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Although the kinematics and dynamics of spherical robots (SRs) on �at horizontal and inclined 2D surfaces are thoroughly
investigated, their rolling behavior on generic 3D terrains has remained unexplored. �is paper derives the kinematics equations
of the most common SR con�gurations rolling over 3D surfaces. First, the kinematics equations for a geometrical sphere rolling
over a 3D surface are derived along with the characterization of the modeling method. Next, a brief review of current mechanical
con�gurations of SRs is presented as well as a novel classi�cation for SRs based on their kinematics. �en, considering the
mechanical constraints of each category, the kinematics equations for each group of SRs are derived. Afterward, a path-tracking
method is utilized for a desired 3D trajectory. Finally, simulations are carried out to validate the developed models and the
e�ectiveness of the proposed control scheme.

1. Introduction

Spherical robots are a class of mobile robots that are gen-
erally recognized by their ball-shaped shell and internal
driving components that provide torques required for their
rolling motion. From the ball-shaped exterior, SRs inherit
multiple advantages over other types of mobile robots, in
which skidding, tipping over, falling, or friction with the
surface makes them vulnerable or ine�cient [1, 2]. Despite
all the unique features, the complicated nonlinear behavior
of SRs has remained as a hurdle to fully comprehend their
dynamics, motion kinematics, and unveil their maneuver-
ability capabilities.

Although the earliest e�orts to analytically capture the
kinematics and dynamics of rolling geometrical balls on
mathematical surfaces back to more than a century ago, e.g.,
in E. Routh and S. A. Chaplygin’s works, this topic is still an
open discussion that is being investigated in more recent
papers such as [3–5]. Numerous research studies have been
conducted on the mathematical modeling of kinematics and
dynamics of SRs with a variety of mechanical con�gurations
[6, 7]. Among them, a widespread assumption is that SRs roll
over an ideally �at horizontal plane. In a number of available

works, where SRs are studied on nonhorizontal surfaces,
simplifying assumptions are made. For instance, in [2, 8],
two SR designs are investigated that climb obstacles, as-
suming the condition to be static. From a di�erent view,
rolling of SRs is studied where the desired path is assumed to
be a straight line with constant slope or a single step obstacle
[9–11] and a 2D curved path with variable slope [12] re-
spectively. In [13], the authors have investigated the dy-
namics of Martian tumbleweed rovers while this special type
of SR rolls in its heading direction and the turning action is
not considered for them. In fact, while several pieces of
research have been done on 3D kinematics of other types of
mobile robots such as legged [14] and wheeled robots
[15, 16], to the best of the authors’ knowledge, the general
problem of kinematics of SRs rolling on 3D terrains has not
been investigated in the literature.�emotivation to address
this problem is that, while many applications of the SRs are
on �at surfaces such as indoor [17] and paved roads [18], for
a variety of applications such as agriculture [19], surveillance
[20], environmental monitoring [21], and even planetary
explorations [22], they would get exposed to uneven terrains.

In this work, prior to deriving the kinematics of SRs on
3D terrains, a general method for modeling a geometrical
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sphere rolling over a mathematically known 3D surface is
developed. ,en, the derived equations are expanded in
order to be applied to SRs considering their specifications.
Concretely, a variety of mechanisms are utilized in SRs to
provide the required propelling torques and forces for their
rolling action. Each configuration imposes its own kine-
matical constraints on the SRs’ rolling motion. ,erefore, to
study the kinematics of SRs, it is essential to classify current
and feasible designs of SRs accordingly.

,ere are a few SR classifications available in the liter-
ature. In survey [6], SRs are classified based on their me-
chanical driving principles as follows: (1) barycenter offset
(BCO), (2) conservation of angular momentum (COAM),
and (3) shell transformation (OST). In another review, SRs
are classified based on their mechanical configurations [23],
e.g., single wheel, hamster wheel, pendulum driven, gimbal
mechanism, single ball, mass movement, and a set of designs
that use flywheels. Again, each class of the above robots can
have different kinematics. ,erefore, to investigate the
rolling behavior of SRs based on the constraints imposed by
their kinematical configurations, presenting a new, although
brief, classification seems inevitable.

,e classification proposed in this work divides SRs into
two major categories: (1) Continuous Rolling Spherical
Robots (CR-SR), with triple axes rolling (3R-SR), dual axes
rolling (2R-SR), and rolling and turning (RT-SR) spherical
robots as subcategories and (2) Rolling and Steering
Spherical Robots (RS-SR). Based on the constraints of each
different category, the kinematics equations for SRs rolling
over 3D terrains are derived.

Afterward, a modified pure pursuit method [24] is
utilized for the path-tracking control problem of the pro-
posed models. ,e path-tracking method indicates the re-
quired kinematic actuation states that should be provided in
each SR category to track a desired 3D trajectory. Finally,
simulations are carried out to verify the kinematics model’s
accuracy and its controller’s tracking efficiency in different
models along with the comparison between their behavior.

,e remainder of this paper is organized as follows:
Section 2 is devoted to the model description. Section 3
elaborates on the problem of kinematics modeling of a
sphere rolling over a 3D surface. In Section 4, the objectives
of the paper are addressed, including presenting a new
classification for SRs by their kinematics properties and then
deriving kinematics equations of SRs based on specifications
of each selected SR category. In Section 5, a 3D path tracking
kinematic control scheme is presented. ,e simulation re-
sults in MATLAB are represented in Section 6, followed by
the conclusion and future work.

2. Model Description

Consider a geometrical sphere rolling over a 3D surfaceS as
shown in Figure 1. To derive the kinematics equations of the
rolling motion, the first step is to define the required ref-
erence frames, as FW􏼈 􏼉 � OW, X−

W, Y−
W, Z−

W􏼈 􏼉, FTr􏼈 􏼉 �

OTr, x−
Tr, y−

Tr, z−
Tr􏼈 􏼉, FT0

􏽮 􏽯 � OT0
, x−

T0
, y−

T0
, z−

T0
􏽮 􏽯, FT􏼈 􏼉 �

OT, x−
T, y−

T, z−
T􏼈 􏼉, and FL􏼈 􏼉 � OL, x−

L, y−
L, z−

L􏼈 􏼉, defined as

world, translated, surface-side tangent, robot-side tangent,
and local reference frames, respectively. In each reference
frame set, the first element shows its origin and the rest are
the reference frame’s axes. Accordingly, as it is illustrated in
Figure 1, 􏽢IW, 􏽢JW, 􏽢KW􏽮 􏽯, 􏽢iTr,

􏽢jTr,
􏽢kTr􏽮 􏽯, 􏽢iT0

, 􏽢jT0
, 􏽢kT0

􏽮 􏽯,
􏽢iT, 􏽢jT, 􏽢kT􏽮 􏽯, and 􏽢h,􏽢l, 􏽢n􏽮 􏽯 represent unit vectors of FW􏼈 􏼉,
FTr􏼈 􏼉, FT0

􏽮 􏽯, FT􏼈 􏼉, and FL􏼈 􏼉 respectively.
In the sequel, vector quantities are defined in FW􏼈 􏼉; if

otherwise, their reference frames are specified in left su-
perscript, e.g., FAV

→
. Vectors are represented by an overhead

right arrow while unit vectors are accented by a caret-shaped
hat symbol. Homogeneous transformations, e.g., from ar-
bitrary reference frames FA􏼈 􏼉 to FB􏼈 􏼉, consisting of a
rotation matrix of RAB(3×3) and a translation vector
MAB(3×1), are defined in the form of [25]

TAB �
RAB MAB

01×3 1
􏼢 􏼣. (1)

,rough utilizing transformation matrices, a fourth el-
ement of 0 is added to velocity vectors as translation does not
apply to them. A fourth element of 1 in position vectors
guarantees both rotation and translation.

In Figure 1, the position of the contact point of the
sphere with the 3D surface S is represented as P0:

P0 �
FW P0 � x0(t), y0(t), z0(t)􏼂 􏼃

T
, (2)

which instantaneously indicates the position coordinates of
OTr, OT0

, OT, and OL. ,e imaginary plane tangent to S

passing through P0 is called the tangent plane denoted as TS.
As it is shown in Figure 1, normal axis of the sphere is
defined to be perpendicular to TS coinciding with the center
of the sphere OSp, while lateral and longitudinal axes are
defined to be parallel to TS; i.e., they do not rotate through
rotation of the sphere about axes parallel to TS, but they
rotate accordingly when the sphere rotates about the normal

ψ
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Figure 1: Schematic diagram of reference frames and kinematic
parameters that are used to derive kinematics equation of the
rolling sphere on a 3D surface S.
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axis. FTr􏼈 􏼉 is resulted from the translation of FW􏼈 􏼉 to P0
such that x−

Tr, y−
Tr, and z−

Tr remain parallel to X−
W, Y−

W, and
Z−

W. Obviously, axes of FTr􏼈 􏼉 do not necessarily lie onTS. In
FT0

􏽮 􏽯, z−
T0

is along the normal vector of S, nS
�→. x−

T0
is locally

tangent to the surface and therefore lies on TS. y−
T0

is
mutually perpendicular to x−

T0
and z−

T0
following the right-

hand rule. Furthermore, as shown in Figure 1, FT􏼈 􏼉 is
resulted from rotation of FT0

􏽮 􏽯 about x−
T0

by 180 degrees.
Consequently, x−

T coincides with x−
T0
. y−

T and z−
T are in the

opposite direction to y−
T0

and z−
T0

with respect to OT0
. In

FL􏼈 􏼉, x−
L and y−

L are also tangent to TS. x−
L is along the

sphere’s longitudinal direction. z−
L is normal to TS co-

inciding with z−
T and normal axis of the sphere, and y−

L is
mutually perpendicular to x−

L and z−
L following the right-

hand rule. One can note that y−
L can be considered as the

projection of the sphere’s lateral axis on TS.
,e next step is to define rotation angles of the sphere.

According to Figure 1, θ is the sphere’s rolling angle, i.e., the
rotation angle of the sphere about its lateral axis. ϕ is the
sphere’s tilting angle, i.e., the rotation angle of the sphere
about its longitudinal axis, and ψ is the sphere’s turning
angle about the robot-side normal axis, 􏽢n. It can be noted
that FL􏼈 􏼉 can be considered as FT􏼈 􏼉 rotated through an
angle of ψ about z−

T. Finally, S is a 3D surface defined in
FW􏼈 􏼉 as S: F(x, y, z) � 0, in the form of

f(x, y) − z � 0, (3)

implying that for any x and y, the elevation of the surface S
along the vertical axis of Z−

W is z � f(x, y).
Assumptions: the mathematical model is derived based

on the following assumptions:

(1) the sphere rolls over a 3D surface without slipping,
skidding, or falling; i.e., it does not lose traction with
the surface.

(2) ,e surface S is smooth; i.e., z � f(x, y) is a con-
tinuous function of class C1 or higher [26].

(3) ,e sphere is rigid, and the radius of curvature of the
surface is never smaller than the radius of the sphere.
,erefore, the sphere always remains in a single
point contact with the surface.

3. Kinematics Modeling of Spheres on
3D Surfaces

,e next phase to derive the kinematics equations of the
sphere rolling over S is to calculate the utilized reference
frames’ unit vectors analytically along with deriving trans-
formation matrices between reference frames. In this pro-
cess, first, we will determine the vector quantities in FL􏼈 􏼉,
and then, by sequentially utilizing transformation matrices,
we can calculate the desired quantities in FW􏼈 􏼉.

As mentioned in the previous section, FTr􏼈 􏼉 is parallel to
FW􏼈 􏼉 and OTr coincides with P0; therefore,TTrW performs
no rotation, i.e.,RTrW � I3 and a translation ofMTrW � P0.
,us, TTrW can be written as follows:

TTrW �
I3 P0

0 1
􏼢 􏼣, (4)

where I3×3 is the identity matrix. From (3), the normal vector
of surface S at position P0 is given by

nS
�→

� ∇F � fx, fy, − 1􏽨 􏽩
T

, (5)

where fx � (zf(x, y))/zx and fy � (zf(x, y))/zy are the
partial derivative functions. Now, as nS

�→ coincides with z−
T0
,

its unit vector can be written as

􏽢kT0
� 􏽢nS �

nS
�→

nS
�→����

����
. (6)

Defining sn as the following:

sn � nS
�→����

����
− 1

� 1 + f
2
x + f

2
y􏼐 􏼑

− 1/2
, (7)

we can write
􏽢nS � sn nS

�→
(8)

Seemingly, the direction of 􏽢nS is perpendicular to the
surface and always downward, i.e., Z􏽢nS

� − 1. As robot-
site normal, 􏽢n, is in the opposite direction to the surface-
side normal and based on assumption (1), there is no
relative velocity between FT0

􏽮 􏽯 and FT􏼈 􏼉; therefore, we
can write

TTT0
�

1 0 0 0

0 − 1 0 0

0 0 − 1 0

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9)

In fact, 􏽢n and 􏽢kT can be calculated by rotating nS
�→ by 180

degrees about 􏽢iT0
; therefore,

􏽢n � 􏽢kT � − 􏽢nS � sn − fx, − fy, 1􏽨 􏽩
T

(10)

Next, we calculate the unit vectors of FT􏼈 􏼉 axes. Let us
consider a sphere that rolls overS in a way that ψ � 0, which
means only θ and ϕ contribute in the rolling action. Due to
this rolling, the direction of sphere’s longitudinal and lateral
axes changes accordingly to match the geometry ofS. Based
on Euler’s rotation theorem, any Cartesian coordinate
system in 3D space with a common origin are related by a
rotation about a unique axis called Euler axis denoted as 􏽢e.
Intuitively, this rotation maps axes of FT􏼈 􏼉 to FTr􏼈 􏼉. We
know that the rotation maps 􏽢n to 􏽢kTr and it is assumed that
ψ � 0; therefore, as it is depicted in Figure 2, 􏽢e should lie in
the tangent plane and be perpendicular to both 􏽢n and 􏽢kTr,
leading to

e
→

� 􏽢kTr × 􏽢n. (11)

Considering 􏽢kTr � [0, 0, 1]T and 􏽢n from (10), e
→ is cal-

culated as

e
→

� sn fy, − fx, 0􏽨 􏽩
T
. (12)
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Consequently,

􏽢e � e
→

‖ e
→

‖
� s fy, − fx, 0􏽨 􏽩

T
with s � ‖ e

→
‖

− 1
�

1
���������
f2

x + f2
y􏼐 􏼑

􏽱 .

(13)

Moreover, the angle of rotation can be calculated as

c � a tan 2 􏽢kTr × 􏽢n
����

����, 􏽢kTr · 􏽢n􏼐 􏼑, (14)

where a tan 2 is the four-quadrant inverse tangent:
􏽢kTr × 􏽢n

����
���� � sin(c) � sns

− 1
,

􏽢kTr · 􏽢n � cos(c) � sn.
(15)

,erefore, to avoid singularity, from (14) and (15), c is
written in the following conditional statement form:

c �
a tan 2 s− 1, 1( 􏼁, if 􏽢kTr ≠ 􏽢n,

0, if 􏽢kTr � 􏽢n.

⎧⎨

⎩ (16)

Now, to calculate 􏽢iT, we should apply the same rotation
to􏽢iTr � [1, 0, 0]T. ,ere are several algorithms to transform a
vector in space, given a rotation axis and an angle of rotation
such as the Rodrigues’ rotation method that is explained in
the following.

According to Rodrigues’ rotation formula [27], as􏽢iTr is a
vector in R3 and 􏽢e � [ex, ey, 0]T is a unit vector representing
the axis of rotation about which 􏽢iT rotates by an angle of c

resulting in 􏽢iTr, it can be shown that
􏽢iT � 􏽢iTr cos(c) + 􏽢e ×􏽢iTr sin(c) + 􏽢e 􏽢e · 􏽢iTr􏼐 􏼑(1 − cos(c)).

(17)

Equation (17) can be written in the matrix form to
calculate TTTr using Rodrigues’ rotation formula. Let E×

denote cross-product matrix for 􏽢e; i.e., a matrix when
multiplied from the left with a vector gives the cross product.
It can be shown that

E× �

0 − ez ey

ez 0 − ex

− ey ex 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

0 0 − sfx

0 0 − sfy

sfx sfy 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (18)

Now, it can be shown that the rotation matrix RTTr can
be written in the following form:

RTTr � I3 + sin(c)E× +(1 − cos(c))E
2
×, (19)

which, using (18), can be written as the following:

RTTr �

1 − s2f2
x(1 − Cc) − s2fxfy(1 − Cc) − sfxSc

− s2fxfy(1 − Cc) 1 − s2f2
y(1 − Cc) − sfySc

sfxSc sfySc 1 − s2 f2
x + f2

y􏼐 􏼑(1 − Cc)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (20)

where, for the sake of brevity, sin(·) and cos(·) are abbre-
viated to S· and C·, respectively. Considering Sc � sns− 1 from
(15), we can write:

sfxSc � snfx,

sfySc � snfy.
(21)

Also, from (13) and (15), it can be concluded that

1 − s
2

f
2
x + f

2
y􏼐 􏼑(1 − Cc) � sn. (22)

As MTTr � 0(3×1), and by substituting (21) and (22) in
(20), we can write:

TT0Tr �
RTTr 0

0 1
􏼢 􏼣 �

1 − s2f2
x 1 − sn( 􏼁 − s2fxfy 1 − sn( 􏼁 − snfx 0

− s2fxfy 1 − sn( 􏼁 1 − s2f2
y 1 − sn( 􏼁 − snfy 0

snfx snfy sn 0

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (23)

n

TTr

TrW

kTr

γ

γ

iTr

S

iT LT

ψ
TS

nS

h

P0

jT

jTr

l

OW

ZW

XW

YW

e

Figure 2: Schematic diagram of reference frames, Euler axis 􏽢e, and
transformations between reference frames.
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Alternatively, to calculate TTTr, rotation quaternions
can be utilized which is explained in detail in Appendix.
Depending on the application, RTTr can be calculated from
(19) and (23), or through quaternions. To calculate 􏽢jT, we
can write:

􏽢jT � 􏽢n ×􏽢iT (24)

Next, as FL􏼈 􏼉 is resulted from the rotation of FT􏼈 􏼉

through ψ about z−
T, then MLT � 0(3×1) and TLT can be

written as follows:

TLT �

Cψ Sψ 0 0

− Sψ Cψ 0 0

0 0 1 0

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (25)

Finally, from (4), (23), and (25), it can be concluded that

TLW � TTrWTTTrTLT �

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (26)

where the elements of TLW are given as

a11 � 1 − s
2
f
2
x 1 − sn( 􏼁􏼐 􏼑Cψ + s

2
fxfy 1 − sn( 􏼁Sψ,

a12 � 1 − s
2
f
2
x 1 − sn( 􏼁􏼐 􏼑Sψ − s

2
fxfy 1 − sn( 􏼁Cψ,

a13 � − snfx , a14 � x0,

a21 � − s
2
fxfy 1 − sn( 􏼁Cψ − 1 − s

2
f
2
y 1 − sn( 􏼁􏼐 􏼑Sψ,

a22 � − s
2
fxfy 1 − sn( 􏼁Sψ + 1 − s

2
f
2
y 1 − sn( 􏼁􏼐 􏼑Cψ,

a23 � − snfy,

a24 � y0,

a31 � snfxCψ − snfySψ,

a32 � snfxSψ + snfyCψ,

a33 � sn,

a34 � z0,

a41 � a42 � a43 � 0,

a44 � 1.

(27)

Now, consider the sphere that instantaneously rolls over
the tangent plane and let FLV

→
� [u, v, w, 0]T denote the

velocity of the sphere in FL􏼈 􏼉; then, we can write:

FWV
→

� TLW
FLV

→
, (28)

where FWV
→

� [ _x, _y, _z, 0]T. Consequently, the position of the
sphere can be calculated by integrating (28) over time. To
calculate FLV

→
, it can be written as a set of functions of

kinematics parameters such that

u � g1(θ, ϕ,ψ, _θ, _ϕ, _ψ),

v � g2(θ, ϕ,ψ, _θ, _ϕ, _ψ),

w � 0.

(29)

Obviously, g1 and g2 functions vary depending on the
configuration of the SR. Transforming FL V

→
to FW􏼈 􏼉 by

plugging (29) into (28) and using terms presented in (27), we
have

_x _y _z 0􏼂 􏼃
T

� TLW g1 g2 0 0􏼂 􏼃
T
. (30)

resulting in
_x � a11g1 + a12g2,

_y � a21g1 + a22g2,

_z � a31g1 + a32g2.

(31)

,e next section, first, presents a classification based on
kinematics specifications of SRs and then provides calcu-
lation steps of FLV

→
for each class of SR.

4. Kinematics Modeling of Spherical Robots
Rolling over 3D Surfaces

,is section is dedicated to deriving the kinematics of SRs
rolling over 3D surfaces. First, we present a brief classifi-
cation in which the most popular configurations of SRs are
divided into two main categories and a number of sub-
categories. Secondly, by applying constraints of each cate-
gory (or type), the kinematics of SRs on 3D surfaces is
derived.

4.1. Continuous Rolling Spherical Robots (CR-SRs).
CR-SRs are capable of performing rolling maneuvers con-
tinuously; i.e., when the robot rolls in any direction, there is
no limitation for its rotation angle. However, based on their
mechanical configurations, these robots can roll in different
directions based on which this category can be divided into
three subcategories explained in the following.

4.1.1. Triple-Axis Rolling Spherical Robot (3R-SR). ,is
subcategory is the most general type of CR-SR. As illustrated
in Figure 3, in 3R-SRs the internal components are
mechanically capable of providing torques required for the
robot to rotate about all of its three main axes, namely,
angular velocities of _θ, _ϕ, and _ψ. ,erefore, 3R-SRs are
omnidirectional. Several mechanical configurations are
available in the literature that relies on this actuationmethod
[28–30].

Figure 4 illustrates differential rolling lengths for a 3R-SR
in an infinitesimally small time dt along 􏽢h and 􏽢l directions.
Based on the assumption (1) and using the equal-arc-length
rule for rolling without slipping [31], we have

dxL � Rdθ,

dyL � − Rdϕ,
(32)
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where R denotes the sphere’s radius. Integrating (32) over
time, FLV

→
can be calculated as the following:

FLV
→

� [R _θ, − R _ϕ, 0]
T
. (33)

Now, from (28), (31), and (33), we can calculate elements
of FWV

→
as follows:

_x � a11R
_θ − a12R

_ϕ,

_y � a21R
_θ − a22R

_ϕ,

_z � a31R
_θ − a32R

_ϕ.

(34)

Substituting terms presented in (27) in (34), and con-
sidering _ψ as the angular velocity of FL􏼈 􏼉 in accordance with
FT􏼈 􏼉, elements of FWV

→
for a 3R-SR are calculated as the

following:

_x � R 1 − s
2
f
2
x 1 − sn( 􏼁􏼐 􏼑Cψ + s

2
fxfy 1 − sn( 􏼁Sψ􏼐 􏼑 _θ

− R 1 − s
2
f
2
x 1 − sn( 􏼁􏼐 􏼑Sψ − s

2
fxfy 1 − sn( 􏼁Cψ􏼐 􏼑 _ϕ,

_y � − R s
2
fxfy 1 − sn( 􏼁Cψ + 1 − s

2
f
2
y 1 − sn( 􏼁􏼐 􏼑Sψ􏼐 􏼑 _θ

+ R s
2
fxfy 1 − sn( 􏼁Sψ − 1 − s

2
f
2
y 1 − sn( 􏼁􏼐 􏼑Cψ􏼐 􏼑 _ϕ,

_z � snR fxCψ − fySψ􏼐 􏼑 _θ − snR fxSψ + fyCψ􏼐 􏼑 _ϕ.

(35)

4.1.2. Dual-Axis Rolling Spherical Robot (2R-SR). In this
subcategory of SRs, the robot provides torques and, con-
sequently, the ability to roll about its two main axes which
are parallel to TS. ,ere are a number of SR designs that
relate to this type [23, 32–34] such as hamster wheel SRs.
Comparing to 3R-SRs, similar steps should be taken in order
to derive kinematics equation of 2R-SRs. ,e only dis-
tinction is that, in 2R-SRs, the robot is not capable of rotating
about its vertical axis; i.e., it is assumed that _ψ � 0; therefore,
we can write

_x � a11R
_θ − a12R

_ϕ,

_y � a21R
_θ − a22R

_ϕ,

_z � a31R
_θ − a32R

_ϕ,

_ψ � 0.

(36)

,e term _ψ � 0 renders 2R-SRs as robots with completely
different behavior. Assuming _ψ � _ψ(0) � 0, for 2R-SRs, we
can write

_x � R 1 − s
2
f
2
x 1 − sn( 􏼁􏼐 􏼑 _θ + R s

2
fxfy 1 − sn( 􏼁􏼐 􏼑 _ϕ,

_y � − Rs
2
fxfy 1 − sn( 􏼁 _θ − R 1 − s

2
f
2
y 1 − sn( 􏼁􏼐 􏼑 _ϕ,

_z � snRfx
_θ − snRfy

_ϕ.

(37)

4.1.3. Rolling and Turning Spherical Robot (RT-SR). In ad-
dition to rolling action, RT-SRs are able to turn about their
vertical axis in order to change their moving direction. In
other words, internal parts can provide angular velocities of
_θ and _ψ, while it is assumed that _ϕ � 0. RT-SRs are relatively
less common but still some designs can be found in the
literature [35–38]. To calculate kinematics of RT-SRs, one
can write

dxL � Rdθ,

dyL � 0,

_x � a11R
_θ,

_y � a21R
_θ,

_z � a31R
_θ.

(38)

Angular velocity of FL􏼈 􏼉 in accordance with FT􏼈 􏼉

equals to _ψ. Substituting terms from (27) in (38), we have

Rolling 2 Rolling 1
3R (actuated or driven)
2R (actuated)
RT (0)

3R (actuated or driven)
2R (0)
RT (actuated)

3R (actuated)
2R (actuated)
RT (actuated)

ϕ·

·

·

Turning

OSp

TS

S

n

h l

ψ

θ

Figure 3: Schematic diagram of rotation directions of continuous
rolling spherical robots.

·ψ

·
θ

ϕ·

OSp

dθ

dxL
dyL

Rdθ

dϕ

Rdϕ TS

S
h

l

Figure 4: Differential rolling length of a spherical robot using
triple-axis rolling during differential of time, dt, along 􏽢h and 􏽢l

directions.
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_x � R 1 − s
2
f
2
x 1 − sn( 􏼁􏼐 􏼑Cψ + s

2
fxfy 1 − sn( 􏼁Sψ􏼐 􏼑 _θ,

_y � − R s
2
fxfy 1 − sn( 􏼁Cψ + 1 − s

2
f
2
y 1 − sn( 􏼁􏼐 􏼑Sψ􏼐 􏼑 _θ,

_z � snR fxCψ − fySψ􏼐 􏼑 _θ.

(39)

4.2. Rolling and Steering Spherical Robots (RS-SRs). As it is
shown in Figure 5, consider _α as angular velocity of a RS-SR
around its transverse axis that provides forward and
backward rolling motion of the robot. In addition, the robot
can tilt about its longitudinal axis as its steering mechanism
provides turning ability for the robot through an arc shape
rolling motion. Unlike CR-SRs, in RS-SRs, tilting angle ϕ is
limited. Another difference is that in RS-SRs, the transverse
axis is defined in a way that tilts with the robot, so it is not
always parallel to the tangent plane. ,is type of SRs uses an
underactuated mechanical propulsion mechanism that al-
lows the robot to roll in a nonholonomic manner [39–46].

Figure 5 illustrates a RS-SR with tilting angle of ϕ with
respect to the tangent plane.,e turning action of the sphere
can be modeled as a cone with an apex angle of 2ϕ, purely
rolling over the surface S, for which the instantaneous axis
of rotation is the imaginary line passing through the cone’s
vertex V and P0 that lies in the tangent plane TS. Con-
sidering the instantaneous differential rolling arc of the
cone’s base circle, we have

rcdα � ρdψ, (40)

where rc is the cone’s base circle radius and dα and dψ are
the differential rotation of the sphere during differential of
time, dt, about the transverse and vertical axes respectively. ρ
is the instantaneous radius of curvature of the turning
motion that is the distance between the vertex of the cone
and the contact point. ,ese two quantities can be calculated
as

rc � R cos(ϕ) (41)

and

ρ � − R cot(ϕ). (42)

Substituting (41) and (42) into (40) results in

dψ � − dα sin(ϕ). (43)

Dividing both sides of (43) by dt, we have
_ψ � − _α sin(ϕ). (44)

Moving on, the position vector of the center point of the
sphere in FL􏼈 􏼉 in accordance with P0 can be written as

FL r
→

P0OSp
� R􏽢n, (45)

and angular velocity of the sphere in FL􏼈 􏼉 can be written as
FLΩ

→
Sp � _ϕ􏽢h + _α cos(ϕ)􏽢l − _α sin(ϕ)􏽢n. (46)

,en, the linear velocity of the sphere’s center point can
be calculated as follows:

FL V
→

Sp �
FLΩ

→
Sp ×

FL r
→

P0OSp
� R _α cos(ϕ)􏽢h − R _ϕ􏽢l. (47)

Forthwith, we are able to form FL V
→

as the following:
FLV

→
� [R _α cos(ϕ), − R _ϕ, 0]

T
. (48)

Eventually, from (31) and (48), we can calculate com-
ponents of FWV

→
as follows:

_x � a11R _α cos(ϕ) − a12R
_ϕ,

_y � a21R _α cos(ϕ) − a22R
_ϕ,

_z � a31R _α cos(ϕ) − a32R
_ϕ.

(49)

Equations in (49), using terms presented in (27), can be
utilized to calculate the position of the SR, P0, based on input
parameters of robot, _α and ϕ, as the following:

_x � R 1 − s
2
f
2
x 1 − sn( 􏼁􏼐 􏼑Cψ + s

2
fxfy 1 − sn( 􏼁Sψ􏼐 􏼑 _αCϕ

− R 1 − s
2
f
2
x 1 − sn( 􏼁􏼐 􏼑Sψ − s

2
fxfy 1 − sn( 􏼁Cψ􏼐 􏼑 _ϕ,

_y � − R s
2
fxfy 1 − sn( 􏼁Cψ + 1 − s

2
f
2
y 1 − sn( 􏼁􏼐 􏼑Sψ􏼐 􏼑 _αCϕ

+ R s
2
fxfy 1 − sn( 􏼁Sψ − 1 − s

2
f
2
y 1 − sn( 􏼁􏼐 􏼑Cψ􏼐 􏼑 _ϕ,

_z � snR fxCψ − fySψ􏼐 􏼑 _αCϕ − snR fxSψ + fyCψ􏼐 􏼑 _ϕ.

(50)

In all types of SR, to calculate the position of the center
point of the sphere denoted as OSp � [XSp, YSp, ZSp]T, we
have

OSp � P0 + R􏽢n. (51)

Alternatively, utilizing (26) and using FL OSp �

[0, 0, R, 1]T, it can be calculated as

OSp � TLW
FL OSp � a13R + a14 a23R + a24 a33R + a34 1􏼂 􏼃.

(52)

Tangent plane

S

P0

rc dα

R

ψ

dψ

ρ
ϕ

h

l

n

OW

ZW

XW

YW

Figure 5: Schematic diagram of a spherical robot using rolling and
steering (RS) action kinematics.
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Observing terms in (27), one can notice that P0 �

[a14, a24, a34]
T and 􏽢n � [a13, a23, a33]

T; therefore, (52) is
analogous to (51).

5. Control of Spherical Robots over 3D Surfaces

In this section, the pure pursuit method is utilized to address
the path tracking problem of the four different types of
spherical robots on a 3D surface. Consider
P: [xd(t), yd(t), zd(t)]T as a 3D desired trajectory lying on
S, which is assumed to be smooth; i.e., ‖[ _xd, _yd, _zd]T‖ is
bounded for t> 0. It is desired that the location of P0 �

[x0(t), y0(t), z0(t)]T converges toPwith a stable error. et is
the tracking error defined as

et � xd(t), yd(t), zd(t)􏼂 􏼃
T

− P0. (53)

Additionally, defining deviation angle ζ as the angle
between the heading direction, 􏽢h, and et, we have

ζ � ∠ et,
􏽢h􏼐 􏼑. (54)

,e objective of this algorithm is to converge the
tracking error et along with ζ to zero for all four proposed
categories of SRs. To that end, in each category, the path-
planning algorithm computes values for actuated kinematics
states, namely, _θ, _ϕ, _α, and _ψ.

5.1. 3R-SR Kinematics Control. As 3R-SRs are capable of
providing _θ, _ϕ, and _ψ, the controller is designed to provide
the required values accordingly as follows:

_θ � kθ
et

����
����

ke + et

����
����􏼐 􏼑

cos(ζ) +
1
R

_xd, _yd, _zd􏼂 􏼃
T

�����

�����,

_ϕ � − kϕ1

et

����
����

ke + et

����
����􏼐 􏼑

sin(ζ) + kϕ2 sin(ζ)⎛⎝ ⎞⎠,

_ψ � kψζ.

(55)

In the design of _θ, ‖et‖/(ke+ ‖et‖) is used to normalize the
error gain to provide a smooth transition for control efforts
from longer distances to the vicinity of the target point; thus,
to compensate the magnitude of et, the first term of _θ uses
cos(ζ) multiplied with a normalized error gain. cos(ζ) is
positive or negative when the SR is behind or ahead of the
target, respectively. Additionally, one can easily recognize
that ‖[ _xd, _yd, _zd]T‖/R is the angular velocity that is required
for the sphere to pursue the target based on its speed.
,erefore, this term is used as the bias value for _θ. For _ϕ, if
ζ≫ 0, i.e., the robot is not heading towards the target point;
the robot tries to compensate its lateral distance to the target
by rolling laterally using _ϕ in parallel to other actuators. If
the robot is heading towards the target ζ ≈ 0, the robot relies
mostly on _θ to approach the target. Finally, _ψ is designed to
be directly proportional to ζ as ameasure of required turning
to compensate the deviation angle.

5.2. 2R-SRKinematicsControl. Considering the fact that 2R-
SRs are not able to turn, i.e., _ψ � 0, it can be implied that a
2R-SR is not capable of following the target by changing its
heading direction and consequently the robot can only use _θ
and _ϕ to move towards the target.,erefore, the controller is
designed such that

_θ � kθ1

et

����
����

ke + et

����
����􏼐 􏼑

cos(ζ) + kθ2 cos(ζ),

_ϕ � − kϕ1

et

����
����

ke + et

����
����􏼐 􏼑

sin(ζ) + kϕ2 sin(ζ)⎛⎝ ⎞⎠,

_ψ � 0.

(56)

5.3. RT-SR Kinematics Control. RT-SRs can move towards
the target point by compensating their deviation error, ζ,
through turning action and then using _θ to approach and
follow the target. ,is method is used to design the con-
troller to provide the required angular velocities as the
following:

_θ � kθ
et

����
����

ke + et

����
����􏼐 􏼑

cos(ζ) +
1
R

_xd, _yd, _zd􏼂 􏼃
T

�����

�����,

_ϕ � 0,

_ψ � kψζ.

(57)

5.4. RS-SRKinematicsControl. Calculated values for _α and _ϕ
are as follows for RS-SRs:

_α � kα
et

����
����

ke + et

����
����􏼐 􏼑

cos(ζ) +
1
R

_xd, _yd, _zd􏼂 􏼃
T

�����

�����,

_ϕ � kϕζ.

(58)

It should be noted that _ψ is driven and cannot be used as
the actuated value in RS-SRs.

6. Simulation Result

,is section provides the simulation results through
MATLAB/Simulink to verify the presented method and the
controllers that are proposed in Section 5. ,e simulation is
carried out, where for the terrain surface, S is defined as the
following:

z � f(x, y) � a(cos(ωx) + cos(ωy) − 2). (59)

Two desired path types have been selected for the
analysis by defining the path’s projection on the XY plane: a
smooth path of circular shape with the following mathe-
matical expression:
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x(t) � 2 cos
5t

100
􏼒 􏼓,

y(t) � 2 cos
5t

100
􏼒 􏼓,

(60)

and a continuous but nonsmooth diamond-shaped
path with sharp vertices and linear edges. ,e length of
the diagonals of the diamond is selected to be four
meters which is equal to the diameter of the circular
path.
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Figure 6: Robots’ actual and desired trajectories on a 3D surface for a smooth circular path. Scan the QR-code to watch an animation of the
same simulation result.
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Additionally, the following numerical parameters are
used: a � 0.2m, ω � 2, and R � 0.2m; and controller design
parameters are tuned by trial-and-error.

It can be observed from Figures 6 through 9 that the SRs
can track both desired trajectories successfully, and the
tracking error converges to the vicinity of the origin in
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Figure 8: Robots’ actual and desired smooth trajectories along X, Y, and Z directions versus time.
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approximately 30 seconds. Figures 6 and 7 show 3D rep-
resentations of all types of SRs (CR (3R, 2R, RT) and RS),
rolling over the surface defined in (59) for smooth and
nonsmooth trajectories. It can be implied from Figure 7 that
3R and 2R-SRs outperform two other types of SR in tracking
the nonsmooth trajectory. ,e reason stems from the fact
that RTand RS-SRs rely on adjusting their heading direction

for tracking the target that results in lesser agility at sharp
vertices.

Figures 8 and 9 represent the actual and desired values
for X, Y, and Z against time for the robots in smooth and
nonsmooth trajectories, respectively. It can be seen that the
tracking error is bounded due to the fact that

����[ _xd, _yd, _zd]T
����

is bounded. Since the desired trajectory is unknown to the
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Figure 10: 2R-SR control signals for smooth and nonsmooth trajectories.
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pure pursuit, the tracking error remains bounded, while the
convergence bound can be reduced to the desired level by
tuning the controller’s parameters.

Figures 10 through 12 show the control signals for 2R,
RT, and RS-SRs. 3R-SRs rely on all three rotations; therefore,
at any situation, all three control signals try to compensate
for the errors. Consequently, the control signals for 3R-SRs
do not follow a meaningful trend. It can be seen from
Figure 12(b) that a limitation of π/3 has been set for the
tilting angle of RS-SRs for the simulation. According to the
simulation results presented in this section, all types of SRs
can effectively track the desired 3D trajectory by utilizing the
designed controllers.

7. Conclusion

,is paper concerns the problem of modeling the kinematics
and path-tracking control of popular SR configurations rolling
over 3D terrains. It is noteworthy that the aim of this paper is
not to compare the performance of different types of spherical
robots. In fact, it provides a classification of SRs based on their
kinematics behavior to derive kinematics equations on 3D
surfaces. Utilizing the proposed kinematics, one can use the
Euler–Lagrange method to derive the dynamics of robots on
uneven terrains by keeping inmind that the gravity direction is
not always perpendicular to the tangent plane.

One should also note that any SR has its mechanical
configurations and consequently different internal kine-
matics and dynamics. In this regard, reference frames are
selected to be parallel to the tangent plane to provide a
general form of kinematics equations. Internal kinematic
states can be transformed to the utilized reference frames
based on the SR’s composition of internal reference frames.
,e dynamics of an SR defines the constraints and limita-
tions of the robot. Not all kinematic states presented in this
paper are feasible for any SR. Here are some examples,
though widely used in the literature; Coriolis terms can
violate decoupling kinematic assumptions such as simul-
taneous rolling and turning about two axes in conditions
other than quasi-static. Different RS-SRs can have different
maximum tilting angles that should be considered based on
their mechanical design. ,e gravity can make rolling in
some directions impossible, and the robot cannot always roll
with the angular velocity that the controller suggests, and so
on. ,ese are the topics that should be addressed in the
integration of kinematics and dynamics.

Appendix

In this appendix, calculation steps of utilizing rotation
quaternions instead of Rodrigues rotation method to cal-
culate RTTr are presented. Generally, if we write unit ro-
tation axis vector 􏽢e and 􏽢iTr in the form of

q(􏽢e, ) � cos
c

2
+ exi + eyj + 0k􏼐 􏼑sin

c

2
, (A.1)

and q(􏽢iTr) � [0, 1, 0, 0]T, then it can be shown that 􏽢iT is
calculated as an operation called conjugation of q(􏽢iTr) by
q(􏽢e) defined as follows:

􏽢iT � q(􏽢e)q 􏽢iTr􏼐 􏼑q(􏽢e)
− 1

. (A.2)

We know that as ‖q(􏽢e)‖ � 1, then

q(􏽢e)
− 1

� cos
c

2
− exi + eyj􏼐 􏼑sin

c

2
. (A.3)

Operation (A.2) can be performed through Hamilton
product in which q(􏽢e), q(􏽢iTr), and q(􏽢e)− 1 are written in 1 × 4
quaternions format and the distributive law is used over all
elements. However, a more convenient method can be
utilized in the matrix format. Any unit quaternion rotation
in the form of p′ � qpq− 1 with q(qr, qv), qv � qii + qjj + qkk

can be written in the form of rotation matrix p′ � Rp as the
following:

R � qv ⊗ qv + q
2
rI + 2qrE× + E

2
×, (A.4)

where ⊗ denotes outer product operation. Equation (A.4)
can be written in the expanded format as the following:

RTTr �

1 − 2 q2j + q2k􏼐 􏼑 2 qiqj − qkqr􏼐 􏼑 2 qiqk − qjqr􏼐 􏼑

2 qiqj − qkqr􏼐 􏼑 1 − 2 q2i + q2k( 􏼁 2 qjqk − qiqr􏼐 􏼑

2 qiqk − qjqr􏼐 􏼑 2 qjqk − qiqr􏼐 􏼑 1 − 2 q2i + q2j􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(A.5)

Substituting qk � 0 in (A.5) results in

RTTr �

1 − 2q2j 2qiqj − 2qjqr

2qiqj 1 − 2q2i − 2qiqr

− 2qjqr − 2qiqr 1 − 2 q2i + q2j􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.6)

However, qr � cos(c/2), qi � sfy sin(c/2), and qj �

− sfx sin(c/2), and it can be shown that plugging these terms
in (A.6) results in (20).
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