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Real-world multiobjective optimization problems are characterized by multiple types of decision variables. In this paper, we
address weapon selection and planning problems (WSPPs), which include decision variables of weapon-type selection and
weapon amount determination. Large solution space and discontinuous, nonconvex Pareto front increase the di�culty of
problem solving.  is paper solves the addressed problem by means of a multiobjective evolutionary algorithm based on
decomposition (MOEA/D). Two mechanisms are designed for the complex combinatorial characteristic of WSPPs.  e �rst is
that the neighborhood of each individual is divided as selection and replacement neighborhoods.  e second is that the
neighborhood size is changing during the evolution by introducing a distance parameter to constrain the search scope of each
subproblem.  e proposed algorithm is termed as MOEA/D with distance-based divided neighborhoods (MOEA/D-DDNs)
which can overcome possible drawbacks of original MOEA/D with weighted sum approach for complex combinatorial
problems. Benchmark instances are generated to verify the proposed approach. Experimental results suggest the e�ectiveness
of the proposed algorithm.

1. Introduction

Portfolio optimization problems and project planning
problems are two classic topics in the areas of operational
research and management science. Many optimization
problems in industries, economics, and production can be
modeled as portfolio problems or planning and scheduling
problems. For instance, in defense planning areas, most
countries have paid much attention to capability-based
planning (CBP) from the beginning of this century [1]. CBP
usually involves the development of new types of weapons
for future capability ful�lment. Limited by budgetary, de-
cision makers need to balance among di�erent objectives
such as cost, e�ciency, and risk [2–4].

During the process of CBP, decision makers need to
decide on both “what to buy” and “when to buy,” which
correspond to the concepts of portfolio and project planning.
However, in the existing literature, portfolio problems and
project planning problems are two relatively independent

branches.  e former focuses on the item selection among
available set, while the latter concerns activity arrangement
with a time horizon. Simultaneous consideration of these two
types of optimization processes is rather scant in the literature.
In a previous research, the basic optimization process of
weapon development in CBP is modeled as a weapon se-
lection and planning problem (WSPP) [5].

In this paper, we re�ne theWSPPmodel and concern the
design of e�ective multiobjective evolutionary algorithms to
solve the problem.  e main contributions of this paper are
twofold:

(1)  is paper re�nes the multiobjective optimization
model of WSPPs. One main trait of the WSPP is that
each weapon equipment has its own service period.
 is is a main di�erence between WSPPs and other
planning and scheduling problems.  e previous
work did not consider this attribute [5]. Weapon
equipment has e�ectiveness only in their service

Hindawi
Complexity
Volume 2019, Article ID 7589760, 18 pages
https://doi.org/10.1155/2019/7589760

mailto:xiongjian2017@swufe.edu.cn
https://orcid.org/0000-0002-8744-8144
https://orcid.org/0000-0001-5913-4351
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/7589760


periods. ,e calculation of solution effectiveness
needs to consider the beginning point and the end
point of each unit of weapon equipment. ,erefore,
the solution evaluation becomes more expensive.
,us, incorporating the attribute of the service pe-
riod, fundamentally, changes the structure of the
problem and increases the problem complexity. In
the proposed model, simultaneous consideration of
solution effectiveness and risk provides decision
makers with important trade-offs. To illustrate the
addressed problem, we generate three sets of test
problems including 15 instances with different
scales.

(2) ,e decision space of the WSPP is discrete, and the
Pareto front is discontinuous and nonconvex. ,us,
multiobjective evolutionary algorithms (MOEAs)
are preferred to solve the problem. Although classic
MOEAs are reported and tested on many bench-
marks, the performances of MOEAs for solving
complex combinatorial problems are still open
questions. We solve the problem in the framework of
the multiobjective evolutionary algorithm based on
decomposition (MOEA/D). In the MOEA/D, the
weighted sum approach is simple and effective for
convex problems, but the performance is limited
when Pareto fronts are nonconvex and/or discon-
nected. Furthermore, components of original
MOEA/D, such as neighborhood definition, selec-
tion, and replacement, might be problematic for
combinatorial problems. To address these issues, a
mechanism of distance-based divided neighborhood
(DDN) is designed and incorporated into the
MOEA/D. ,e proposed algorithm is termed as
MOEA/D-DDN. Experimental results show that the
DDN mechanism is effective and MOEA/D-DDN
performs well for solving WSPPs.

,e rest of the paper is organized as follows. In Section 2,
we briefly review the literature on portfolio problems and
capability planning problems. Problem formulation and
proposed MOEA/D-DDN are described in Sections 3 and 4,
respectively. Section 5 presents the genetic operators for
WSPPs. Experimental results are reported in Section 6.
Finally, some conclusions are drawn in Section 7.

2. Review of the Related Literature

Since the addressed WSPP is an amalgamation of portfolio
and planning problems, we briefly review related works on
these two areas in this section.

2.1. Portfolio Optimization with Evolutionary Computation.
Portfolio problems inherently have multiobjective traits.
Due to nonconvex constraints in practical cases, meta-
heuristic algorithms such as evolutionary computation (EC)
are preferred to solve portfolio problems. Arnone et al. [6]
was among the first attempts of applying evolutionary al-
gorithms to solve the problem. ,e authors suggested the

possibility of applying the genetic approach and imple-
mented some of the ideas. Maringer and Kellerer [7] op-
timized cardinality constrained portfolios by designing an
algorithm combining simulated annealing and evolutionary
strategies. Cura [8] presented a particle swarm optimization
approach to solve the portfolio optimization problem and
compared the results with those of other metaheuristic
approaches. Although the above works applied different
algorithms to portfolio problems, one characteristic shared
is that the problem was converted as the single objective
optimization problem by a weighted sum approach.

As the development of MOEAs, last two decades have
witnessed the growth of taking advantage of MOEAs for
solving portfolio problems. Doerner et al. [9] studied
project portfolio problems with objectives of benefit and
remaining resources. ,e authors presented a two-phase
procedure for the solution approach, where in the first
phase, Pareto ant colony optimization was used to de-
termine the solution space of all efficient portfolios.
Branke et al. [10] solved portfolio problems with non-
convex constraints by integrating an active set algorithm
into a MOEA, termed as envelope-based MOEA. Pai and
Michel [11] first employed a k-means cluster analysis to
eliminate the cardinality constraint and then designed an
algorithm with evolution strategy to solve a subclass of
portfolio optimization problems. Gutjahr et al. [12] and
Kremmel et al. [13] addressed project portfolio problems.
In Gutjahr et al. [12], economic and staff competence
benefits are simultaneously optimized. ,e overall prob-
lem is decomposed into a master problem and a slave
problem.,e authors, respectively, implemented NSGA-II
[14] and Pareto ant colony optimization to solve the
subproblems. Kremmel et al. [13] focused on software
project portfolio problems, and a multiobjective optimi-
zation approach based on the Prototype Optimization
with Evolved iMprovement Steps (mPOEMS) was used to
solve the problem. In Anagnostopoulos and Mamanis’s
study [15], performances of different MOEAs for portfolio
problems were compared. Experimental results suggest
that performances of the Strength Pareto Evolutionary
Algorithm 1 (SPEA1) and the Pareto Envelope-based
Selection Algorithm (PESA) are comparable and better
than that of NSGA-II. In a later research of the same
authors [16], performances of five MOEAs for cardinality
constrained portfolio optimization problems were in-
vestigated. For recent comprehensive surveys of solving
portfolio problems by MOEAs, readers are referred to
Metaxiotis and Liagkouras [17] and Ponsich et al. [18].

Compared to other areas such as financial and project
management, there are seldom applications of portfolio
optimization in the defense area. Greiner et al. [19] studied
the screening of weapon system development projects and
their realistic application in the air force. In that research,
the authors presented a decision support methodology
integrating an analytic hierarchy process (AHP) and a 0-1
integer portfolio optimization model. Yang et al. [20]
employed heuristic algorithms to deal with portfolio se-
lection problems for military investment assets. Kangas-
punta et al. [4] studied a weapon system portfolio problem
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in which a weapon portfolio is evaluated by an additive
value function.

2.2. Planning and Scheduling in Defense Area. In defense
areas, decisions on weapon acquisition given a time horizon
can be referred to long-term planning problems. Abbass
et al. [21] studied resource planning under time constraint
problems in which the main task is optimizing the mix of
vehicles to fulfil future tasks. ,e authors developed an
evolutionary multiobjective approach to obtain efficient
solutions. Bui et al. [22] considered the military capability
planning problem as a combination of resource-constrained
project scheduling and resource investment problems. ,e
planning process was modeled as a multiobjective problem,
and an evolutionary algorithm was designed to address the

optimization task. In the planning of weapon systems, the
effectiveness of a planning solution is usually affected by
weapons hold by the counterpart. Golany et al. [23] focused
on the problem of developing effective countermeasures
given limited resources. Usually, weapon acquisition needs
to simultaneously consider selection and planning processes
to obtain overall optimal solutions. However, in project
planning and scheduling areas, the literature simultaneously
addressing the combination of these processes is rather
scant, except for Ghasemzadeh et al. [24], Sun and Ma [25],
Gutjahr et al. [12], and Carazo et al. [26]. In these works,
decision makers are only required to determine whether a
project will be selected or not. ,e problem addressed in this
paper differentiates from models of the existing work by
considering the amount of different weapon types at each
decision point. Since weapon developments are subject to

(1) δi
n: original budget share index at each time unit

(2) An: actual available budget each year
(3) Sn: actual spent capital in each year
(4) Bi

n: available budget at each time unit
(5) 􏽢B

i

n: spent budget at each time unit
(6) B

i

n: accumulated budget, 􏽢B
1
n � 0

(7) for n � 1; n≤N; n + + do
(8) Sn � 0
(9) for i � 1; i≤ 12; i + + do
(10) Bi

n � B
i

n + Sn × δi
n

(11) if i> 1 then
(12) Bi

n � B
i

n

(13) end if
(14) 􏽢B

i

n � 0
(15) U is the total number of unselected and unplanned weapon units;
(16) index� 1;
(17) listing the unselected weapon units with ascending order by p

iw
w ;

(18) while 􏽢B
i

n ≤Bi
n and index≤U do

(19) p
i∗
w∗

w∗ is the indexth lowest value;
(20) index � index + 1;
(21) if 􏽢B

i

n + cw∗ ≤Bi
n then

(22) bool constraintviolation � false
(23) t1 � (n − 1) × 12 + i

(24) t2 � t1 + dw∗

(25) for t � t1; t≤ t2; t + + do
(26) if ad

w∗ t � ad
w∗ then

(27) constraintviolation � true
(28) break;
(29) end if
(30) end for
(31) if constraintviolation � false then
(32) weapon unit with p

i∗
w∗

w∗ is selected and planned;
(33) 􏽢B

i

n � 􏽢B
i

n + cw∗

(34) end if
(35) else
(36) B

i

n � Bi
n − 􏽢B

i

n

(37) break;
(38) end if
(39) end while
(40) end for
(41) end for

ALGORITHM 1: Decoding procedure.

Complexity 3



resource constraint and the effectiveness of a solution should
be measured by considering all selected weapons, the
problem needs to be solved at the overall level. In the weapon
selection process, simultaneous consideration of the selected
type and corresponding amount expands the decision space
and dramatically increases the complexity of the problem.
,us, it is worthwhile to design more effective algorithms to
solve WSPPs.

3. Weapon Selection and Planning Problems

3.1. Problem Description. A WSPP can be simply described
as the process that decision makers select weapons and plan
their developments at each decision time point. ,e plan-
ning horizon is divided into M units and is indexed by
m(m � 1, . . . , M). Each unit indicates one month [12].
,ere are W types of weapons, and each weapon type w has
the following attributes:

(i) amax
w : the maximum available amount of each

weapon type
(ii) cw: the cost for one unit of each weapon type
(iii) vw: the value for one unit of each weapon type
(iv) hw: the risk for one unit of each weapon type
(v) dw: the period of the weapon w from the beginning

of the weapon development to the deployment of
the weapon

(vi) sw: the service period of each weapon type

Similar to revenue in project portfolio [13], initial values
corresponding to each unit of weapon are pregiven. However,
in our research, vw can be interpreted as the damage rate per
unit time inflicted by the weapon w on counterparts [23].
Without loss of generality, we assume that initial weapon unit
value and risk are normalized so that vw ∈ (0, 1] and hw ∈
(0, 1]. We assume that military departments pay all costs to
the contractors at the beginning of the developments. At each
time point, decision makers need to decide the selected
amount for each weapon type, denoted as am

w . ,en, the total
selected amount for each weapon type can be calculated as
aw � 􏽐

M
m�1a

m
w , and the selected weapon units for each type is

indexed by w∗ from 1 to aw. For a weapon type w, the de-
velopment starting time of a selected weapon unit w∗ is
denoted as tw∗

w ; for instance, t21 indicates the development
starting time of the unit 2 of the weapon type 1.

At each time point, there are two entities need to be
addressed for each weapon type:

(i) um
w : the amount of weapon w under development at

time point m
(ii) om

w : the amount of weapon w in operation at time
point m

Note that the values of um
w and om

w are determined by
a

m1
w (m1 � 1, 2, . . . , m). For example, we consider a planning

with a horizon M � 100. Let w � 1 and d1 � 12 and s1 � 60.
We suppose that the total selected amount of this weapon
type is a1 � 20. ,e weapon units are developed at the first

and the fifth time points a1
1 � 5 and a5

1 � 15.,en, the values
of um

1 and om
1 can be obtained as follows:

u
m
1 �

5, m≤ 5,

20, 5<m≤ 12,

15, 12<m≤ 17,

0, else,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

o
m
1 �

5, 12<m≤ 17,

20, 17<m≤ 72,

15, 72<m≤ 77,

0, else.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

,e WSPP subjects to the following constraints.

3.1.1. Maximum Budget for Each Year. Budget for weapon
development provided by the government for each year is
restricted and denoted as Bn. ,e capital is available at the
beginning of each year. ,e actual spent capital in each year
is denoted as Sn. Similar to Carazo et al. [26], we assume that
the capital not spent in previous years can be accumulated
and transferred to the next year. ,e actual available capital
for each year is An. ,en, there are A1 � B1 and An � Bn+

(An− 1 − Sn− 1).

3.1.2. Minimum Amount in Operation. For a solution of
weapon planning, some types of weapons cannot form
combat effectiveness unless they have a considerably large
scale. Specifically, we use ow to denote the minimum amount
of weapon w in operation to form combat effectiveness at
each time point. If om

w < ow, then the effectiveness value of
weapon w at time pointm is 0. ,is constraint is similar to a
buy-in threshold [10, 27] constraint in portfolio management
problems.

3.1.3. Maximum Amount under Development. ,e maxi-
mum amount of a weapon type under development is
bounded because of limitation of manufacturing capability
of contractors. We use uw to indicate the maximum amount
of weapon units under development, and there is um

w ≤ uw.

3.2. Objective Calculation. In this paper, we focus on trade-
off between solution effectiveness and risk.

3.2.1. Calculation of Effectiveness. For a solution of the
WSPP, effectiveness needs to be evaluated at the overall level
during the whole planning horizon. Usually, defense
agencies intend to maximize damage rates of developed
weapons [23]. Similar to weapon portfolios, the overall ef-
fectiveness can be expressed with an additive value function
[4]. However, a simple additive value does not consider
effectiveness balance during the whole planning process. In
practice, decision makers may prefer a weapon plan which
can maintain a high and stable effectiveness during the
whole planning horizon. ,us, in this paper, we measure the
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effectiveness of a weapon plan by the average effectiveness
per time unit as well as the deviation of effectiveness during
the whole planning.

Furthermore, we assume that the value vw is decreasing in
time unitm.,is assumption is reasonable in practice because
that the effectiveness of a weapon will decrease due to per-
formance degrade or occurrence of countermeasures. We use
the following formulation to capture this characteristic:

v
m
w � vw α +(1 − α)

M − m + 1
M

􏼒 􏼓, (2)

where α ∈ [0, 1] is a coefficient to indicate the minimum unit
effectiveness during the planning horizon. We set α � 0.5 in
this research for the sake of calculation.

,en, at each time unit m, the effectiveness EF(m) is
taken as the additive effectiveness value of all weapon units
in operation:

EF(m) � 􏽘
W

w�1
x

m
w o

m
w v

m
w , (3)

where xm
w � 1 if om

w ≥ ow; otherwise, xm
w � 0. ,e overall

effectiveness of a WSPP solution, denoted as EF, can be
obtained by a mean-variance model:

EF � mean(EF(m)) − βStD(EF(m)), (4)

where mean(EF(m)) is the mean value over the whole
planning horizon and StD(EF(m)) is the standard deviation.
Similar to Yamashita et al. [28], parameter β is a variance
factor that determines the degree of effectiveness unbalance
aversion of the decision maker. Note that EF is to be
maximized.

3.2.2. Calculation of Risk. ,e risk corresponding to each
weapon development is considered to be a nonincreasing
function of development time. Specifically, if a weapon unit
is planned to be developed at a later time point, the risk it
faces will be lower. ,is is because technology uncertainties
of weapon R&D will be decreased with the development of
new technologies in the future. Similarly, the overall risk of a
solution can be modeled by an additive value function with
the time factor. Here, we use the averaged risk of each se-
lected weapon unit to indicate a solution’s risk value:

RK �
􏽐

W
w�1􏽐

aw

w∗�1hwexp − tw∗

w /M( 􏼁

􏽐
W
w�1aw

, (5)

where tw∗

w is the starting development time of w∗th unit of
weapon w.

It is known that a multiobjective problem (MOP) re-
quires the confliction among different objectives. In our
problem, the objective confliction mainly derives from the
planning of selected weapon units. For example, if a new
weapon will be developed, planning the R&D activity in the
future can decrease the risk of failure because of possible
technology breakthroughs. However, the effectiveness of the
weapon will be lower in the future, compared to the weapon
operation at the current period.

3.3. Multiobjective Optimization Model for WSPPs. For
WSPPs, EF is to be maximized and RK is to be minimized.
Without loss of generality, we convert the problem to a
minimization format by optimizing negative values of EF.
,e model of multiobjective optimization problem of a
WSPP can be summarized as follows.

3.3.1. Decision Variables. For an overall solution, decision
variables are am

w , w � 1, 2, . . . , W; m � 1, 2, . . . , M. Note that
am

w is a nonnegative integer value.

3.3.2. Objectives.

(1)minf1 � − EF,

(2)minf2 � RK.
(6)

Objectives f1 and f2, respectively, represent maximi-
zation of effectiveness and minimization of risk for a weapon
selection and planning solution.

3.3.3. Constraints.

(1)Sn ≤An, ∀n,

(2)u
m
w ≤ uw.

(7)

Constraint (1) is a budget constraint imposed on each
year. Constraint (2) reflects the maximum capability of
developing each type of weapon.

4. MOEA/D with Distance-Based
Divided Neighborhoods

In this research, we solve the problem by multiobjective
genetic algorithm based on decomposition (MOEA/D) [29].
MOEA/D decomposes a MOP into a set of subproblems
whose objective function can be a weighted linear or non-
linear aggregated function. ,e optimal solutions of all
subproblems constitute the Pareto optimal set of the original
MOP. In MOEA/D, all the scalar objective optimization
subproblems are simultaneously optimized in a single run. A
neighborhood relationship among all the subproblems is
defined based on the distances among their weights. It
should be noted that various algorithm components of
MOEA/D have been investigated for performance im-
provement [30–32]. ,ere are several approaches to con-
struct a scalar optimization function [32]. For simplicity, this
paper uses the weighted sum approach.

In this section, we propose a distance-based divided
neighborhoods (DDNs) strategy for MOEA/D.

4.1. Motivations. Firstly, we would like to elaborate our
motivation by making the following comments:

(1) A basic assumption behindMOEA/D is that adjacent
subproblems should obtain similar optimal solu-
tions. Although this assumption is reasonable for
most function optimization problems, there are
some exceptions, especially for some combinatorial
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problems [33, 34]. If the Pareto front is disconnected
or not distributed evenly, parents selected with a
constant neighbor size from the neighborhood of a
subproblem may have a lower chance to generate
promising offsprings. ,is is because individuals too
different from each other are generally less likely
than similar individuals to produce fit offspring
through mating [35]. ,e motivation behind the use
of nonconstant neighbor size is illustrated by
Figure 1.

(2) In the original MOEA/D, parents are randomly
selected from the neighborhood of a subproblem.
However, parents with different domination ranks
vary a good deal with the capability of generating
new offspring, contributing to both convergency and
diversity. ,is is considerably precise during the
early stage of evolving. Figure 2 illustrates possible
limitation of the original selection mechanism. We
are aware of that this situation depends on the
problem characteristics. However, for most combi-
natorial problems, the final Pareto optimal solutions
are rather sparse. For a population with a relative
large size, this situation is not scarce during the
evolution process.

(3) Some variants of MOEA/D address the strategy of
population replacement. An alternative is that a new
solution could replace any other ones in the whole
population [34]. In Zhou and Zhang’s study [36], a
new solution replaces the one that can be improved
most among all the subproblems. In Wang et al.’s
study [37], neighboring solutions of a suitable
subproblem are replaced by a new solution with a
better scalar function value. Nevertheless, in two
situations, an obtained nondominated solution
could be replaced by an inferior solution. ,e first is
that the Pareto front is nonconvex, and the second is
that each subproblem has different convergency
speeds. Furthermore, when the Pareto front is
nonconvex, the weighted sum approach could not
work well. ,is shortcoming could be overcome if
the search direction of a subproblem is restricted
within a relative narrow scope. ,e motivation of
using such a restriction is illustrated by Figure 3.

4.2. Distance-Based Divided Neighborhood Strategy.
Previous research studies suggest that the use of different
neighborhoods, i.e., mating neighborhood and replacement
neighborhood, can achieve better performance forMOEA/D
[37, 38]. Along this avenue, in the proposed distance-based
divided neighborhood (DDN) strategy, the original neigh-
borhood (o-neighborhood) of a subproblem is divided into
selection neighborhood (s-neighborhood) and replacement
neighborhood (r-neighborhood). Furthermore, the size of
the original neighborhood is restricted and changed
according to a pregiven search scope. ,e DDN strategy is
illustrated in Figure 4.

For a solution xi corresponding to the subproblem i, the
basic DDN strategy works as follows:

(1) Determines s-neighborhood and r-neighborhood,
respectively

(2) Mating: select two solutions from the s-neighbor-
hood of xi and generate a new solution x∗i by using
genetic operators

(3) Replacement: update the r-neighborhood of xi by
replacing at most n solutions with worse scalar
function values

Before defining s-neighborhood and r-neighborhood, we
introduce a parameter, d, to indicate the search scope of a
subproblem. We first determine a reference point xr. For a
solution xi, a line crossing xr and xi can be constructed. Note
that, for two objectives problems addressed in this research,
the line can be alternatively determined by xi and its asso-
ciated weight vector. ,en, dij is defined as the distance from

f2

f1

A

A∗

B

B∗

Figure 1: Illustration of motivation 1: suppose solutions A and B
are two nondominated solutions. ,e neighborhood size is 5, and
the neighborhood consists of 5 closest solutions in objective space.
A∗ and B∗ are two potential dominating solutions. It is very likely
that A has a lower chance to generate A∗ by randomly selecting two
parents in its neighborhood since A’s neighbors are far from each
other. In this figure, the minimization problem is considered.

f2

f1

A

A∗

B∗

B

C

Figure 2: Illustration of motivation 2: given a solution C, whose
neighbors are in the dash rectangle. It is clear that it has a higher
chance to generate a better child solution if A∗ and B∗ are selected
as parents, compared to A and B.
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another solution xj to the line. In the calculation of distances
dij, objective values are normalized for each objective vector
by utilizing the obtained maximum and minimum values of
each objective. Solutions in s-neighborhood and r-neigh-
borhood are, respectively, defined as follows.

Definition 1. Given a solution xi, a neighbor xj ∈ o−

neighborhood is called a selection neighbor (i.e., xj ∈ s−

neighborhood) if

(1) dij ≤d

(2) fws(xj | λi)≤fws(xi | λi)

Definition 2. Given a solution xi, a neighbor xj ∈ o−

neighborhood is called a replacement neighbor (i.e., xj ∈ r−

neighborhood) if

(1) dij ≤ d

(2) fws(xj | λi)>fws(xi | λi).

One can notice from the above two definitions that the
original neighborhood is restricted by d and divided
according to the scalar function.

Here, we make some remarks on the proposed DDN
strategy:

(1) Given a subproblem, the DDN strategy divides its
neighborhood into s-neighborhood and r-neigh-
borhood. With the subproblem’s weight vector, in-
dividuals in s-neighborhood have better values of
scalar function than those in r-neighborhood. Parent
individuals selected from s-neighborhood will have a
good chance to produce better child individuals.
Replacing individuals only in r-neighborhood can
push the whole population towards the true Pareto
front, thus increasing the convergency capability.

(2) ,e individual numbers in the neighborhood change
according to the search scope of each subproblem,
controlled by the parameter d. ,e benefits of such a
restriction are twofold: firstly, mating can be re-
stricted among similar parent individuals. Secondly,
for subproblems with lower convergency speed,
potential good individuals can be maintained in the
population since each subproblem is only re-
sponsible for a specific narrow search direction. Note
that, for an individual in the approximated non-
domination set during the search process, when d is
approaching 0, generation of child individuals can be
considered as a local search process.

(3) ,e use of parameter d bears some similarity to the
strategy of constrained decomposition in MOEA/D
(MOEA/D-CD) [39]. In Wang et al.’ study [39], a
constraint is imposed to each subproblem to restrict
the improvement region.,en, for a subproblem, the
partial order of two solutions is redefined and the
replacement is implemented according to the new
dominance relation. However, in MOEA/D-CD, the
neighborhood size of each subproblem remains
fixed. While, in the proposed DDN strategy, the
neighborhood size is controlled by the parameter d.
Moreover, selection and replacement happen to
different regions of the restricted neighborhood.

(4) In the proposed DDN strategy, s-neighborhood and r-
neighborhood are defined according to scalar func-
tion values corresponding to the subproblem’s weight
vector. ,e s-neighborhood of each solution at least
includes itself. In such a case, two parents are identical
and only mutation operator works. However, for
combinatorial problems, it is almost impossible that
all subproblems have the same convergence speed. In
other words, during the evolution, it is impossible that
all individuals in the population are evenly distributed
and located in the same on-dominating front. ,us,
the s-neighborhood may contain more than one in-
dividual and its size is dependent on the parameter d

A

A1

A2

f2

f1

Figure 3: Illustration of motivation 3: given a solution A, a child
solution might be A1 or A2. If weighted sum approach is used, it is
possible that A will be replaced by A1 or A2. However, A is a
nondominated solution, while A1 and A2 are both dominated. If we
restrict the replacement in a certain scope, denoted by the gray area,
A can be maintained in the population.

Reference point
(1, 1)

o-neighborhood
s-neighborhood
r-neighborhood

f2

f1

d

A

Figure 4: Illustration of the proposed DDN strategy.
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as well as the population distribution during different
stages of evolution. In the experimental analysis, the
trend of the s-neighborhood’s size during evolution
will be reported.

(5) To overcome the limitation of standard MOEA/D
when solving problems with a complex Pareto front,
some research studies employ the strategy of adaptive
weight vector adjustment [40, 41]. By adjusting weight
vectors, the diversity performance of the algorithm
can be improved.,e proposed DDN strategy and the
weight vector adjustment strategy share the same
motivation, i.e., tackling complex multiobjective op-
timization problems. However, DDN uses a different
mechanism. DDN strategy focuses on improving the
convergency ability of the algorithm by taking into
account the property of irregular Pareto front. With a
DDN strategy, the convergency ability of the algo-
rithm will be improved by restricting mating parents
when individuals locate in the discontinuous regions
of the Pareto front. While for the weight vector ad-
justment strategy, an algorithm obtains better uni-
formity of solutions by redistributing the weights of
subproblems [40].

(6) We are aware that there are several other kinds of
scalar function in MOEA/D, such as Tchebycheff
approach and penalty-based boundary intersection
(PBI) approach. For complex MOPs, Tchebycheff and
PBI approach might achieve better performances
compared to the weighted sum approach with original
framework of MOEA/D. However, the benefit comes
with a price. For instance, one has to identify the
reference points with the Tchebycheff approach and
set the value of the penalty factor with the PBI ap-
proach. Determining the optimal parameters is not a
trivial task for complex problems. ,e proposed
MOEA/D-DDN provides an alternative for solving
complex MOPs by MOEA/D with the simplest scalar
function, i.e., weighted sum approach.

4.3. MOEA/D with DDN. ,e framework of the proposed
MOEA/D-DDN is shown as Algorithm 2. ,e original MOP
is decomposed into H scalar objective subproblems.

,e algorithm specification of MOEA/D is as follows.

4.3.1. New Solution Generation. ,ere are many ways to
generate a trial solution in MOEA/D. In the MOEA/D-
DDN, a trial solution is generated by using genetic operators
on two randomly selected solutions in s-neighborhood. ,e
genetic operators for the addressed problem will be elabo-
rated in the following section.

4.3.2. Population Replacement. MOEA/D and its variants
replace the population according to comparison of scalar
objective values of newly generated solution and others in
the neighborhood. We use the same replacement mecha-
nism as in Li and Zhang [42]; i.e., at most nr, solutions in the

neighborhood can be replaced. In the MOEA/D-DDN, re-
placement is restricted in the r-neighborhood of each
subproblem.

4.3.3. Summary of MOEA/D-DDN. Based on the above
discussion, the inputs of MOEA/D-DDN can be summa-
rized as follows:

(i) H: the number of subproblems.
(ii) D: the initial size of neighborhood.
(iii) Ci ⊂ 1, . . . , H{ }, the index set of the original

neighboring subproblems of subproblem i, where
Ci � D.

(iv) d: the distance of search scope.
(v) nr: the maximal number of solutions replaced by

each child solution.
(vi) (y∗1 , . . . , y∗k ): the set of reference points in ob-

jective space, which can be determined by a
problem-specific method. Note that y∗k � (y∗ min

k ,

y∗ max
k ).

(vii) G: the number of generation as a stopping
criterion.

(viii) At each generation, MOEA/D-DDNwith weighted
sum approach maintains.

(ix) A population of H individuals xi, . . . , xH.
(x) FV1, . . . , FVH, where FVi is the fitness value of xi.
(xi) An external population (EP), which is used to store

nondominated solutions found during the search.

One can see from the above discussion that MOEA/D-
DDN has only one additional parameter, i.e., search scope
distance d. ,e performances of the algorithm with different
values of d will be investigated in Experimental Analysis.
Since the proposed MOEA/D-DDN does not change the
basic framework of MOEA/D, the computational com-
plexity of MOEA/D-DDN remains the same as original
MOEA/D.

5. Genetic Representation and
Operators for WSPPs

5.1. Chromosome Representation. In portfolio problems, a
hybrid binary/real-valued encoding is recommended as
genetic representation by Streichert et al. [43] and also
employed in other works [10, 16]. With this encoding, the
real-valued vector is used to indicate the share of the budget
on different assets or projects, while the binary vector is used
to indicate whether the asset is selected or not. For WSPPs, a
chromosome representation should include the information
of weapon type, amount, and planning time. However, the
hybrid representation for portfolio problems does not
consider the factor of time horizon. For the problem
addressed in this research, we design a chromosome rep-
resentation consisting of two parts: budget distribution and
priority matrix, respectively, shown as in Figures 5 and 6.

Both budget distribution and priority matrix are real-
valued. ,e vector ((δ11, δ

2
1, . . . , δ121 ), . . . , (δ1N, δ2N, . . . , δ12N ))

8 Complexity



indicates budget shares at each time unit for each year.
Elements in the priority matrix, p

iw
w , where iw � 1, . . . , amax

w ;

w � 1, . . . , |W|, are encoded by real values between interval
[0, 1]. A lower value indicates a higher priority. In the
initialization, the values of p

iw
w are randomly generated in the

interval [0, 1], and all values are nonredundant. For ex-
ample, given a single type of weapon with 6 units, a chro-
mosome can be generated and represented as (0.554, 0.034,

0.336, 0.498, 0.174, 0.689). ,en, the second unit of weapon
will be selected first if the budget is available.

5.2. Decoding Procedure. A chromosome representation
should be decoded to a selection and planning solution to
evaluate objective values. At each time unit, the original
available budget is determined by the share value δi

n, where
i � 1, 2, . . . , 12 and n � 1, 2, . . . , N. Note that actual available
budget can be different due to the accumulation of previous
not-spent budget. ,e selected weapon type and amount are
determined according to priorities. ,e procedure of
decoding is presented as Algorithm 1.

Note that the decoding procedure can ensure the sat-
isfaction of constraints (1) and (2) in the multiobjective
optimization problem shown in equation (7). We use a
simple example to illustrate the decoding procedure. We
consider a problem with 12 planning units (1 year) and a
single type of weapon with 6 units. ,e cost for each weapon
unit is c1 � 6, and the available budget is B1 � 25. ,e
chromosome of budget distribution is (0.4, 0.6, 0, 0, 0, 0, 0
0, 0, 0, 0), and the priority matrix is (0.554, 0.034, 0.336,

0.498, 0.174, 0.689). ,en, there are B1
1 � 10 and B2

1 � 15. At
the first time point, due to the constraint of available budget,
only one unit of weapon is selected. Specifically, the second
unit of weapon is selected. ,en, we have 􏽢B

1
1 � 6 and

B
1
1 � 10 − 6 � 4. At the second time point, the available

budget is B2
1 � B

1
1 + B2

1 � 4 + 15 � 19. ,en, 3 units of
weapon can be selected, i.e., weapon unit 5, 3, and 4. At the
second time point, 􏽢B

2
1 � 18 and B

2
1 � 1. ,en, we can obtain

value of decision variables a1
1 � 1 and a2

1 � 3.

5.3. Crossover andMutation. Crossover andmutation are two
important operators in genetic algorithms. We use BLX-α
crossover as in Streichert et al. [27] since this crossover per-
formed best for portfolio problems.,e values of δn

w of the two
parents are denoted as parent1(δ

n
w) and parent2(δ

n
w), re-

spectively. ,e BLX-α crossover randomly reinitializes the

values of δn
w from a extended range (max 0, parentmin􏼈

(δn
w) − Iα}, parentmax(δ

n
w) + Iα), where parentmin(δn

w) � min
(parent1(δ

n
w), parent2(δ

n
w)), parentmax(δ

n
w) � max(parent1

(δn
w), parent2(δ

n
w)), and I � parentmax(δ

n
w) − parentmin(δn

w).
We set α � 0.5 as in Streichert et al. [27]. A similar crossover
operator is employed for the priority matrix.

,e mutation operator is executed as follows: for the
budget distributing list, a mutation point is randomly de-
termined for each year. ,en, a random real value between 0
and 1 is generated and the value at the mutation point is
replaced. A weapon type is randomly selected and denoted as
w. ,e elements in the priority matrix corresponding to the
selected type, p

iw
w
, iw � 1, 2, . . . , amax

iw
, are replaced by values

randomly draw from the distributions N(p
iw
w

, 0.1). If a new
generated value is negative, then we set the value as 1e − 8.
Note that this mutation operator is also similar to that in
Streichert et al. [27] in which decision variables are mutated
by adding a random Gaussian number with a specific
deviation.

6. Experimental Analysis

6.1. Test Instance Generation. Since there is no existing lit-
erature which addresses exact WSPPs, no benchmark in-
stances can be utilized to test the proposed algorithm. To
concretely illustrate the studied problem and investigate the
performance of MOEA/D-DDN, different instances were
randomly generated. ,e test bed consists of three sets of
instances with different sizes. Table 1 shows parameters of
instance generation. Each set includes 5 instances, and the
corresponding values were uniformly drawn from the given

(1) Algorithm initialization.
(2) while not terminate do
(3) for i � 1 to H do
(4) Generate a trial solution for subproblem i using DDN strategy.
(5) Update the population by the new generated solution using DDN strategy.
(6) Update the external population.
(7) end for
(8) end while

ALGORITHM 2: MOEA/D-DDN framework.

δ1
1 δ2

1 δ1
12 δ1

N δ2
N δN

12

Year 1 Year N

Figure 5: Chromosome representation of budget distribution.

Weapon type 1

Weapon type 2

Weapon type |W|

p1
1 p2

1

p1
2

p1
|W| p2

|W|

p2
2

p1
a1

max

p2
a2

max

p|W|
a|W|

max

Figure 6: Chromosome representation of priority matrix.
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interval. ,e main difference among test sets is the size of
weapon types. Note that the values in Table 1 are artificial for
the reason of confidentiality. However, the identification of
interval values also refers to some real cases of weapon
selection and planning. Specifically, all ranges of parameters
refer to the data from management department of Chinese
Army during 2005–2015. Although the test instances are
artificial, the results are generalisable to real situations of
weapon selection and planning in the future.

6.2. Parameter Settings. ,e algorithm was implemented
with C#. ,e population size was set as 100, and the initial
neighborhood size was set as 20. ,e rates for crossover and
mutation were fine tuned and identified as 0.95 and 0.9,
respectively. ,e maximal number of solutions replaced by
each child solution was 2. ,e algorithm was terminated
after 100 generations. In the experiments, all algorithms
were run 20 independent times for each instance. For
performance comparison, we conducted statistical signifi-
cance tests for results for a significance level IÁ � 0.05.

6.3. Performance Metrics. Similar to most combinatorial
problems, the true Pareto front is unknown. ,us, we use
hypervolume and set coverage as performance metrics as in
Ke et al. [34]:

(1) Hypervolume indicator (IH) [44]: let f∗ be a point in
the objective space which is dominated by any Pareto
optimal objective vectors. ,en, the value of IH for
an obtained approximation to the Pareto front is the
volume of the region which is dominated by the
approximation and dominates f∗. ,e higher the
hypervolume value, the better the approximation.
Since in WSPPs, two objectives have different di-
mensions, values are normalized for hypervolume
calculation. In the normalization, the maximum and
the minimum values for objective f1 are identified as
0 and − 25, and the maximum and the minimum
values for f2 are 0.4 and 0. After normalization, the
reference point was set as (1, 1) in the calculation of
the hypervolume value. Note that if reference points
take the range of the problem into consideration, it is
not necessary to normalize the objective values of
nondominated solutions [45].

(2) Set coverage (C metric) [44]: let A and B be two
approximations to the Pareto front. C(A, B) is de-
fined as the percentage of the solutions in B that are
dominated by at least one solution inA. For instance,
C(A, B) � 100% indicates that all solutions in B are
dominated by some solutions in A. Note that
C(A, B) is not necessarily equal to 1 − C(B, A). A

higher value of C(A, B) and a lower value of its
counterpart C(B, A) means A has a better conver-
gence performance. In the calculation of C metric,
duplicate solutions were removed from the obtained
nondominated set.

6.4. Sensitivity Analysis. In the proposed MOEA/D-DDN,
there is an additional parameter-search scope distance d. We
first investigated the performances of different d values.
Statistical analyses on hypervolume of obtained Pareto so-
lutions suggest that there is no significant difference for most
instances.

Note that hypervolume was normalized with a relative
wide range. ,is may affect the analysis of hypervolume
measure. We further investigated the set coverage. We
obtained the final nondominated solutions with 20 runs for
each value of parameter d. A score S(d) is calculated as
follows:

S di( 􏼁 � 􏽘
j∈all values of d,j≠i

C dj, di􏼐 􏼑.
(8)

Table 2 reports the score S(d) for all tested values of
parameter d on 15 instances. A lower value of S(d) indicates
a lower percentage of obtained dominated solutions. In the
table, if results with a specific value of d achieve the lowest
score, the score value is highlighted with bold face. ,e
results in the table also suggest that optimal value of pa-
rameter d varies with different instances. For our bench-
mark, the parameter of d � 0.4 performed best for 7 in 15
instances, while the numbers for d � 0.05, 0.20, and 0.60 are
4, 3, and 1, respectively. ,en, if the parameter d needs to be
identified for all instances, the value d � 0.40 is preferred.

6.5. Effect of Algorithm Components. ,e proposed MOEA/
D-DDN is characterized by two mechanisms: (1) dividing
neighborhood as selection neighborhood and replacement
neighborhood and (2) using parameter d to control the
neighborhood size. In this subsection, we investigated the
effects of the above two mechanisms. ,e algorithm only
with divided neighborhoods is denoted as MOEA/D-DivN;
i.e., the parameter d is relaxed. However, the algorithm
including parameter d based on original MOEA/D is
denoted as MOEA/D-DisN. We chose the parameter d �

0.40 for MOEA/D-DisN and MOEA/D-DDN. Table 3 re-
ports the obtained results of hypervolume for the three
algorithm versions, as well as original MOEA/D. For each
instance, the best value, the average, and the standard de-
viation are reported. For the value obtained by MOEA/D-
DDN, if it is significant better than one of the other three
algorithms, the average is presented in bold face. From
Table 3 we can see that MOEA/-DDN performed best for all

Table 1: Parameters of test instance generation.

W N Bn cw vw hw dm sw ow uw

Set1 30 20 [180, 220] [10, 25] [0.50, 0.90] [0.10, 0.30] [15, 35] [50, 150] [4, 10] [1, 5]
Set2 40 20 [220, 260] [10, 25] [0.50, 0.90] [0.10, 0.30] [15, 35] [50, 150] [4, 10] [2, 7]
Set3 50 20 [260, 300] [10, 25] [0.50, 0.90] [0.10, 0.30] [15, 35] [50, 150] [4, 10] [3, 9]
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instances. However, the performances of MOEA/D-DivN,
MOEA/D-DisN, and MOEA/D are comparable. It suggests
that the combination of two algorithm components of
MOEA/D-DDN is effective for the addressed problem.

6.6. Algorithm Dynamics. Compared to original MOEA/D,
the main difference of MOEA/D-DDN lies in the change of
divided neighborhoods. ,e sizes of s-neighborhood and r-
neighborhood vary during the evolution process. In this
subsection, we investigated the dynamics of neighborhood
sizes for individuals. ,e data of the first run for instance 10
was used for analysis. We first present two different patterns
of neighborhood size variation. ,e 30th and the 96th in-
dividuals in the population were identified. ,e neighbor-
hood sizes are shown as Figures 7 and 8, respectively.

Typically, a lower value of s-neighborhood might in-
dicate a better convergence performance for an individual,
and vice versa. One can see from Figure 7 that, for the 30th
individual, the trend of s-neighborhood size is decreasing
with evolution. At the beginning of the evolution process,

the s-neighborhood size was 13, while the value remained
1 when the algorithm ended. ,is indicates that the 30th
individual had a poor performance of nondominated
ranking in the initial population. However, this perfor-
mance spirally improved during the evolution. A change
of s-neighborhood size from a higher value to a lower
value represents the improvement of nondominated
ranking performance. Figure 8 shows a different pattern.
,e 96th individual had a better nondominated rank in
the initial population, while the performance was de-
creasing along with the evolution. Figure 9 shows the
population at the 1st, 50th, and 100th generation, denoted
as dot, triangle, and star, respectively. ,e positions of the
30th and 96th individuals are, respectively, marked by
hexagon and circle. ,e 96th individual was positioned at
the first nondominated rank in the initial population.
However, it was dominated in the 50th and 100th gen-
erations. However, the situation of the 30th individual is
opposite.

Here, a question why good solution in the initial pop-
ulation did not contribute to the convergence performance

Table 2: Obtained S(d) with different values of d.

Instance
d

0.05 0.20 0.40 0.60
1 0.5455 0.8421 2.5909 1.2333
2 2.1764 0.6296 1.1219 0.9565
3 1.7436 1.6875 0.9999 1.1333
4 2.5806 0.6250 0.5527 1.5666
5 1.775 1.3530 0.6551 2.1290
6 1.0518 1.1428 1.3800 1.3721
7 2.3794 1.1000 1.0322 1.6364
8 1.7932 0.7143 1.4687 1.7813
9 2.0416 1.4642 1.0000 1.2258
10 1.9412 1.4474 1.0213 1.0605
11 1.0256 1.6190 1.5117 1.7391
12 0.9375 1.9487 1.2955 0.9762
12 1.3750 1.0139 1.6734 1.0690
14 1.3877 2.0385 0.9033 1.1796
15 0.9242 1.1714 2.1000 0.9143

Table 3: Performance (hypervolumn) comparison of MOEA/D-DDN, MOEA/D-DivN, MOEA/D-DisN, and MOEA/D.

Instance
MOEA/D-DDN MOEA/D-DivN MOEA/D-DisN MOEA/D

Best Average Std. Best Average Std. Best Average Std. Best Average Std.
1 0.3609 0.3397 0.0171 0.3522 0.3178 0.0216 0.3429 0.3117 0.0149 0.349 0.3095 0.0246
2 0.4033 0.3541 0.0198 0.3774 0.3331 0.0201 0.3666 0.3159 0.0256 0.3661 0.3169 0.0239
3 0.3609 0.3379 0.0179 0.3402 0.3074 0.0214 0.3642 0.3092 0.0241 0.3674 0.3236 0.0250
4 0.3632 0.2901 0.0256 0.2886 0.2620 0.0164 0.3017 0.2539 0.0204 0.3105 0.2585 0.0276
5 0.4188 0.3528 0.0267 0.3653 0.3304 0.0185 0.3689 0.3151 0.0285 0.3616 0.3250 0.0193
6 0.3283 0.2906 0.0265 0.3348 0.2706 0.0292 0.3457 0.2654 0.0312 0.3325 0.2817 0.0294
7 0.4449 0.4101 0.0223 0.4111 0.3601 0.0301 0.4065 0.3405 0.0423 0.3861 0.3422 0.0292
8 0.4088 0.3572 0.0258 0.3612 0.3199 0.0289 0.3646 0.3118 0.0319 0.3533 0.3086 0.0276
9 0.4221 0.3746 0.0245 0.3828 0.3320 0.0325 0.4064 0.3348 0.0305 0.3996 0.3331 0.0306
10 0.4533 0.3986 0.0275 0.4432 0.3460 0.0283 0.3998 0.3460 0.0283 0.3936 0.3521 0.0280
11 0.4681 0.4180 0.0217 0.4219 0.3590 0.0317 0.4395 0.3697 0.0377 0.4391 0.3746 0.0264
12 0.4622 0.4089 0.0234 0.4314 0.3677 0.0347 0.4406 0.3705 0.0344 0.4216 0.3525 0.0257
13 0.5151 0.4712 0.0247 0.4920 0.4299 0.0352 0.4535 0.4154 0.0278 0.4795 0.4270 0.0314
14 0.4617 0.3909 0.0372 0.4135 0.3512 0.0384 0.4224 0.3418 0.0481 0.4276 0.3418 0.0440
15 0.4156 0.3585 0.0380 0.3714 0.3242 0.0310 0.3778 0.3147 0.0329 0.3793 0.3189 0.0287
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Figure 9: Population at the 1st, 50th, and 100th generation.
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Figure 7: Variation of neighborhood sizes of the 30th individual.
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arises. Recall that similar to original MOEA/D, MOEA/D-
DDN evenly generated weight vectors for each individual,
and then the population was initialized randomly. ,e
weight vector remains unchanged during the whole evo-
lution process. Possibly, the weight vector assigned to an
individual is not the most appropriate one for the individual
itself. For instance, in the initial population, the 96th in-
dividual almost lied in the middle of the population in the
objective space. However, the assigned weight vector decides
that the 96th individual searches along the aside direction. In
other words, this type of individuals have longer paths to
search in the objective space. Given evenly allocated com-
putation resource, the performance might be worse.

,en, we assume that different parts of individuals in the
population contribute differently to the convergence per-
formance. We selected 3 sets of individuals in the

population. Set 1 includes the first 10 individuals, set 2
includes individuals from 45 to 54, and set 3 consists of the
last 10 individuals. ,e s-neighborhood sizes for each in-
dividual set during the evolution are, respectively, reported
in Figures 10–12. A common feature shared by 3 sets is that
the change frequency of s-neighborhood size decreased with
evolution. ,is indicates the convergence of the population.
By looking at initial populations, one can see that the spreads
of s-neighborhood size for each set are similar. For sets 1 and
3, s-neighborhood sizes increased at the end of the algorithm
for most individuals. However, the same values decreased
for most individuals in set 2. Given an evenly spread of the
population, a lower value of s-neighborhood size usually
indicates a better value of nondomination rank for an in-
dividual. ,en, it might be safe to state that, given evenly
assigned weight vector and randomly generated initial
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Figure 11: Variation of selection neighhorhood sizes for individuals 45 to 54.

0

2

4

6

8

10

12

14

16

20

18

Se
le

ct
io

n 
ne

ig
hb

or
ho

od
 si

ze

20 40 60 80 1000
Generation

5
6
7

4

2
1

3

8
9
10

Figure 10: Variation of selection neighhorhood sizes for individuals 1 to 10.

Complexity 13



0.136
0.134
0.132
0.130
0.128
0.126
0.124
0.122
0.120
0.118
0.116
0.114
0.112

f2

f1

–2–4–6–8–10–12–14

MOEA/D-DDN
MOEA/D
NSGA2

(a)

0.136
0.134
0.132
0.130
0.128
0.126
0.124
0.122
0.120
0.118
0.116
0.114
0.112

f2

f1

–2 0–4–6–8–10–12–16 –14

MOEA/D-DDN
MOEA/D
NSGA2

(b)

0.136
0.134
0.132
0.130
0.128
0.126
0.124
0.122
0.120
0.118
0.116

0.110
0.112
0.114

0.108

f2

f1

–2 0–4–6–8–10–12–14–16

MOEA/D-DDN
MOEA/D
NSGA2

(c)
0.134
0.132
0.130
0.128
0.126
0.124
0.122
0.120
0.118
0.116
0.114

0.110
0.112

0.108

f2

f1

–2 0–4–6–8–10–12–14

MOEA/D-DDN
MOEA/D
NSGA2

(d)

0.124

0.122

0.120

0.118

0.116

0.114

0.110

0.112

0.108

f2

f1

–2 0–4–6–8–10–12–16 –14

MOEA/D-DDN
MOEA/D
NSGA2

(e)

0.122
0.120
0.118
0.116

0.110
0.112
0.114

0.108
0.106
0.104
0.102
0.100

f2

f1

–2 0–4–6–8–10–12–14

MOEA/D-DDN
MOEA/D
NSGA2

(f )

Figure 13: Continued.

0

2

4

6

8

10

12

14

16

18

Se
le

ct
io

n 
ne

ig
hb

or
ho

od
 si

ze

20 40 60 80 1000
Generation

95
96
97

94

92
91

93

98
99
100

Figure 12: Variation of selection neighhorhood sizes for individuals 91 to 100.

14 Complexity



population, it is more difficult to put individuals located on
end parts of the approximated Pareto front towards the true
Pareto front. Some works have addressed similar issues. Li
et al. [46] proposed a stable matching model for selection
process of MOEA/D. ,is technique can be employed, and
the performance of MOEA/D-DDN might be improved
further for more complicated problems. However, this paper
focus on the effect of distance-based divided neighborhoods

for combinatorial problems. ,en, further improvement of
MOEA/D-DDN is not considered currently but left in future
researches.

6.7. Further Performance Comparison. MOEA/D and NSGA-
II are two of the classic algorithms for solving multiobjective
problems. ,e existing literature suggests that MOEA/D
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outperforms or performs similarly to NSGA-II for continuous
and combinatorial multiobjective problems [29]. Recently,
combinations of decomposition mechanism and NSGA-II
components were successfully used to solve combinatorial
problems [47]. Latest research studies also suggest the ef-
fectiveness of NSGA-II for solving similar scheduling prob-
lems [48–50]. ,us, in this paper, we choose NSGA-II as the
baseline algorithm for comparison. In this subsection, we
compared the performance of MOEA/D-DDN and NSGA-II
as well as original MOEA/D. All parameters were set as the
same with MOEA/D-DDN. Figure 13 reports the obtained
approximation of Pareto optimal solutions by MOEA/D-
DDN,MOEA/D, and NSGA-II for all instances. It is clear that
MOEA/D-DDN achieved the best results in terms of con-
vergence for all instances. However, it should be noted that,
for some instances, NSGA-II performed better in terms of
maximum spread, for example, for instances 1, 3, 14, and 15.
,e performances of MOEA/D and NSGA-II are comparable
for both convergence and maximum spread. ,en, we can
conclude that the proposed MOEA/D-DDN can solve the
addressed WSPPs better, compared with original MOEA/D
and NSGA-II.

7. Conclusion

In capability planning area, decision makers face the
problem of deciding the type and the amount of weapons.
Furthermore, decision makers have to plan when to develop
each unit of weapons. ,is type of problem is termed as
weapon selection and planning problems (WSPPs). ,is
paper refines the multiobjective model of WSPPs. ,e
problem is combinatorial, and multiple types of decision
variables increase the problem’s complexity. MOEA/D is
employed as the basic optimizer for solving the problem.
However, the ability of original MOEA/D with weighted
sum is limited due to the discontinuous, nonconvex, and
irregular Pareto front. To overcome the possible drawbacks
or MOEA/D, two mechanisms are designed: (1) dividing the
original neighborhood of each individual as selection and
replacement neighborhoods and (2) controlling the neigh-
borhood sizes by constraining the search scope of each
subproblem. ,e proposed algorithm is termed as MOEA/
D-DDN. ,e neighborhood is divided by means of scalar
function value. An additional parameter d is introduced to
control the search scope of each subproblem.

To illustrate the addressed problem and investigate the
performance of MOEA/D-DDN, benchmark instances with
different scales were generated. Sensitivity analysis of d
suggests that the optimal value of d needs to be identified for
different problems. ,is might be a common challenge arisen
to evolutionary algorithms. ,is issue is worthwhile to be
addressed in future researches. ,e effectiveness of two
designedmechanisms has been investigated.,e performance
of MOEA/D-DDN for solving WSPPs was compared with
original MOEA/D and NSGA-II. ,e results suggest that
MOEA/D-DDN performed better than other algorithms.

Currently, various MOEAs have been developed and
applied to solve problems in different areas. However, most
benchmarks are continuous problem. ,e ability and

possible drawbacks of various MOEAs for complex com-
binatorial problems are still open issues. It might be in-
teresting to address these issues in future researches.
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