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Existing cascading models are unable to depict the sink-convergence characteristic of WSNs (wireless sensor networks). In this
work, we build a more realistic cascading model for WSNs, in which two load-redistribution schemes (i.e., idle redistribution and
even redistribution) are introduced. In addition, failed nodes are allowed to recover after a certain time delay rather than being
deleted from the network permanently. Simulation results show that the network invulnerability is positively correlated to the
tolerance coefficient and negatively correlated to the exponential coefficient. Under the idle-redistribution scheme, the network
can have stronger invulnerability against cascading failures. The extension of the recovery time will exacerbate the fluctuation of
the cascading process.

1. Introduction

Wireless sensor network (WSN) is one of the most important
components of the Internet of Things (IOT) system, because
it has the characteristics of simple deployment, low cost, self-
organization, and so on [1, 2]. In actual WSNs, sensor nodes
are characterized by limited capacity. If the traffic load of a
sensor node is greater than its capacity, its performance will
be severely affected and all or part of its load will be rerouted
to other sensor nodes, further leading to a redistribution of
traffic load across the network.During this process, theremay
be new sensor nodes being failed due to overload. We call
this dynamic process the cascading failures. In WSNs, due to
the existence of cascading failures, even though most failures
emerge very locally, the entire network can be largely affected
or even collapsed globally [3–5].

Existing cascading models for WSNs usually used the
degree or betweenness value of a sensor node to represent
their traffic load.These assumptions are reasonable enough in
the peer-to-peer networks, but they cannot apply toWSNs as
they ignored the impacts of the sink node on network traffic
distribution. Sink convergence is the most evident char-
acteristic that can distinguish WSNs from other networks.
Therefore, this paper proposes a more realistic cascading

model for WSNs. The main contributions of this paper are
as follows:
(1) A cascading model that can depict the sink-conver-

gence characteristic of WSNs is proposed.
(2) Two load-redistribution schemes (i.e., even-redistri-

bution scheme and idle-redistribution scheme) are intro-
duced.
(3) We evaluate the impacts of key parameters in this

model and compare two load-redistribution schemes.
The reminder of the paper is organized as follows.

Section 2 describes recent related work. In Section 3, the cas-
cading model is proposed. In Section 4, simulation results are
given. Finally, conclusion and the future work are presented.

2. Related Work

In the real world, cascading failures are very common in
actual network systems, such as power grid network, sup-
ply chain network, and communication network. Many re-
searchers attempted to model the cascading process of actual
networks [6]. Wang et al. [7] developed an under-load
cascading model of supply chain networks, where each node
is characterized by a capacity with upper and lower bounds.
Rohden et al. [8] studied the cascading invulnerability of
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Table 1: Summary of existing cascading models.

Models Network types Load Metrics Models Network types Load Metrics
[7] supply chain networks degree [14] WSNs betweenness
[8] electricity grids simulated current [15] WSNs degree
[9] communication networks betweenness [16] WSNs betweenness
[10] interdependent networks betweenness [17] WSNs exponential degree
[11] transmission networks betweenness [18] WSNs betweenness
[12] cyber-physical systems betweenness [19] WSNs cluster degree
[13] transportation networks degree [20] WSNs number of messages

electricity grids based on the alternating current model. Ren
et al. [9] proposed a stochastic model to study the cascading
dynamics in communication networks and identified the
vital nodes from the perspective of network invulnerability.
Chen et al. [10] investigated the cascading process in inter-
dependent power grids and communication networks. Wu et
al. [11] analyzed the impacts of link capacity on the cascading
process in general transmission networks and found that
a bifurcation point may exist in some cases which divides
regions of opposite robustness behavior. Tu et al. [12] investi-
gated the cascading invulnerability of cyberphysical systems
and observed that two coupling networks have different
sensitivity to the failure propagated from the other network.
Candelieri et al. [13] investigated the cascading invulner-
ability of public transportation networks against directed
attacks.

WSNs have also received a lot of attention in terms of
cascading failures. Liu et al. [14] proposed a betweenness-
oriented cascadingmodel. In thismodel, the traffic of a sensor
node is defined as its betweenness value. Yin et al. [15] studied
the cascading process of scale-free WSNs and assumed that
the traffic load of sensor nodes is correlated to their degrees.
Li et al. [16] used the probability generation function to
analyze the critical load of scale-free WSNs. In this work, the
load is set to be closely correlated to the betweenness value. Ye
at al. [17] proposed a fault-tolerant scheme to resist cascading
failures inWSNs.They assumed that the load of sensor nodes
is correlated to their degrees in an exponential way. Hu at al.
[18] analyzed the cascading process of WSNs under random
attacks based on the betweenness-load model. In [19], we
presented a cascading model for hierarchical WSNs. In this
model, the nodes’ load is determined by its intercluster degree
and its inner-cluster degree. In [20], we proposed a routing-
based cascading model of WSNs in which the load of sensor
nodes is defined as the real-time number of messages they
carry.

Table 1 summarizes the mentioned cascading models.
Although many cascading models have been proposed, they
do not apply to realistic WSNs because they cannot reflect
the sink-convergence characteristic of WSNs. A sample of
sink convergence in WSNs is shown in Figure 1. In realistic
WSNs, all the data packets collected by general sensor nodes
will eventually be collected at the sink node and then be
uploaded to the cloud; thus WSNs follow a typical many-to-
one transmission paradigm, which makes them exhibit com-
pletely different traffic characteristics from other networks.

sensor node

sink node surveillance area

data cloud

Figure 1: A sample of sink convergence in WSNs.

Therefore, it is necessary to develop amore realistic cascading
model of WSNs.

3. Cascading Model

3.1. Traffic Metric. In [21], we have proposed a traffic metric
“sink-oriented betweenness” to characterize the load distri-
bution of WSNs. Its effectiveness and soundness have been
verified through extensive simulations in [21]. Therefore, in
this work we still use this traffic metric, as described below:

𝐶𝑖 (𝑡) =
∑𝑗∈𝑉 𝑔𝑖,𝑗 (𝑡) /𝑔𝑗 (𝑡)

𝑁
, (1)

where 𝑔𝑖,𝑗(𝑡) is the number of the shortest paths from node
𝑗 to the sink node passing through node 𝑖 at time 𝑡. 𝑔𝑗(𝑡)
is the number of the shortest paths from node 𝑗 to the sink
node at time 𝑡. 𝑉 and 𝑁 are the set of sensor nodes and
the total number of sensor nodes in the network, respective-
ly.

3.2. Load and Capacity. As discussed in the last section, in
actual WSNs, sensor nodes’ initial load is correlated to the
number of shortest paths from all the other sensor nodes
to the sink node passing through it in the network, so it is
reasonable to define the nodes’ initial load as a function of the
sink-oriented betweenness. For this consideration, we define
the initial load of node 𝑖 as

𝐿 𝑖 (0) = 𝐶𝑖 (0)
𝛼 , (2)

where 𝛼 ≥ 0 is the load-exponential coefficient that deter-
mines the distribution of the initial load. We can easily
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observe that the initial load of each sensor node bears a linear
relationship with its sink-oriented betweenness value when
𝛼 = 1.The configuration of 𝛼 is closely related to the data type
ofWSNs. If the data type is the multimedia data, it means that
the initial load will have a rapid growth in an exponential way
with the increase of 𝐶𝑖(0); thus 𝛼 should be set to a relatively
large value. If the data type is the general text data, 𝛼 can
be a small value. It is obvious that the introduction of 𝛼 can
provide a high flexibility for our model to apply to different
types of WSNs.

In most literature [14, 16], the nodes’ capacity is set to be
positively correlated to their initial load, as shown in

𝑊𝑖 = (1 + 𝛽) 𝐿 𝑖 (0) , (3)

where 𝛽 is the overload-tolerance coefficient. However, in
WSNs, this setting is far from the realistic situations. Unlike
power grids in which the nodes’ capacity can be customized
according to the practical demands, the nodes’ capacity in
WSNs is always the same.This is partly because in most cases
the hardware configurations of sensor nodes within the same
WSN are always the same, and partly because it is impossible
to customize the nodes’ capacity when hundreds and even
thousands of them are deployed. Therefore, in this work, the
sensor nodes’ capacity is defined as

𝑊𝑁 = (1 + 𝛽) 𝐿𝑁 (0) = (1 + 𝛽)
∑𝑁𝑖=1 𝐿 𝑖 (0)

𝑁
. (4)

According to (4), each sensor node has the same capacity,
which is positively correlated to the average load of the initial
network.

3.3. Load-Redistribution Schemes. In case that node 𝑖 fails,
its load will be distributed to other nodes in the net-
work. There are two load-redistribution schemes: (1) even-
redistribution scheme; (2) idle-redistribution scheme. The
even-redistribution scheme is widely used in many cascading
models. Under this scheme, the load originally taken by the
failed node will be redistributed to its neighboring nodes. If
node 𝑖 fails at time 𝑡, its neighbor 𝑗 can receive extra load Δ 𝑗𝑖
at time 𝑡 + 1 as follows:

Δ 𝑗𝑖 (𝑡) =
1

𝑁𝑖 (𝑡)
𝐿 𝑖 (𝑡) , (5)

where𝑁𝑖(𝑡) is the number of neighbors that node 𝑖 has at time
𝑡. In some routings protocols of WSNs, sensor nodes do not
have the real-time state information about their neighbors
and they have the same capacity. It is reasonable to assign the
load of the failed node to its neighbors evenly.

With the development of routing technologies in WSNs,
in some routing protocols, sensor nodes can be congestion-
aware, which means that they can own the real-time state
information regarding their neighbors.On this basis, the idle-
redistribution scheme is proposed. If node 𝑖 fails at time 𝑡, its
neighbor 𝑗 can receive extra load Δ 𝑗𝑖 at time 𝑡 + 1 as follows:

Δ 𝑗𝑖 (𝑡) =
𝑊𝑁 − 𝐿𝑗 (𝑡)

∑𝑘∈Ω𝑖(𝑡) [𝑊𝑁 − 𝐿𝑘 (𝑡)]
𝐿 𝑖 (𝑡) , (6)

j

a
Δ

Δ

Δ

b

c

aj

cj

bj

Figure 2: An example of load-redistribution process.

whereΩ𝑖(𝑡) is the set consisting of the neighbors of node 𝑖 at
time 𝑡.𝑊𝑁 − 𝐿𝑘(𝑡) is the idle capacity of node 𝑘, which can
also be understood as the maximum load it can still receive.
According to (6), we can easily find that, under the idle-
redistribution scheme, the node with more idle capacity can
be assigned more load from the failed node.

To illustrate the load-redistribution process more clearly,
we present an example on a simplified network topology
(shown in Figure 2). Assuming that node 𝑗 fails at time 𝑡, the
original load it takes will transfer to its neighbors 𝑎, 𝑏, and 𝑐
according to the load-redistribution scheme. At time 𝑡+1, the
real-time load of nodes 𝑎, 𝑏, and 𝑐 will be updated according
to (7).

𝐿𝑎 (𝑡 + 1) = 𝐿𝑎 (𝑡) + Δ 𝑎𝑗

𝐿𝑏 (𝑡 + 1) = 𝐿𝑏 (𝑡) + Δ 𝑏𝑗

𝐿𝑐 (𝑡 + 1) = 𝐿𝑐 (𝑡) + Δ 𝑐𝑗.

(7)

If 𝐿 𝑖(𝑡 + 1) > 𝑊𝑁, 𝑖 ∈ {𝑎, 𝑏, 𝑐}, another round of node
failures will be triggered and the load of the newly failed node
will transfer to its neighbors. This cascading process will not
stop until the load of remaining nodes is within their capac-
ity.

3.4. Cascading Mechanism. In most of the existing cascading
models, sensor nodes have two states: normal and over-
loaded. According to their assumptions, if the node’s load
is beyond its capacity, then it will be removed from the
network permanently. This assumption is reasonable in the
network like power grids.However, inWSNs, this assumption
is far from the fact. Different from the electricity overload in
power grids, the overload of data packets in WSNs will not
cause physical damage of sensor nodes. Overloaded nodes
will reboot rather than fail permanently. When the reboot
is completed, it will join the network again and function
normally. Thus, in our model, the node at overloaded state
will be given a recovery time Δ𝑡. Within Δ𝑡, this node cannot



4 Complexity

Normal

Isolated Overloaded
Link interruption to 

the sink node
Load rise

Expiry of ΔtLink r
eco

ver
y t

o t
he 

sin
k n

od
e

Figure 3: Cascading-state transition of sensor nodes.

receive, process, and transmit data packets. When Δ𝑡 is
expired, the node will become “normal” again. It is easy to
understand that overloaded node can be recovered instantly
when Δ𝑡 approaches 0. Apparently, in this case, the damage
caused by overload can be minimized. If Δ𝑡 approaches
∞, our cascading scheme is equivalent to the conventional
“permanent removal” scheme.

Sink convergence is the most evident feature that distin-
guishes WSNs from other wireless networks. In WSNs, if the
link between a sensor node and the sink node is interrupted,
the sensor node will be considered as an isolated node as its
messaging service is not available. When cascading failures
occur, some sensor nodes will become overloaded and the
network connectivity will be severely impaired. During this
process, some nodes will be isolated as their paths to the sink
nodes are cut off.When some overloaded nodes are recovered
via reboot, the network connectivity can be restored and
isolated nodes will return to normal. The state transitions in
the cascading mechanism is shown in Figure 3.

4. Analysis of the Invulnerability of WSNs

4.1. Simulation Settings. In the simulations, we set the net-
work size to 300 and sensor nodes are randomly deployed
in the simulation area. The wireless transmission radius of
sensor nodes is set to 20m and the sink node is placed at
the center of the simulation area. Figure 4 shows the network
topology. In order to trigger cascading failures, we initially
attack the first 10%of sensor nodes in the descending order of
sink-oriented betweenness. Each node in the initial network
before attack is at the normal state.Weuse survival ratio𝐻𝑛 (𝑡)
to measure the network invulnerability against cascading
failures. As discussed in Section 3.4, normal nodes are the
nodes that are not overloaded and can still maintain at least
one effective path to the sink node. 𝐻𝑛(𝑡) can be calculated
by

𝐻𝑛 (𝑡) =
𝑁 (𝑡)

𝑁 (1 − 𝑞%)
, (8)
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Figure 4: Network topology (300 sensor nodes are deployed and the
sink node is marked in red).

where𝑁(𝑡) is the number of normal nodes at time 𝑡. Here we
use𝐻𝑛(∞) to represent the survival ratio when the network
reaches the steady state.

4.2. Simulation Results

4.2.1. Verification of Sink-Convergence Characteristic. The
purpose of this experiment is to verify the sink-convergence
characteristic of the proposed cascading model. In actual
WSNs, since the sensor nodes around the sink node need to
undertake more message-forwarding tasks, their load will be
significantly higher than that of the nodes far from the sink
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Figure 5: Network traffic distribution (NTD) generated by the degree-based and betweenness-based cascading models, respectively.
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Figure 6: Network traffic distribution (NTD) generated by the
proposed cascading model (𝛼 = 1).

node, a phenomenon described by many researchers as the
“sink hole” [22–26]. Apparently, the sink hole phenomenon
is an important indicator for judging whether the network is
characterized by sink convergence.

Figure 5 shows the network traffic distribution created
by the degree-based cascading model and the betweenness-
based cascading model, respectively. It can easily observed
that there is no significant difference between the load of the
nodes around the sink node and the load of the nodes in
other areas, so the energy hole phenomenon is not so obvious.
Figure 6 shows the network traffic distribution created by the
proposed cascading model. We can easily observe a high-
load peak around the sink node, so the sink-convergence
characteristic is verified.

4.2.2. Impacts of Modeling Parameters. As is shown in
Figure 7, we can easily find that, with the increase of exponen-
tial coefficient 𝛼, 𝐻𝑛(𝑡) tends to decrease and the cascading
process will reach the steady state faster. For example, under
the even-redistribution scheme, when 𝛼 = 0.5, 𝐻𝑛(𝑡) will
reach the steady state at 81% at time 𝑡 = 3. When 𝛼 rises
to 2, 𝐻𝑛(𝑡) will stabilize at 17% at time 𝑡 = 5. It is easy to

understand that the load taken by sensor nodes will increase
much faster in an exponential way with the growth of 𝛼,
whichwill lead to amore evident gap between low-load nodes
and high-load nodes.When the high-load nodes are attacked,
the low-load nodes can hardly have enough capability to
tackle the extra load transferred from failed high-load nodes.
In our model, the configuration of 𝛼 is closely related to
the data type of WSNs. The above simulation results tell us
that for the high-volume data type, the risks and the damage
brought by cascading failures will be much higher and the
network designer should pay more attention to prevention of
cascading failures.

Through the comparison between Figures 7(a) and 7(b),
we can also find that the idle-redistribution scheme demon-
strates a stronger invulnerability than the even-redistribution
scheme when facing cascading failures. In the case that 𝛼=1,
under the even-redistribution scheme and idle-redistribution
scheme, 𝐻𝑛(𝑡) will stabilize at 47% and 83%, respectively.
This is because under the idle-redistribution scheme, the
idle capacity can be fully used, and thus more load can be
tackled.

From Figure 8, we can find that the network invulner-
ability can be significantly improved with the increase of
overload-tolerance coefficient 𝛽. In our model, a higher 𝛽
means that sensor nodes can have more capacity to tackle
load. Thus, there is surely a threshold 𝛽∗ that can provide
enough capacity for sensor nodes and can protect them from
being overloaded. From Figure 8(b), we can find that the
cascading process under 𝛽 = 1.5 and 𝛽 = 2 is totally the
same. This phenomenon tells us that the threshold 𝛽∗ should
be within [1, 1.5].

Figure 9 depicts the composition of failed nodes when
the network reaches the steady state. We can clearly find that
although neighboring nodes being overloaded constitute the
major reason that makes nodes isolated, the majority of failed
nodes are isolated nodes. Under the even-redistribution
scheme, in the case that 𝛽 = 0.5, isolated nodes are 63%
and overloaded nodes are 21%. Moreover, with the increase
of 𝛽, the ratio of overloaded nodes tends to be smaller.
When 𝛽 reaches a certain value, there will be no overloaded
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Figure 7: Survival ratio with varying 𝛼 (𝛽 = 1, Δ𝑡 = ∞).
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Figure 8: Survival ratio with varying 𝛽 (𝛼 = 1, Δ𝑡 = ∞).

nodes in the network, whichmeans the cascading processwill
not be triggered and the only damage is the isolated nodes
caused by initial attacks. The existence of 𝛽∗ is further veri-
fied.

As is shown in Figure 10, it can be easily observed that
the threshold 𝛽∗ will increase with the growth of 𝛼, which
means that more capacity resources are required to protect
the network from cascading failures. Through comparison
between Figures 10(a) and 10(b), we can find that at the
same settings 𝛽∗ will be smaller under the idle-redistribution
scheme than under the even-redistribution scheme. The
advantages of idle-redistribution scheme are further veri-
fied.

Figure 11 depicts the impacts of recovery time Δ𝑡 on
survival ratio 𝐻𝑛(𝑡). It can be easily observed that 𝐻𝑛(𝑡)
tends to fluctuate more wildly with the increase of Δ𝑡. In
the case of Δ𝑡=1, when some sensor nodes are overloaded,
on the one hand, they will redistribute their load and cause
some other nodes to overload in the next time step and, on
the other hand, they can recover from overload at the next
time step due to the expiry of Δ𝑡. Therefore, we can find
that at each time step after 𝑡=2, some nodes in the network
fall into failure and some nodes return to normal, which
makes𝐻𝑛(𝑡) demonstrate slight fluctuationswith the network
cascading process. Although in this case the damage caused
by cascading failures can be minimized, it is actually hard to
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Figure 9: Composition of failed nodes with varying 𝛽 (𝛼 = 1, Δ𝑡 = ∞).
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Figure 10: Heatmap of𝐻𝑛(∞) in the parameter space [𝛼, 𝛽] (threshold 𝛽∗ is labelled by the red curve).

achieve because sensor nodes take time to reboot. When Δ𝑡
increases to 2 or 3, overloaded nodes require more time for
recovery, whichwillmake cascading failures spread to awider
range and then lead to more obvious fluctuations of 𝐻𝑛(𝑡).
WhenΔ𝑡=∞, sensor nodes lose the recovery ability and𝐻𝑛 (𝑡)
decreases monotonically to a steady-state value.

5. Conclusions

In this paper, we developed a more realistic cascading model
for WSNs. The most significant advantage of this model is
that it can properly reflect the sink-convergence characteristic
of WSNs. The simulation results show that (1) the net-
work invulnerability is positively correlated to the overload-
tolerance coefficient and negatively correlated to the load-
exponential coefficient; (2) under the idle-redistribution
scheme, the network canhave stronger invulnerability against

cascading failures; and (3) the extension of the recovery time
will exacerbate the fluctuation of the cascading process.These
results provide us with some meaningful guidelines to build
a more invulnerable WSN against cascading failures.
(1) The network with high-volume data type is more

vulnerable to cascading failures.
(2) Due to the advantages of the idle-redistribution

scheme, congestion-aware routing protocols can tackle more
load, thus gaining stronger invulnerability against cascading
failures.

In thiswork, we only discuss the cascading invulnerability
of WSNs with deploying only one sink node. In recent
years, multisink WSNs are becoming more and more widely
used due to their advantages in energy efficiency and load
balancing. Therefore, in our future work, we hope to upgrade
the proposed model to adapt to the multisink WSNs, and on
this basis, study its cascading invulnerability.
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Figure 11: Survival ratio with varying Δ𝑡 (𝛼 = 𝛽 = 1).
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