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In order to improve the detection rate of the traditional single-shot multibox detection algorithm in small object detection, a
feature-enhanced fusion SSD object detection algorithm based on the pyramid network is proposed. Firstly, the selectedmultiscale
feature layer is merged with the scale-invariant convolutional layer through the feature pyramid network structure; at the same
time, the multiscale feature map is separately converted into the channel number using the scale-invariant convolution kernel.
 en, the obtained two sets of pyramid-shaped feature layers are further feature fused to generate a set of enhanced multiscale
feature maps, and the scale-invariant convolution is performed again on these layers. Finally, the obtained layer is used for
detection and localization.  e �nal location coordinates and con�dence are output after nonmaximum suppression. Experi-
mental results on the Pascal VOC 2007 and 2012 datasets con�rm that there is a 8.2% improvement in mAP compared to the
original SSD and some existing algorithms.

1. Introduction

With the rapid development of computer vision, object
detection has gradually become one of the important re-
search directions in this �eld, and there are also widely used
requirements in life, such as unmanned driving of auto-
mobiles and underwater detection of robots. It can also be
used for image classi�cation [1–3].

In recent years, pro�ted by the development of deep
learning, the performance of object detection has taken a new
step. e R-CNN [4] structure proposed byHariharan et al. in
2014 is the most representative.  e method makes the object
detection method based on the candidate region suggestion
network develop rapidly, such as the faster R-CNN [5] and
mask R-CNN [6]. However, these methods’ detection is done
on feature maps generated with a single-scale convolution
kernel, and the characteristic load of each layer is too large.
 erefore, regression-based detection methods are gradually
proposed. Redmon et al. proposed the YOLO [7] structure
and Liu et al. proposed the SSD [8] model, which all obtained
the object through regression.  e network frame of the
bounding box and class probability, end-to-end feature

extraction, and object detection achieve speed improvement.
Although the traditional SSD model uses the multiscale
pyramid feature layer for bounding box extraction, the
shallow features used in the structure are only one layer, and
the di¢erent-sized feature maps are not related to each other,
resulting in less feature details [9], while the detection of small
objects requires high-resolution feature maps, resulting in a
weaker e¢ect on small object detection.

At present, many researchers have carried out corre-
sponding research on improving the SSD model’s small
object detection ability. Wen et al. used an atrous �lter to
improve the resolution of feature maps to improve the SSD
algorithm [10] and improved the small object detection
e¢ect by data augmentation. Xing et al. improved the feature
map based on multiscale object distribution, and the scaling
factor of the detection frame makes the algorithm improve
well in detecting pedestrians at a small scale under occlusion
[11]. Tang et al. used multiview through the multiview and
multichannel SSD model to improve the SSD model and
parallel detection, thus improving accuracy [12]. Although
the small object detection has been improved, because of a
variety of regional-divisionmethods, the large objects are easy
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to be split detected, which has an impact on the robustness
and accuracy of the detection, and the single-frame detection
rate is higher. Fu combined with the residual network ResNet
proposed the D-SSD algorithm [13]; its detection accuracy
has a certain improvement, but because of the increase of
network depth, it exposes not only poor drawbacks of real-
time detection but also high computing power, similar to the
F-SSD algorithm proposed by Li and Zhou [14].

In addition, there are some superresolution reconstructions
of the featuremaps using the generative adversarial networks to
reduce the missed detection rate of small objects. +e typical
algorithmP-GANwas proposed by Li et al. [15], but this type of
method also increases the time consumption.

Aiming at the problem of missed detection of the tra-
ditional SSD algorithm in small object detection, especially to
improve small object detection, the feature pyramid network
is used to improve the SSD algorithm, and combined with the
feature fusion, feature pyramid-enhanced fusion based on the
SSD (FPEF-SSD) is proposed, which uses the feature pyramid
network to fusion the feature of the upsampling layer and
scale-invariant convolutional layer while retaining the mul-
tiscale feature layer extracted by the traditional SSD structure.
First, feature fusion is performed, and additionally, the
convolution kernel with the same size is used to perform
channel number conversion on the multiscale feature map.
+en, the two sets of pyramid-shaped feature layers are fused
according to the feature cascade. Finally, a set of enhanced
multiscale feature maps is generated, detecting, locating, and
outputting the final position coordinates and confidence
using NMS (nonmaximum suppression) after performing
scale-invariant convolution on this layer.

2. Related Works

2.1. .e Single-Shot Detector (SSD) Model. Based on the
VGG-16 network structure [16], the SSD algorithm extracts
multiple sets of feature layers in a shape of pyramid for object
class prediction and object frame labeling. Compared with the
regional proposal-based convolutional neural network, the
SSD algorithm cancels a large number of regions. +e pro-
posed generation process greatly improves the speed of de-
tection. It is a multiobject detection algorithm that directly
predicts the object class and outputs the coordinates of the
bounding box. Because of the simultaneous detection in
several pyramid-shaped feature maps, the time consumption
performance of the single feature layer detection algorithm is
effectively eliminated, and the effect is better. +e model
structure of the original SSD algorithm is shown in Figure 1.

Figure 1 shows the network structure of the SSD model,
which is based on VGG-16. In training, the structure of the
similar convolutional layer added to the pooling layer is
repeated; the original fully connected layer FC-6 became a
convolutional layer by a convolution operation with kernel
size 3 and filter depth 1024, and the FC-7 layer performs the
same operation with kernel size 1 and depth 1024; the
convolutional layers conv6_1 to conv9_2 are the additional
layers. And the layers conv4_3, FC-7, conv6_2, conv7_2,
conv8_2, and conv9_2 of the network are extracted to predict
the object location coordinate and confidence, wherein the

conv4_3 layer needs additional L2 regularization on the
channel of each pixel. +e reason is shown in Figure 2.

Figure 2 shows the result of visualizing the weights after
fine tuning the pretraining model provided in [8] (X axis
means the order of the parameter, and Y axis means the
value). It can be seen that, in the conv4_3 layer which is not
normalized, the weight has a significant fluctuation ratio
compared to that of other feature extraction layers, so the
regularization is required. A Lp-regularized operation is to
scale the element values for a given vector x, which is

xnew �
x

‖x‖p. (1)

+erefore, L2 is regularized when p is 2. However, in
order to prevent the eigenvector regularization to 1 because
of too small objects, the network is difficult to train, and the
regularized vector is enlarged by a certain multiple.

+en, through two sets of convolution kernels with a size
of 3 and a quantity of l (l is the number of channels of each
layer feature, specifically determined according to the number
of categories or coordinates), for each feature extracted and
for each position on it, k default boxes will be generated, and k

will be 4 or 6; in each default box position, a confidence value
will be generated for c categories. And it predicted co-
ordinates, including the upper left corner coordinates and the
width and height values. In summary, if the size of the feature
map is m × n, each box needs to predict c + 4 values, so each
layer needs to give a total of (c + 4) × m × n × k outputs.

After summarizing the output of each training image, the
positive and negative sample data need to be determined
accordingly. +e purpose of a brief description of these data
is to distinguish all the output pairs from the real coordinate
by the corresponding class name according to the IoU
(intersection over union). +e formula is as follows:

J(A, B) �
|A∩B|

|A∪B|
. (2)

+e output of all the feature maps can be classified into a
positive sample or a negative sample according to whether
the IoU is greater than a specified threshold (generally 0.5 is
chosen), and the ratio is 1 : 3.

2.2. Multiscale Feature Analysis of SSD. +e multiscale
feature of the original SSD is mainly manifested in the si-
multaneous use of a plurality of different scale feature maps
for the object coordinate and class confidence output.
Combined with the data in Figure 1, a mathematical formula
can be used to abstract the generation process of a multiscale
feature map, which is as follows:

Fn � ϕn Fn− 1( 􏼁 � ϕn ϕn− 1 . . . ϕ1 FInput􏼐 􏼑 . . .􏼐 􏼑􏼐 􏼑, (3)
where Fn represents the n-th feature map; ϕn is the nonlinear
mapping of the n-th feature map obtained by the n − 1-th
feature map, such as the combined operation of convolution
and pooling; and FInput is the most primitive input. +e
output of the final test can be expressed by

R � N Φ1 F1( 􏼁,Φ2 F2( 􏼁, . . . ,Φn Fn( 􏼁( 􏼁, (4)
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where Φi represents the detection result on the i-th feature
map,N represents the final NMS operation, andR is the final
output result.

According to the reasoning of the above formula, under
the SSD model, the feature information of each layer is only
determined by the previous layer. +erefore, every feature
layers need to be complex and abstract enough to detect the
object more accurately. +is means the selected feature map
needs a certain resolution basis to provide better detailed
expression for the detector.

In the feature pyramid network structure of images, the
features which have high resolution on the low-level layer
generally contain less abstract semantic information; how-
ever, features which have low resolution on the high-level
layer usually contain rich semantic information. +erefore,
in the process of feature extraction in the SSD, most small
objects in the original image, whose abstract information on
the high-level feature map will be less by multiple convo-
lution and pooling, become insensitive to the detector.

+erefore, the SSD algorithm mainly uses high-level
abstract features for detection, and the detection effect on
medium and large objects is better. However, the low-level
feature layer used for small-scale object detection is only
conv4_3, so the feature expression ability is insufficient.

3. Feature Pyramid-Enhanced Fusion SSD

3.1. Feature Pyramid Classification in Image Processing.
+e image feature pyramidwas originally proposed byAdelson
et al. [17], whose purpose is to construct multiple scales of the
image so that the model can better adapt to the multiscale
changes of the image. Image pyramids are widely used in fields
such as image recognition and object detection.+ere aremany
types of pyramid networks, and Figure 3 shows some types.

In the pyramid network classification in Figure 3,
Figure 3(a) shows an image with a fixed input size; a series of
gradually smaller layers are generated after convolution and
pooling operations, and the final feature layer is output for
prediction, which is a common single feature map detection,

mostly used for image recognition [18, 19]. Figure 3(b) in-
dicates that the input image is first scaled inmultiple scales, and
then the features of multiscale input images are separately
extracted by the convolution operation; finally, each of the
obtained features is detected, which is called the image pyramid
[20, 21]. Figure 3(c) is similar to Figure 3(a), and the only
difference is that multiple layers are selected in gradually
smaller layers to simultaneously predict and synthesize the
result, which is called the pyramid feature hierarchy network
[8]. Figure 3(d) is similar to Figure 3(b), and the only difference
is that themultiscale featuremap used is upsampled oncemore
and then fused with the features of the corresponding layer to
obtain further feature maps for prediction, whose purpose is to
extract and fuse deeper features when the feature layer is se-
lected, which are called feature pyramid networks [22].

3.2. Feature Pyramid-Enhanced Fusion SSD for Object
Detection. Based on the SSD algorithm and pyramid net-
work structure, an SSD object detection algorithm combined
with the improved feature pyramid network fusion method
is proposed, called FPEF-SSD. +e structure of this network
is shown in Figure 4.

In Figure 4, the network first inputs the image from left
to right, and the size of the input image is cropped to 300.
+e first part is the original SSD model feature selection
layer, and then the six pyramid feature maps are obtained,
which are specified in Section 2.1. +e first five feature maps
are subjected to a scale-invariant convolution operation by
using a convolution kernel of size 1, step size 1, and number
256, whose aim is to unify the number of channels of all
feature maps with the channel of the highest layer. +e
feature of edge information is preserved to the greatest
extent because of the complementary operation. And this
convolved layer is named X − 1, where X represents the
original feature layer name; then, the upper sampling op-
eration is carried out for these five layers except the first
layer, which is shown in the middle portion in Figure 4, and
these layers are enlarged two times to the original one by
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Figure 1: Schematic diagram of the SSD algorithm.
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using the nearest neighbor interpolation; next, starting from
the bottom layer, feature fusion is carried out successively
with the upper sampling layer of the previous layer (the
black solid circles in Figure 4); here, the feature fusion is
element-wise addition, which means the values at the cor-
responding positions of the two sets of features are added, so
the condition is that the size of layers and the number of
channels are exactly the same.

+e loss function of the training mainly uses classifi-
cation loss and regression loss and is expressed as follows:

L(x, c, l, g) �
1
N

Lconf(x, c) + αLloc(x, l, g)( 􏼁. (5)

Here, i represents the i-th default box, j represents the
j-th real box, p represents the p-th class, and x

p
i,j � [0, 1]

represents an input selected from the N matching degrees
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Figure 2: Visualization of feature layer weights.
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higher than 0.5; the i-th default box matches the intersection
ratio coefficient of the j-th true location box of class p; α is by
default set to 1. If N is 0, the loss is 0. Lconf and Lloc are the
class confidence value loss function and the location co-
ordinate loss function, respectively, which are expressed in
equations (6) and (7):

Lconf(x, c) � − 􏽘
N

i∈Pos
x

p
i,jlog 􏽢c

p
i􏼐 􏼑 − 􏽘

N

i∈Neg
log 􏽢c

0
i􏼐 􏼑,

􏽢c
p
i �

exp c
p
i􏼐 􏼑

􏽐pexp c
p
i􏼐 􏼑

,

(6)

Lloc(x, l, g) � 􏽘
N

i∈Posm∈ cx,cy,w,h{ }

􏽘 x
k
i,jsmoothL1 l

m
i − 􏽢g

m
j􏼐 􏼑,

􏽢gcx
j �

gcx
j − dcx

i􏼐 􏼑

dw
i

,

􏽢g
cy

j �
g

cy

j − d
cy

i􏼐 􏼑

dh
i

,

􏽢gw
j � log

gw
j

dw
i

,

􏽢gh
j � log

gh
j

dh
i

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

+e Lconf function is relatively simple, which means the
ratio of c

p
i is obtained by using the SoftMax loss, and the sum

of the logarithms is obtained. In the Lloc equation, g rep-
resents the real mark box, which is the reallocation of the
class in the image, including four parameters; d corresponds
to the size calculated by the default frame position, calculates
all 􏽢g, and makes a difference and finally uses the smooth L1
loss calculation.

After the first fusion operation, because of the combi-
nation of deep and shallow features, the interpolation op-
eration of upper sampling in the shallow layer will bring
errors, so the convolution operation is generally required to
complete the fuzzy removal. +e algorithm in this paper
enhances the feature of this layer before the convolution
operation. Specifically, the first five layers of features after
the first fusion are fused with the features before the
upsampling again (black solid squares in Figure 4) by using
the fusion feature cascade (Concat).+is time, the number of
channels in both sets of features is 256, so there is no need for
additional batch normalization processing, which can as far
as possible ensure the detection speed; finally, these en-
hanced features are convolved again, the convolution kernel
of size 3 is used from the high to the low feature layer, but the
number of channels is 512, 1024, 512, 256, and 256 suc-
cessively. +e detection is carried out on the feature layers of
the last feature pyramid.

Finally, because the SSD algorithm generates a large
number of bounding boxes, including a large number of
borders with errors, overlaps, or low confidence, it must be
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iteratively optimized using NMS, which descends all the
obtained bounding boxes according to the confidence. +en,
the largest one is select, and all the other boxes are compared
with it. If the comparison result is larger than the given IoU,
the box is discarded; otherwise, the box is retained and put
into the final result set. Next, the box with the second highest
confidence level repeats the above steps until the candidate
box is empty, and the resulting bounding box of the final
predicted output is obtained.

4. Experiment

4.1. Experimental Environment and Dataset. +e experi-
mental environment used in this paper is Ubuntu 16.04, the
CPUmodel is Intel Core i5-7500, the GPUmodel is NVIDIA
GeForce GTX 1070 Ti, whose memory size is 8GB, and the
RAM is 16GB. +e main frameworks used are TensorFlow
1.8.0 and OpenCV 3.4.0.

+e experiments in this paper weremainly carried out on
the Pascal VOC 2007 and 2012 datasets. As a standard
dataset, Pascal VOC was used to measure the benchmark
level of object detection capability. +ere are 20 classes, as
shown in Table 1.

4.2. Experimental Steps and Evaluation Indicators. +e
proposed algorithm uses the pretrained VGG-16 weights on
ImageNet as the weights of the first half of the FPEF-SSD
algorithm and transforms the latter half of the VGG-16
network as the model of the FPEF-SSD algorithm. +en, the
trainval set of VOC 2007 is used for training. Finally, the
algorithmwas tested on the VOC 2007 test set.+e batch size
is set to 16, the initial learning rate is 0.001, the number of
iterations is 120,000, the attenuation is increased with the
number of iterations, and the learning rate is set to 0.0001 in
the case of 80,000 to 100,000 times and set to 0.00001 in the
case of 100,000 to 120,000 times.

Since the class confidence and location need to be
evaluated in the object detection problem, each image may
contain multiple objects under multiple categories, so the
metrics such as the correct rate used in the common image
classification cannot be used continuously in the object
detection problem. In the Pascal VOC 2007 test set, the
detection accuracy and speed of the relevant algorithms are
mainly compared. Among them, the mAP (mean average
precision) is used as the evaluation index of accuracy, and
the FPS (frames per second) is used as the evaluation index
for real-time detection.

+e mAP used in this experiment means that, in the
multiclass object detection, the P-R curve can be drawn
according to the precision and recall for each class. +e
calculation formula of the precision and recall is as follows:

P �
TP

TP + FP
,

R �
TP

TP + FN
,

(8)

where TP represents the number of positive samples pre-
dicted as positive samples, FP represents the number of

negative samples predicted as positive samples, and FN
represents the number of positive samples predicted as
negative samples.

+e area obtained by intersecting the P-R curve with the
coordinate axis is the average precision, so the mAP means
the average AP value of all classes. +e formula is expressed
as follows:

AP � 􏽚
1

0
P(R)dR,

mAP � 􏽘
N

i�1

AP(i)

N
.

(9)

+e FPS is defined as the number of pictures that can be
recognized in one second. When the representation is
smoother, the following formula can be calculated:

FPS �
1000
time

, (10)

where time represents the time spent on the detection of
each image. When the frame rate is generally above 24, it can
be considered to be basically smooth.

4.3. Experimental Results and Analysis. +e FPEF-SSD al-
gorithm is compared with some existing excellent object
detection algorithms on the VOC 2007 test set, mainly the
SSD, YOLO, and faster R-CNN. +e results are shown in
Table 2, where the original SSD uses a size of 300, which is
the same as that in [8]; YOLO version 3 is used to retrain the
VOC 2007 training set according to the open-source code, in
which the batch size is 32, the input size is 320, the initial
learning rate is 0.001, and the total iteration is 50,000 times;
and the faster R-CNN uses the VGG network, in which the
regional proposal is 2000, obtained from the result in [5]. All
of the following test results are based on the IOU of 0.5.

It can be seen from Table 2 that the proposed algorithm
is 5.6% higher than the original SSD and has a 3.7% im-
provement over the two-step detection algorithm faster
R-CNN. In terms of detection speed, the time cost of a single
image under the proposed algorithm is about 24ms, which is
similar to that of the YOLO algorithm. And compared with
the original SSD, there is only loss of 5 FPS, but the mAP is
greatly improved.

In the detection precision of each class, the proposed
algorithm is compared with these algorithms, and the results
are shown in Table 3. Compared with the other three al-
gorithms, the precision of the improved SSD is improved in
most classes. And compared with the traditional SSD, under
the condition of the same-scale dataset training, the im-
proved algorithm has a significant improvement in the

Table 1: Classes of Pascal VOC datasets.
Class
person,
aero, bike, boat, bus, car, m-bike, train,
bottle, chair, table, plant, sofa, TV,
bird, cat, cow, dog, horse, sheep
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object detection of small sample classes, such as aeroplane
and plant.

+en, each of the algorithms is tested on a Pascal VOC
2012 dataset. Specifically, VOC 2007 and 2012 are used
together as a training set for testing the test set of VOC 2012,
and all other training processes are the same as only VOC
2007 training. +e results are shown in Tables 4 and 5.

Compared with the original algorithm, the FPEF-SSD
algorithm almost completely surpasses in 20 classes and has
good effects, especially for small sample classes such as
aeroplane. With Pascal VOC 2007 and 2012 as the training
data, the maximum improvement is 8.2%. +e precision of
the improved algorithm is improved more than 2%, so the
effect is obviously better than that of the traditional SSD.
Although it is weaker than YOLO or faster R-CNN in some
classes, it still has a chance to catch up, and it has an ad-
vantage of speed improvement. For example, some images
are randomly downloaded from the Internet, which are used
to compare the detection effects of these algorithms, and the
results are shown in Figure 5 (based on Pascal VOC 2007
and 2012).

According to the results of different algorithms shown
in Figure 5, the faster R-CNN is good, but it takes a long
time, and some classes have multiple detections; in
Figure 5(b) (bottle), we can see that our algorithm has a
better effect and the original SSD has the worst effect; in
Figure 5(c), our algorithm is equivalent to the faster
R-CNN and consumes less time; in Figures 5(d) and 5(e),
the classes have a slightly larger size, so each algorithm
shows a general performance and the confidence of the first
three algorithms is not very high. +e comprehensive
comparison also shows that the results of FPEF-SSD are
ideal, and there is a certain improvement in the detection of
small objects.

Figure 6 shows the relationship between iteration and
loss, with the results on VOC 2007 training and VOC 2007
and 2012 joint training. +e results show that when the
iteration is about 60,000 times, it starts to smoothen and

finally converge, and also the effect of joint training is better
than that of VOC 2007 training only.

In addition, in order to explain the improvement effect
of the proposed algorithm on the small object detection
capability, the trained original SSD and improved SSD are,
respectively, visualized for the feature map process of an
image, and the results are shown in Figure 7.

Figure 7 shows the visualization of the feature map
process of the trained original SSD and improved SSD. +e
feature layer of the above-mentioned aeroplane group image
after convolution is selected. Because of space limitations,
the representative bottom layer conv4_3 is selected, and
since the number of channels is several hundred layers, some
representative ones are manually selected at the channel
level. Figure 7(a) shows the underlying conv4_3 feature map
of the original SSD algorithm, and Figure 7(b) shows the
underlying feature map of the improved algorithm. +e
main characteristics of the underlying conv4_3 layer are
high resolution but low-level abstraction, which can learn
the basic features of points and colors. It can be seen from
the figure that the original algorithm has a low expression
ability and the extraction is also not very sufficient. +is is
the reason for the poor effect on small object detection; on
the contrary, the improved FPEF-SSD extracts the texture
and detail features on the low-level feature map more
abundantly than the original algorithm, and the outline and
shape are more clear and distinct.

+e SSD model mainly uses low-level features to detect
small objects and uses high-level features to detect medium
and large objects. However, the low-level convolutional layer
for small object detection in the SSD model has only one
layer called conv4_3, and the feature expression ability is
insufficient. Although the high-level convolutional layer
contains 5 layers, its feature extraction ability for the me-
dium object is still insufficient, whichmakes the SSDmodel’s
detection effect on the medium object and the small object
weaker than that on the large object. In this paper, the deeper
feature map of the SSD is merged with the low feature map.

Table 2: Comparison of mAP and FPS results of Pascal VOC 2007.

Methods mAP (%) FPS
Faster R-CNN 69.9 10
YOLOv3 67.6 42
SSD 68.0 46
FPEF-SSD 73.2 41

Table 3: Comparison of results of Pascal VOC 2007.

Methods aero bike bird boat bottle bus car cat chair cow
Faster R-CNN 70.0 80.6 70.1 57.3 49.9 78.2 80.4 82.0 52.2 75.3
YOLOv3 72.8 76.6 59.9 56.3 51.2 75.9 82.9 71.6 52.6 65.5
SSD 73.4 77.5 64.1 59.0 38.9 75.2 80.8 78.5 46.0 67.8
FPEF-SSD 75.8 82.7 71.7 63.4 48.7 81.6 83.3 80.5 51.3 66.5
Methods table sofa dog horse train plant m-bike person TV sheep
Faster R-CNN 67.2 67.3 80.3 79.8 81.1 39.1 75.0 76.3 67.6 68.3
YOLOv3 66.6 68.4 69.2 78.6 76.2 42.5 76.4 78.2 67.8 62.5
SSD 69.2 69.1 76.6 82.1 78.0 41.2 77.0 72.5 68.5 64.2
FPEF-SSD 74.8 73.9 85.9 86.7 85.3 52.6 79.3 78.6 72.5 67.9
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Table 5: Comparison of results of Pascal VOC 2012.

Methods aero bike bird boat bottle bus car cat chair cow
Faster R-CNN 84.9 79.8 74.3 53.9 49.8 77.5 75.9 88.5 45.6 77.1
YOLOv3 85.5 85.6 75.9 61.3 54.2 79.9 87.1 89.6 64.6 81.5
SSD 85.6 80.1 70.5 57.6 46.2 79.4 76.1 89.2 53.0 77.0
FPEF-SSD 86.2 84.2 73.9 69.4 52.7 82.4 89.1 90.2 63.1 83.7
Methods table sofa dog horse train plant m-bike person TV sheep
Faster R-CNN 55.3 60.9 86.9 81.7 81.2 40.1 80.9 79.6 61.5 72.6
YOLOv3 69.6 69.4 85.2 84.6 83.2 44.5 83.4 83.2 77.8 75.5
SSD 60.8 69.5 87.0 83.1 81.9 45.9 82.3 79.4 67.5 75.9
FPEF-SSD 78.3 76.3 88.6 89.5 87.2 57.1 86.6 82.2 76.8 73.8
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Figure 5: Continued.

Table 4: Comparison of mAP and FPS results of Pascal VOC 2012.

Methods mAP (%) FPS
Faster R-CNN 70.4 10
YOLOv3 76.1 40
SSD 72.4 45
FPEF-SSD 78.6 38
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Figure 5: Continued.
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Figure 5: Comparison of results of different algorithms.
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Figure 6: Relationship between loss and iteration. (a) VOC 2007. (b) VOC 2007 and 2012.
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Figure 7: Continued.
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+e purpose is to assign the more abstract semantic in-
formation of the deep feature map to the low feature map
and then perform regression on the merged feature map, so
the effect is better.

+en, according to the above respective conv4_3 layers,
the predicted location coordinates and the confidence
corresponding to all classes are output. +e detection results
are shown in Figure 8.

Figure 8 shows the detection box obtained by the original
SSD and FPEF-SSD at the conv4_3 layer and their corre-
sponding confidence. Since the initial number of detection
boxes is too large, filtering is performed according to the NMS
threshold of 0.5 and the confidence threshold of 0.1. It can be
seen that the improved algorithm has a better detection effect
on the underlying featuremap, which basically gives the correct

prediction for small objects, while the SSD has some error
detection, which also shows the feature-enhanced fusion has a
great effect on the detection of small objects.

Moreover, it is also observed that both algorithmswill detect
small objects such as an aeroplane, a boat, or a bird to a certain
extent, although the confidence of misdetection is not high, and
it also reflects the difficulty in detecting similar objects.

Based on the above analysis, the proposed FPEF-SSD
algorithm has certain advantages in the precision and de-
tection rate. However, because of limited computing power,
the proposed algorithm training and verification are per-
formed only on the minimum dataset of the same scale, and
no more dataset training is combined. Most of the literature
studies show that if more datasets are added to training,
there will be better results.

(b)

Figure 7: Comparison of SSD algorithm feature map detection. (a) SSD. (b) FPEF-SSD.
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Figure 8: Comparison of feature detection results. (a) SSD. (b) FPEF-SSD.
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5. Conclusions

Aiming at the low detection precision of small objects by
traditional single-shot detection algorithms, a feature pyramid-
enhanced fusion SSD object detection algorithm is proposed.
On the one hand, the original SSD is combined with the feature
pyramid network, and the high-level feature map with abstract
and rich semantic information is fused with the low-level
feature which has high resolution and more details, which can
make the fused bottom feature layers have richer semantic
detail information; on the other hand, fusion of multiscale
features is further enhanced by fusing features between feature
pyramids. +e experimental results show that the proposed
FPEF-SSD has a significant improvement in the mAP, and
there is no obvious slowdown in the detection speed. But there
is still room for improvement in the detection of small objects,
especially the misdetection of small similar objects. For ex-
ample, optimizing the upper sampling layer interpolation
method or using the GAN for superresolution reconstruction
of high-level feature layers is considered to further improve the
precision of small object detection.
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