related to the initial
conditions; otherwise, fixed-time synchronization is not.

Remark 34. In the last few years, some valuable and mean-
ingful results about synchronization dynamics problems of
linear coupling complex or nonlinear coupling complex
networks have been obtained [1–25, 29–34, 37–40]. However,
these existing works mainly concentrated on how to derive
sufficient conditions for synchronization problems of the
considered complex networks. In this paper, the research
about sufficient conditions of finite-time synchronization and
synchronization dynamics criteria on the impact of nonlinear
coupling function and outer-coupling matrix switching for
the addressed complex networks is explored. All these show
that our derived results enrich and complement the earlier
works.
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4. Numerical Examples

In order to test the effectiveness of the derived results, two
examples are given. Define the synchronization total error
being 𝑒(𝑡) = ∑3𝑖=1∑2𝑗=1 𝑒𝑖𝑗(𝑡), and assume𝑁 = 3, 𝑐1 = 𝑐2 = 1,𝑚 = 1, 2, and 𝑙 = 1, 2; then the network (1) with the controller
(29) is as follows:

̇𝑥𝑖 (𝑡) = 𝑓 (𝑥𝑖 (𝑡)) + 3∑
𝑗=1

𝑎1,𝑚𝑖𝑗 Γ1𝑔 (𝑥𝑗 (𝑡))

+ 3∑
𝑗=1

𝑎2,𝑚𝑖𝑗 Γ2𝑔 (𝑥𝑗 (𝑡)) − 𝜀𝑖𝑒𝑖 (𝑡)
− 𝑐 (1 + 𝑝 (]))𝐻(𝛽−1)/2sign (𝑒𝑖 (𝑡)) 𝑒𝑖 (𝑡)𝛽 ,

(36)

where

𝑓 (𝑥𝑖 (𝑡)) = [−3 tanh (3𝑥𝑖1 (𝑡))−3 tanh (3𝑥𝑖2 (𝑡))] ,
Γ1 = Γ2 = [1 0

0 1] .
(37)

Example 1. According to𝐴𝑙,𝑚, 𝑒(𝑡), and 𝐺(𝑒(𝑡)) of Corollaries
20 and 21, it is observed that there exist four cases in
Corollaries 20 and 21. Because the simulation process of the
other cases including cases III and IV of Corollaries 20 and
21, cases I-IV of Corollaries 18 and 19 are similar to that of
cases I and II in Corollaries 20 and 21; this example gives the
simulation results of cases I and II in Corollaries 20 and 21.

Case I of Corollary 20. 𝐴𝑙,𝑚 > 0, 𝑒(𝑡) > 0, and 𝐺(𝑒(𝑡)) > 0,
where 𝑒(𝑡) = 𝑥(𝑡) − 𝑠(𝑡) and 𝐺(𝑒(𝑡)) = 𝑔(𝑥(𝑡)) − 𝑔(𝑠(𝑡)). Let𝑥1(0) = (1, 1.5)𝑇, 𝑥2(0) = (2, 2.5)𝑇, 𝑥3(0) = (3, 3.5)𝑇, and

𝐴𝑙,𝑚𝐶3−𝐶𝐼 = [[
[
1.4 0.3 0.6
0.3 1.5 0.5
0.6 0.5 1.6

]]
]
,

𝑔(1)(𝐶3−𝐶𝐼) (𝑥𝑖 (𝑡)) = [tanh (𝑥𝑖1 (𝑡))
tanh (𝑥𝑖2 (𝑡))] .

(38)

From Assumptions 4–5, we have 𝜅 = 1,𝐻 = 𝐼2, 𝑄 = 0, ](1) =1.2, and 𝜑𝑙,𝑚 = 𝐼6. Choosing Ξ = 6𝐼3, it is easily testified that
inequality (28) inTheorem 13 holds. Thus, we have 𝑡∗(1)

(𝐶3−𝐶𝐼)
<0.81, where 𝛽 = 0.4, 𝑐 = 1, 𝑝(1)(]) = 12, and 𝑉(0) =34.75. Next, making 𝑔(2)(𝐶3−𝐶𝐼)(𝑥𝑖(𝑡)) = [0.7 tanh(0.7𝑥𝑖1(𝑡)),0.7 tanh(0.7𝑥𝑖2(𝑡))]𝑇 and𝑔(3)(𝐶3−𝐶𝐼)(𝑥𝑖(𝑡)) = [0.3 tanh(0.3𝑥𝑖1(𝑡)),0.3 tanh(0.3𝑥𝑖2(𝑡))]𝑇, we derive that inequality (28) in Theo-

rem 13 still holds, where Ξ = 6𝐼3, ](2) = 0.9, and ](3) = 0.5.
Taking 𝑝(2)(]) = 12.3, 𝑝(3)(]) = 12.5, and 𝑐 = 1, we get𝑡∗(2)
(𝐶3−𝐶𝐼)

< 0.79 and 𝑡∗(3)
(𝐶3−𝐶𝐼)

< 0.78.
Case II of Corollary 20.𝐴𝑙,𝑚 > 0, 𝑒(𝑡) < 0, and𝐺(𝑒(𝑡)) < 0. Let𝐴𝑙,𝑚𝐶3−𝐶𝐼𝐼 = 𝐴𝑙,𝑚𝐶3−𝐶𝐼, 𝑔()(𝐶3−𝐶𝐼𝐼)(𝑥𝑖(𝑡)) = 𝑔()(𝐶3−𝐶𝐼)(𝑥𝑖(𝑡)), 𝑥1(0) =

(−1, −1.5)𝑇, 𝑥2(0) = (−2, −2.5)𝑇, and 𝑥3(0) = (−3, −3.5)𝑇,  =1, 2, 3. From the above case I and 𝑔()
(𝐶3−𝐶𝐼𝐼)

(𝑥𝑖(𝑡)), there areΞ = 6𝐼3, 𝜅 = 1, 𝐻 = 𝐼2, 𝑄 = 0, ](1) = 1.2, ](2) = 0.9, and
](3) = 0.5. Choosing 𝑝(1)(]) = 12, 𝑝(2)(]) = 12.3, 𝑝(3)(]) =12.5, and 𝑐 = 1, we get 𝑡∗(1)(𝐶3−𝐶𝐼𝐼) < 0.81, 𝑡∗(2)(𝐶3−𝐶𝐼𝐼) < 0.79, and𝑡∗(3)
(𝐶3−𝐶𝐼𝐼)

< 0.78.
Case I of Corollary 21. 𝐴𝑙,𝑚 < 0, 𝑒(𝑡) > 0, and 𝐺(𝑒(𝑡)) > 0.
Taking 𝐴𝑙,𝑚𝐶4−𝐶𝐼 = −𝐴𝑙,𝑚𝐶3−𝐶𝐼, 𝑔()(𝐶4−𝐶𝐼)(𝑥𝑖(𝑡)) = 𝑔()(𝐶3−𝐶𝐼)(𝑥𝑖(𝑡)),𝑥1(0) = (1, 1.5)𝑇, 𝑥2(0) = (2, 2.5)𝑇 and 𝑥3(0) = (3, 3.5)𝑇,Ξ = 6𝐼3, 𝜅 = 1,𝐻 = 𝐼2,𝑄 = 0, ](1) = 1.2, ](2) = 0.9, ](3) = 0.5,𝑝(1)(]) = 12.5, 𝑝(2)(]) = 12.3, 𝑝(3)(]) = 12, and 𝑐 = 1, we
obtain 𝑡∗(1)

(𝐶4−𝐶𝐼)
< 0.78, 𝑡∗(2)

(𝐶4−𝐶𝐼)
< 0.79, and 𝑡∗(3)

(𝐶4−𝐶𝐼)
< 0.81.

Case II of Corollary 21.𝐴𝑙,𝑚 < 0, 𝑒(𝑡) < 0, and 𝐺(𝑒(𝑡)) < 0. We
choose 𝐴𝑙,𝑚𝐶4−𝐶𝐼 = −𝐴𝑙,𝑚𝐶3−𝐶𝐼, 𝑔()(𝐶4−𝐶𝐼)(𝑥𝑖(𝑡)) = 𝑔()(𝐶3−𝐶𝐼)(𝑥𝑖(𝑡)),𝑥1(0) = (−1, −1.5)𝑇, 𝑥2(0) = (−2, −2.5)𝑇, and 𝑥3(0) =(−3, −3.5)𝑇. Similar to case I, it is obtained that 𝑡∗(1)

(𝐶4−𝐶𝐼𝐼)
<0.78, 𝑡∗(2)

(𝐶4−𝐶𝐼𝐼)
< 0.79, 𝑡∗(3)

(𝐶4−𝐶𝐼𝐼)
< 0.81, Ξ = 6𝐼3, 𝜅 = 1,𝐻 = 𝐼2,𝑄 = 0, ](1) = 1.2, 𝑛𝑢(2) = 0.9, ](3) = 0.5, 𝑝(1)(]) = 12.5,𝑝(2)(]) = 12.3, 𝑝(3)(]) = 12, and 𝑐 = 1.

Example 2. From Corollaries 27–30, it is seen that the other
derived results inCorollaries 27–30 are similar to that of cases
I-1 and I-2 in Corollaries 27 and 29, respectively.Therefore, in
this example, we only give the simulation results of cases I-1
and I-2 Corollaries 27 and 29. According to Example 1 and
Theorem 13, there are 𝑔(𝑥𝑖(𝑡)) = [tanh(𝑥𝑖1(𝑡)), tanh(𝑥𝑖2(𝑡))]𝑇,𝜅 = 1,𝐻 = 𝐼2, 𝑄 = 0, ](1) = 1.2, and 𝜑𝑙,𝑚 = 𝐼6.
Case I-1 of Corollary 27. 𝑒(𝑡) > 0, 𝐺(𝑒(𝑡)) > 0, 𝐴𝑙,𝑠1 > 0,
and 𝐴𝑙,𝑠1+1 > 0. Letting 𝑥1(0) = (1, 1.5)𝑇, 𝑥2(0) = (2, 2.5)𝑇,𝑥3(0) = (3, 3.5)𝑇, and

𝐴𝑙,1𝐶7−𝐶𝐼−1 = 𝐴𝑙,2𝐶7−𝐶𝐼−1 = [[
[
1.4 0.3 0.6
0.3 1.5 0.5
0.6 0.5 1.6

]]
]
, (39)

then we have Ξ = 6𝐼3, 𝛽 = 0.4, 𝑐 = 1, 𝑝(]) = 12,𝑉(0) = 34.75,
and 𝑡∗𝐶7−𝐶𝐼−1 < 0.81.
Case I-2 of Corollary 27. 𝑒(𝑡) > 0, 𝐺(𝑒(𝑡)) > 0, 𝐴𝑙,𝑠1 > 0,
and 𝐴𝑙,𝑠1+1 < 0. Making 𝑥1(0) = (1, 1.5)𝑇, 𝑥2(0) = (2, 2.5)𝑇,𝑥3(0) = (3, 3.5)𝑇, 𝐴𝑙,1𝐶7−𝐶𝐼−2 = 𝐴𝑙,1𝐶7−𝐶𝐼−1, and 𝐴𝑙,2𝐶7−𝐶𝐼−2 =−𝐴𝑙,1𝐶7−𝐶𝐼−1, we getΞ = 6𝐼3 and 𝑡∗𝐶7−𝐶𝐼−2 < 0.81, where𝛽 = 0.4,𝑐 = 1, 𝑝(]) = 12, and 𝑉(0) = 34.75.
Case I-1 of Corollary 29. 𝑒(𝑡) > 0, 𝐺(𝑒(𝑡)) > 0, 𝐴𝑙,𝑠1 < 0, and𝐴𝑙,𝑠1+1 < 0. Choosing 𝐴𝑙,𝑚𝐶7−𝐶𝐼−2 = −1.1𝐴𝑙,1𝐶7−𝐶𝐼−1, 𝑥1(0) =(1, 1.5)𝑇, 𝑥2(0) = (2, 2.5)𝑇, and 𝑥3(0) = (3, 3.5)𝑇, there areΞ = 6𝐼3 and 𝑡∗𝐶9−𝐶𝐼−1 < 0.81, where 𝛽 = 0.4, 𝑐 = 1, 𝑝(]) = 12,
and 𝑉(0) = 34.75.
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Figure 1: Synchronization state trajectories of the network (36) for
the case I of Corollary 20.
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Figure 2: Synchronization total error trajectories of the network
(36) for the case I of Corollary 20.

Case I-2 of Corollary 29. 𝑒(𝑡) > 0, 𝐺(𝑒(𝑡)) > 0, 𝐴𝑙,𝑠1 > 0,
and 𝐴𝑙,𝑠1+1 < 0. Taking 𝐴𝑙,1𝐶7−𝐶𝐼−2 = 1.1𝐴𝑙,1𝐶7−𝐶𝐼−1, 𝑥1(0) =(1, 1.5)𝑇, 𝑥2(0) = (2, 2.5)𝑇, 𝑥3(0) = (3, 3.5)𝑇, and 𝐴𝑙,2𝐶7−𝐶𝐼−2 =−1.1𝐴𝑙,1𝐶7−𝐶𝐼−1, we obtain Ξ = 6𝐼3 and 𝑡∗𝐶9−𝐶𝐼−2 < 0.81, where𝛽 = 0.4, 𝑐 = 1, 𝑝(]) = 12, and 𝑉(0) = 34.75.
Remark 35. In Figures 1–8, trajectories marked with green,
red, and blue, respectively, represent synchronization state
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Figure 3: Synchronization state trajectories of the network (36) for
the case II of Corollary 20.
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Figure 4: Synchronization total error trajectories of the network
(36) for the case II of Corollary 20.

and total error trajectories of the network (36) with non-
linear coupling functions 𝑔(1)

(𝐶�̂�−𝐶𝐼)
(𝑥𝑖(𝑡)), 𝑔(2)(𝐶�̂�−𝐶𝐼)(𝑥𝑖(𝑡)), and𝑔(3)

(𝐶�̂�−𝐶𝐼)
(𝑥𝑖(𝑡)), where �̂� = 3, 4 and 𝐼 = 𝐼, 𝐼𝐼. From the

simulation results, it is observed that the impact of nonlinear
coupling function on finite-time synchronization dynamics
of the network (36) is that, in cases I-II of Corollaries 20
and 21, with increasing nonlinearity of nonlinear coupling
function 𝑔(⋅), finite-time synchronization dynamics of the
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Figure 5: Synchronization state trajectories of the network (36) for
the case I of Corollary 21.
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Figure 6: Synchronization total error trajectories of the network
(36) for the case I of Corollary 21.

network (36) becomes poorer or better, respectively. Further-
more, it can also seen that, in cases I-II of Corollaries 20 and
21, there are 𝑡∗(1)

(𝐶3−𝐶𝐼)
< 0.81, 𝑡∗(2)

(𝐶3−𝐶𝐼)
< 0.79, 𝑡∗(3)

(𝐶3−𝐶𝐼)
< 0.78

and 𝑡∗(1)
(𝐶4−𝐶𝐼)

< 0.78, 𝑡∗(2)
(𝐶4−𝐶𝐼)

< 0.79, and 𝑡∗(3)
(𝐶4−𝐶𝐼)

< 0.81, where
𝐼 = 𝐼 and 𝐼𝐼. Thus, more feasible 𝑝(]) is chosen to make𝑡∗(1)
(𝐶3−𝐶𝐼)

> 𝑡∗(2)
(𝐶3−𝐶𝐼)

> 𝑡∗(3)
(𝐶3−𝐶𝐼)

> 0 and 0 < 𝑡∗(1)
(𝐶4−𝐶𝐼)

< 𝑡∗(2)
(𝐶4−𝐶𝐼)

<
𝑡∗(3)
(𝐶4−𝐶𝐼)

hold, respectively. That means the proposed finite-
time estimation approach of Theorem 13 can accurately
describe that nonlinearity of 𝑔(⋅) is how to impact global
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Figure 7: Synchronization state trajectories of the network (36) for
the case II of Corollary 21.
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Figure 8: Synchronization total error trajectories of the network
(36) for the case II of Corollary 21.

synchronization dynamic of the network (1) within finite time
interval.

Remark 36. According to Figures 9–12, one can see that,
in cases I-1 and I-2 of Corollaries 27 and 29, the effect of
the switching of coupling matrix 𝐴𝑙,𝑚 on finite-time syn-
chronization dynamic of the network (1) is not only related
to the switching of 𝐴𝑙,𝑚 but also connected with the initial
condition and nonlinear coupling function 𝑔(⋅). Moreover,
from Example 2, one can obtain 𝑡∗𝐶7−𝐶𝐼−1 < 0.81, 𝑡∗𝐶7−𝐶𝐼−2 <0.81, 𝑡∗𝐶9−𝐶𝐼−1 < 0.81, and 𝑡∗𝐶9−𝐶𝐼−2 < 0.81, respectively.
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Figure 9: Synchronization state trajectories of the network (36) for
the case I-1 and I-2 of Corollary 27.
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Figure 10: Synchronization total error trajectories of the network
(36) for the case I-1 and I-2 of Corollary 27.

This shows that the proposed finite-time estimation method
in Theorem 13 cannot reflect that the switching of coupling
matrix 𝐴𝑙,𝑚 is how to impact finite-time synchronization
dynamic of the network (1). This further testifies there still
exists weakness of the application of the proposed method
in Theorem 13. Besides this, by using the above similar
simulation method, the simulation results of the other cases
in Corollaries 27–30 can also be obtained. All these further
show that the derived results in this paper are reasonable and
valuable.

5. Conclusions

Different from the existing earlier works about synchro-
nization problems for nonlinear coupling complex networks
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Figure 11: Synchronization state trajectories of the network (36) for
the case I-1 and I-2 of Corollary 29.
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Figure 12: Synchronization total error trajectories of the network
(36) for the case I-1 and I-2 of Corollary 29.

and neural networks, this paper mainly emphasizes the
impact of nonlinear coupling function and outer-coupling
matrix switching on global synchronization dynamics for a
class of NCMWCNs with switching topology in finite time.
According to the existing and new finite-time synchroniza-
tion theories, two finite-time synchronization controllers are,
respectively, designed to achieve finite-time synchronization
of NCMWCNs with switching topology. Furthermore, based
on the obtained controllers, sufficient conditions of the
impact of nonlinear coupling function and outer-coupling
matrix switching on finite-time synchronization dynamics
for NCMWCNs with switching topology are derived. By
comparing the results of synchronization convergence time
for NCMWCNs, it is testified that synchronization finite time
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estimation approach built on the new finite-time synchro-
nization theory can more effectively reflect that nonlinear
coupling function is how to impact finite-time synchroniza-
tion dynamics. Numerical simulations further demonstrate
the correctness and usefulness of the proposed results.

It should be noted that, in the addressed network of
this paper, time delay is not considered. Actually, due to
information transmission and finite processing speed, in
many real practical systems, time delay is inevitable. Inspired
by the delayed consensus analysis of multi-agent networked
systems [53], in the future, we will propose nonlinear
coupling delayed multi-weighted complex networks with
switching topology and investigate its finite-time/fixed-time
synchronization dynamics. Besides this, in the network (1),
if 𝐴𝑙,𝑚 = (𝑎𝑙,𝑚𝑖𝑗 )𝑁×𝑁 is a complex-valued connection outer-
coupling matrix [54], how to get the related results is still an
open problem.
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