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Service composition in a CloudManufacturing environment involves the adaptive and optimal assembly of manufacturing services
to achieve quick responses to varied manufacturing needs. It is challenged by the inherent heterogeneity and complexity of these
services in terms of their diverse and complex functions, qualities of service, execution paths, etc. In this paper, a manufacturing
network is constructed to explicitly identify and describe the relationships between individual services based on their attributes.
On this basis, the service composition problem can bemodeled as a multiple-constrained optimal path (MCOP) selection problem
by taking into account different types of composition, namely, sequence, parallel, selection, and cycle. A novel Dual Heuristic
Functions based Optimal Service Composition Path algorithm (DHA OSCP) is proposed to solve the NP-Complete MCOP
problem, which involves exploiting the backward search procedure with different search targets to obtain two heuristic functions
for the forward search procedure. The proposed algorithm is evaluated through a set of computational experiments in which the
proposed algorithm and other popular algorithms such as MFPB HOSTP are applied to the same dataset, and the results obtained
show that DHA OSCP can efficiently find the optimal service composition path with better Quality of Service (QoS). The viability
of DHA OSCP is further proved in a case study of services composition on a Cloud Manufacturing platform.

1. Introduction

The rapid development of information technologies such as
the Internet of things (IoT) and Cloud Computing has led to
substantial changes in themanufacturing industry. To quickly
respond to fast-changing market needs and satisfy customers’
diverse requirements in terms of product performance and
cost, companies begin to seek ways of sharing resources
and fulfill needs through collaboration in a manufacturing
network. Among various advanced manufacturing modes,
Cloud Manufacturing (CMfg) is one of the most compre-
hensive and widely applied [1–4]. In CMfg, different kinds
of manufacturing resources are interconnected, virtualized,
and encapsulated as Cloud-based services which are man-
aged by intelligent CMfg platforms. To deal with complex
manufacturing tasks, resources with varied functions and
different QoS levels are selected and composed on these
platforms. Thus, service composition has become a key

enabling technology in the technical framework for CMfg.
Due to the rapid development of CMfg, research work
on manufacturing service composition is rapidly increasing
[5]. In the process of service composition, functional and
nonfunctional attributes are both taken into account to search
for the optimal compositions of services for meeting the
functional requirements of complex manufacturing tasks
with improved satisfaction of the services. Nonfunctional
attributes of manufacturing services are usually relative to
QoS, such as time latency, price, reliability, availability, and
so on. When multiple manufacturing services with the same
functional attributes are able to meet the requirements of a
manufacturing task, QoS attributes play an important role in
resource selection and service composition.

Service composition problem (SCP) is one of the most
primary and essential problems for optimally manufacturing
resources allocating [6]. SCP in CMfg has the characteristics
of high heterogeneity and large scale. Traditional service
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Figure 1: Framework of a traditional service composition process.

composition approaches in CMfg usually use the service
composition model of Cloud Computing, which are set up
based on the QoS values of service nodes. A traditional
service composition framework is shown in Figure 1 where{ST1, ST2, . . . , ST𝑛} is the set of subtasks of manufacturing
task T. The service candidate set that are able to execute
subtask ST𝑖 can be represented as {SC𝑖1, SC𝑖2, . . . , SC𝑖𝑚}.
Traditional service composition methods focus on selecting
appropriate service nodes from each service candidate set to
obtain the optimal service composition. This idea is based on
the assumption that all manufacturing services in the adja-
cent service candidate sets can be composed.This assumption
is reasonable in the case of composition problem in web
services because web services follow the standard access
protocol (i.e., SOAP) and registration specifications (i.e.,
UDDI). This ensures good compatibility between different
web services. Moreover, the cost of transportation between
different web services is negligible compared to the costs of
these web services. However, the composition of adjacent
manufacturing services may not be possible in the field of
manufacturing, due to the process constraints, partnership
constraints, and other factors. If two manufacturing services
are geographically far apart, the logistics costs between them
cannot be ignored at all. So the manufacturing service
composition model should be improved based on Figure 1
and take into account the cooperation relationships between
different manufacturing services. Moreover, traditional ser-
vice composition methods have some limitations when the
business process is not well predefined [7]. As a consequence,
the addressing of these problems requires a more accurate
model and a more efficient algorithm.

By taking into account the cooperation relationship
between different service nodes, a manufacturing service
network model is constructed in this paper. In the process
of service composition, the constraint of each QoS attribute

imposed by a service user is considered and the appropriate
manufacturing services are selected to achieve the best
composition performance in terms of QoS. To address this
issue, the processing method for the complex manufacturing
network needs to be put forward first. Compared with
traditional processing methods for complex structures, the
processing method proposed in this paper takes into account
not only the characteristics of a manufacturing service but
also the relationship between different manufacturing ser-
vices. After the preprocessing of complex structures of the
manufacturing network such as parallel structure and cyclic
structure, the complex manufacturing network is converted
into a simple directed graph, and then the problem of
manufacturing service composition can be abstracted as a
Multi-Constraint Optimal Path (MCOP) selection problem,
which is NP-Complete [8]. Aiming at solving the MCOP
selection problem, some algorithms have been designed.
However, the solution quality and time efficiency of these
algorithms can be optimized by designing a better heuristic
method. This paper precisely aims to put forward a more
accurate model and solving the MCOP selection problem in
a more efficient way. The main contributions of this work
include the following.(1) A more accurate model for manufacturing service
composition problem is proposed to effectively describe both
the service nodes and their cooperation relationship based on
network architecture.(2) A processing method for complex process structures
(e.g., parallel structure and cyclic structure) based on QoS
aggregation, which canmodel a service composition problem
as a standard MCOP formulation.(3) A novel Dual Heuristic Functions based Optimal Ser-
vice Composition Path algorithm (DHA OSCP) for solving
the MCOP problem with better solution quality and higher
time efficiency.
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The rest of this paper is organized as follows. Section 2
gives a literature review of related work. Section 3 details
the formulation of the mathematical model for the service
composition problems in which the cooperation relation-
ships between nodes are taken into account. Section 4
describes a novel improved algorithm for MCOP selection
problems based on the service composition model. Section 5
discusses the experimental results of the DHA-OSCP in
solving SCP and compares its performance with those of the
popular algorithms including the H OSTP algorithm and the
MFPB HOSTP algorithm. Section 6 further demonstrates
the viability of the proposed model and algorithm with
a detailed application example of Cloud Manufacturing.
Finally, the conclusions of this work are discussed in Section 7
as well as potential future work.

2. Related Work

2.1. CompositionUsingQoS. Much research has been done on
the service composition problems and other related problems
in networked manufacturing such as service provider selec-
tion methods, service network models, service composition
algorithms, andmanufacturing resource allocation [6, 9]. For
example, Wu et al. [10] proposed a fuzzy-based decision-
making method to find the best service provider; Ho et al. [11]
made a review ofmulticriteria decisionmaking approaches to
the supplier evaluation and selection problem. In these meth-
ods, the supplier selection problem is described as a form of
resource optimal allocation which is restricted to small scale
resource scheduling problems without consideration of the
QoS indexes of resources (e.g., cost, reliability, and so on).
These models and algorithms are not suitable for dynamic
and flexible on-demand service composition optimization
problems. Although the construction of a CloudManufactur-
ing service composition model can refer to Cloud Computing
models, many changes need to be made by taking account of
the particular characteristics ofmanufacturing processes.The
previous research on service composition is mostly focused
on the framework, indexes, and the optimization of composi-
tion algorithms. According to the specific means of problem-
solving, the service composition algorithms can be divided
into two types, namely, the local optimization approach and
the global optimization approach. Specifically, the former
chooses services for each subtask, obtains the candidate
solution sets, and finally gets the local optimal result through
greedy selection. However, it has some limitations such as the
satisfaction of the overall QoS constraint, processing of non-
linear QoS index problems, and so on. The latter considers
the QoS attributes not only for a single service but also for
the composite service so that they can get the global optimal
solution. Global optimization algorithms can be divided into
three categories: Non-heuristic (Exact) Algorithms, Heuristic
Algorithms, and Meta-Heuristic Algorithms. Every opti-
mization problem can be solved by exhaustive search if the
time consumption and search space are ignored. The Non-
heuristic (Exact) algorithm is an optimized version of the
exhaustive search, which can reduce the time consumption
of the algorithm to a large extent. Yu et al. [12] modeled
the service composition problem as a multichoice knapsack

problem which is multidimensional and multiobjective and
obtained the best utility function solution when the global
QoS constraints are satisfied. Grabrel et al. [13] proposed
an algorithm using the dependency graph and 0-1 linear
programming to solve the optimal composition problem for
transactional web services. Yang et al. [14] solved the dynamic
composition problem of web services by proposing a Greedy
Quick-hull algorithm.

The objective function is designed to guarantee that the
search direction is a sufficient descent direction per round
of iteration and the optimal solution can be obtained in
a relatively short period of time. Compared with Exact
algorithms, the heuristic function has great advantages in
reducing time cost and search space. Klein et al. [15] put
forward the hill-climbing algorithm and proved that it had
a lower time complexity compared with the linear integer
programming. Luo et al. [16] proposed a heuristic HCE
algorithm for web service composition optimization which
also satisfied the end to end QoS constraints. Rodrigues et
al. [17] presented an A∗ algorithm which solves the problem
of semantic input-output message structure matching for
web service composition. In order to satisfy the overall QoS
constraints and reduce the time complexity, several heuristic
algorithms [18–20] have been proposed to find a near optimal
solution for service composition. Heuristic function design
is critical to a heuristic search algorithm, which has been
extensively researched in the area of heuristic algorithm
development and selection. In this paper, a novel dual
heuristic functions algorithm is designed to solve the service
composition problem based on an improved A∗ algorithm
in which two different heuristic functions are employed by
considering both feasibility and quality of the composition
results at the same time.

By generating or selecting a heuristic method, the meta-
heuristic algorithm is designed to provide a sufficiently good
solution to a specific optimization problem, which is appli-
cable to a broad range of problems. Some commonly used
meta-heuristic algorithms have been improved and adjusted
to solve the problem of service composition such as particle
swarm optimization (PSO) [21, 22], simulated annealing
(SA) [23], genetic algorithms (GA) [24–27], ant colony
optimization (ACO) [28], and bee colony algorithms (BA)
[29, 30].The service composition problem can be formulated
as a multiobjective problem and near-optimal solutions can
be obtained by employing the meta-heuristic algorithm. In
addition, someothermethods have also been adopted to solve
the problem of service composition. For instance, Bekkouche
et al. [31] described a novel approach based on a Harmony
Search algorithm that addressed functional requirements and
nonfunctional requirements simultaneously through a fitness
function, to select the optimal or near-optimal solution in
semantic web service composition; Jatoth et al. [32] proposed
a novel MapReduce-based Evolutionary Algorithm with
GuidedMutation that lead to a better Big service composition
with better solution and execution time; Labbaci et al. [33]
put forward a deep learning approach for dynamic QoS based
service composition which got promising results compared
with existing QoS prediction techniques. These pieces of
work have shown that the service composition problem
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is an essential part of the current research on intelligent
manufacturing.

Since the CloudManufacturing paradigm entails the pro-
vision of cloud services by physical manufacturing resources
and the transportation of between these resources, the
cooperation relationship and logistics cost between these
manufacturing resources need to be considered. As such,
the network model proposed in this paper is more appro-
priate to describe the manufacturing service composition
problem compared with those proposed in the existing
studies. So far, the research of correlation-aware service
composition has been focused by only a few studies [34].
Unfortunately, the solving methods of these studies are
limited to PSO and other meta-heuristic algorithms, which
are not intuitive and comprehensive. By preprocessing the
complex manufacturing network, the service composition
problem based on the improved model is converted to
an MCOP problem, which can be solved by pathfind-
ing methods. On this basis, a heuristic pathfinding algo-
rithm for addressing the service composition problems
in manufacturing networks is developed by taking into
account both service attributes and the relationships between
services.

2.2. Multiple-Constrained Path Selection Method. Existing
work has shown that QoS-based service composition can be
modeled as a multiple-constrained optimal path selection
problem, which has been proved to be NP-Complete [9].
This model takes into account not only the QoS indexes
of manufacturing service nodes but also the cooperative
relationships between different nodes; this makes it more
suitable for the actual manufacturing environment. Kork-
maz et al. [8] developed a heuristic H MCOP algorithm
for solving the multiple-constrained optimal path selection
problem in service invocation. Based on this method, Liu
et al. proposed the Heuristic Optimal Social Trust Path
(H OSTP) algorithm [35] and the Multiple Foreseen Path-
Based Heuristic Optimal Social Trust Path (MFPB HOSTP)
algorithm [36], which made a two-way search in the trust
network based on Dijkstra’s shortest path algorithm [37] to
get a near optimal solution. These three algorithms will be
described in detail in Section 3 of this paper. Before H OSTP,
H-MCOP was one of the most promising algorithms for the
multiple-constrained optimal path selection problem due to
its outstanding performance in terms of both solution quality
and algorithm efficiency. The H OSTP algorithm inherited
the advantages of the H MCOP algorithm and can achieve
better search results and faster search speed by using a better
search strategy. Yet, there is a problem of QoS imbalance in
H OSTP algorithm. MFPB HOSTP algorithm can solve this
problem by calculating the intermediate path, but it brings
unbearable time consumption when the imbalance problem
occurs frequently. H OSTP and MFPB HOSTP concentrate
on the trust network in social networks, which unfortunately
ignore the characteristics of manufacturing processes. For
a practical manufacturing environment, the DHA-HOSCP
algorithm is proposed in this paper, which designs two
heuristic functions according to the characteristics of the
manufacturing network. It achieves better results and lower

time consumption compared with the MFPB HOSTP algo-
rithm [36].

3. Modeling of Manufacturing Networks

3.1. Problem Description. In the execution process of manu-
facturing services on a CMfg platform, the free manufactur-
ing resources are encapsulated as services with different levels
of information granularity relative to their manufacturing
capabilities. For instance, machining has a higher level of
granularity than cutting and milling. Among these services,
the coarse-grained manufacturing services are composed
of fine-grained manufacturing services, and there are some
atomic services which cannot be further decomposed. Man-
ufacturing service nodes and their relationships will form
a complex network of CMfg services. Atomic services are
represented as nodes in the network, which have functional
attributes and nonfunctional attributes. The cooperation
relationships between manufacturing service nodes are rep-
resented as the edges of the network, including the degree
of cooperation intimacy, logistics cost, and other factors.
To better illustrate the idea, the improved model is shown
in Figure 2. In this model, not all adjacent manufacturing
services can be composed due to uncertain relationships
between different services.

The major difference between the manufacturing net-
work model and traditional service composition models is
in whether the edges (cooperation, logistics, etc.) between
manufacturing service providers are considered. As opposed
to a computer network in which the communication time
and cost between nodes are negligible compared with the
node itself, a manufacturing network involves considerable
logistics cost and cooperation relationship between manufac-
turing service providers.Therefore, both the service providers
and the relationships between them should be taken into
consideration in model construction and algorithm develop-
ment.

To accomplish a complex manufacturing task, the de-
mand for orchestrating manufacturing services is decom-
posed into several atomic tasks, each of which can be
completed by a specific atomic service from the candidate
set. The information about alternative services and their
relationships is retrieved from the Cloud Manufacturing
service network and is constructed as a subgraph. Thus the
service composition problem is transformed into the problem
of selecting a path with the highest global utility value under
the condition that the subgraph is covered by this path and
the QoS constraints are satisfied. The process of optimal path
selection is illustrated in Figure 3, which can be divided into
three stages.

(1) Manufacturing Demand Analysis and Task Decomposition.
When a CMfg platform receives a complex task demand
(denoted as T), it first decomposes the complex manufactur-
ing task into a combination of atomic tasks according to the
specific requirements andmanufacturing process constraints.
The service composition is usually divided into four types:
sequence, parallelism, selection, and cycle [38]. The overall
QoS requirements for a manufacturing task can be denoted
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as Q(T) = {q1(T), q2(T), . . . qn(T)}, where 𝑞𝑖(T) is the ith QoS
requirement and n is the number of QoS indexes.

(2) Extraction of Candidate Service Subnetwork. The CMfg
platform generates a candidate manufacturing service set for
each atomic manufacturing task by manufacturing resource
selection according to the functional requirements of the
atomic manufacturing task. The candidate service set can be
denoted as

𝐶𝑆 (𝑇) = {𝑐𝑠 (𝑡1) , 𝑐𝑠 (𝑡2) , . . . 𝑐𝑠 (𝑡𝑚)}
𝑐𝑠 (𝑡𝑖) = {𝑠1 (𝑡𝑖) , 𝑠2 (𝑡𝑖) , . . . 𝑠𝑛𝑖 (𝑡𝑖)} (1)

In the above equation, m is the number of atomic manu-
facturing tasks and n i is the number of candidate services
for atomic manufacturing task i. Candidate manufacturing
services for the same atomic manufacturing task have the
same functional properties but their QoS attributes can be
different. These candidate service nodes and their relation-
ships are then extracted from the manufacturing network as
a subgraph.

(3) Selection of the Optimal Service Path. After the previous
steps are completed, each of the atomic manufacturing tasks
has got a set of services that can potentially meet its specific
requirements. The optimal service path selection is then
used to find out the optimal service execution path that
satisfies the QoS constraints of manufacturing tasks and has
the best overall utility function. This is an MCOP problem
which has been proved to be NP-complete. In the past, the
solving method of the manufacturing service composition
is based on the idea of web service composition, which
does not consider the relationship between different service
nodes. According to the location constraints, cooperation
constraints, process constraints, and QoS constraints, both
the attributes of the candidate manufacturing service nodes
and their relationships are taken into consideration so that
the actual manufacturing scenario can be better addressed.
This paper specifically focuses on the effective model and
algorithm for this step.

3.2. Mathematical Model. The optimal service composition
problem can be modeled as an optimal path selection prob-
lem with specific QoS constraints. Before the algorithm is
detailed, the methods forQoS aggregation, network structure
preprocessing, and mathematical model formulation need to
be given first.

(1) QoS Attributes of Manufacturing Network. The QoS
attributes in Cloud Computing network usually includes
response time, bandwidth, computing overhead, and so on.
However, in a manufacturing network, the QoS attributes
that should be particularly considered are different from
those of Cloud Computing. In a manufacturing network, the
time and cost it takes to complete the entire manufacturing
process are the essential attributes of substantial importance.
Moreover, the reliability, usability, credibility, and sustain-
ability are also important QoS attributes in a manufacturing
network. In this paper, time, cost, and reliability are applied

in the DHA OSCP algorithm as three representative QoS
attributes.

(2) QoS Attribute Aggregation. Time. Time refers to the
execution period from the time when the demands are
submitted to the platform to the final completion time of
the manufacturing service. It consists of the time of the
nodes and the time of the edges. For a manufacturing service
node, Time is the sum of online time and offline time (e.g.,
resource configuration time, computing time, queue time,
and execution time). For the edge of the network, time
refers to the logistics time of raw materials and semi-finished
products as well as to the delivery time. The time attribute
needs to be corrected by the correction factor, so as to
modify the evaluation value to indicate the time attribute
more accurately. The calculation method of time is given by

𝑇𝑖𝑚𝑒 = 𝑇𝑐𝑜𝑟𝑟 × (𝑇𝑛𝑜𝑑𝑒 + 𝑇𝑒𝑑𝑔𝑒)
𝑇𝑛𝑜𝑑𝑒 = 𝑇𝑟𝑒𝑠 + 𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 + 𝑇𝑞𝑢𝑒𝑢𝑒 + 𝑇𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛
𝑇𝑒𝑑𝑔𝑒 = 𝑇𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 + 𝑇𝑑𝑒𝑙𝑖V𝑒𝑟𝑦

(2)

Costs. Costs also includes both the cost of the node and the
cost of the edge. For a manufacturing service node, Costs
is the sum of software costs and hardware costs. Software
costs are composed of computing costs, transmission costs,
and access costs. Hardware costs include management costs,
material costs, personnel costs, and execution costs. For the
edge of the network, costs refer to the logistics costs of raw
materials and semifinished products as well as to the delivery
costs. The calculation of costs is given by

𝐶𝑜𝑠𝑡𝑠 = 𝐶𝑛𝑜𝑑𝑒 + 𝐶𝑒𝑑𝑔𝑒

𝐶𝑛𝑜𝑑𝑒 = 𝐶𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒 + 𝐶ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒

𝐶𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒 = 𝐶𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 + 𝐶𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 + 𝐶𝑎𝑐𝑐𝑒𝑠𝑠

𝐶ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 = 𝐶𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 + 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 + 𝐶𝑝𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙

+ 𝐶𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛

𝐶𝑒𝑑𝑔𝑒 = 𝐶𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 + 𝐶𝑑𝑒𝑙𝑖V𝑒𝑟𝑦

(3)

Reliability. Reliability represents the possibility that the man-
ufacturing service can successfully complete the manufac-
turing task under certain QoS constraints. Reliability can be
expressed by the ratio of the number of manufacturing tasks
successfully executed to the total number of tasks received by
the service node. Fk indicates the number of manufacturing
tasks that the service node k failed in the process of service
execution. The calculation of reliability is given by

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝐹𝑘𝑇𝑜𝑡𝑎𝑙𝑇𝑎𝑠𝑘𝑘 (4)

Based on the QoS index aggregation method, time and costs
are cumulative indexes while reliability is a multiplicative
index. Assume that theQoSmodel containsmmanufacturing
service nodes and nQoS indexes.Themodel can be expressed
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Figure 4: CubeModel of QoS attributes.

by a three-dimensional matrix. Each “layer” of the three
dimensional matrix represents the adjacency matrix of a
single QoS index of the manufacturing service network. The
matrix element aii represents the QoS attributes of node i
and ai,j represent the QoS of the edge from node i to node
j.TheQoS 3Dmodel of the manufacturing service network is
shown in Figure 4.

(3) Preprocessing of Network Structure. In different man-
ufacturing processes, the completion of a manufacturing
task may involve four kinds of process structures, namely,
sequence, parallelism, selection, and cycle. In order to apply
the heuristic multiconstrained optimal path search method
to solve the manufacturing service composition problem,
the parallel structure and the cyclic structure need to be
preprocessed in the manufacturing service network ascribed
to the characteristics of Dijkstra algorithm. Finally, the
extracted manufacturing service subnetwork is processed
into a weighted directed acyclic graph from the start point to
the end point, and the multiconstraint service composition
problem is transformed into a multiconstrained optimal
path selection problem. Since the service composition model
proposed in this paper considers not only the manufacturing
service itself but also the relationship between manufacturing
services, the preprocessing of the network structure also
needs to consider the attributes both of nodes and of edges.
The aggregation functions for QoS attributes of different ser-
vices composition types are illustrated in Table 1 according to
the recursive characteristics [39] of manufacturing services.

(4) �e Method of QoS Attributes Aggregation. During the
search process, the aggregation method of QoS attributes
needs to be determined to support calculation in the algo-
rithm. For time and cost, the algorithm needs to add them
up to get the total time and cost of the existing composition.
For reliability, the product of different nodes (edges) is
the reliability of the composition service. Therefore, the
aggregation methods of different nodes and edges in the
manufacturing network are shown below.

Time. Time is a cumulative index. Suppose that an
optimal manufacturing path has n candidate; then the aggre-
gated time can be calculated using (5), which includes the
aggregation of service nodes and the aggregation of edges.

𝐴(𝑇V𝑠󳨀→V𝑡) = 𝑛−1∑
𝑖=2

𝑇𝑖𝑛𝑜𝑑𝑒 + 𝑛−2∑
𝑗=2

𝑇𝑗,𝑗+1
𝑒𝑑𝑔𝑒 (5)

Cost. Cost is a cumulative index.The aggregated Costs can be
calculated using

𝐴(𝐶V𝑠󳨀→V𝑡) = 𝑛−1∑
𝑖=2

𝐶𝑖
𝑛𝑜𝑑𝑒 + 𝑛−2∑

𝑗=2

𝐶𝑗,𝑗+1

𝑒𝑑𝑔𝑒 (6)

Reliability. Reliability is a multiplicative index. Suppose that
optimal manufacturing path has n candidate; then the aggre-
gated reliability can be calculated by

𝐴(𝑅V𝑠󳨀→V𝑡) = 𝑛−1∏
𝑖=2

𝑅𝑖𝑛𝑜𝑑𝑒 × 𝑛−1∏
𝑗=2

𝑅𝑗,𝑗+1
𝑒𝑑𝑔𝑒 (7)



8 Complexity

Ta
bl
e
1:
A
gg
re
ga
tio

n
M
et
ho

d
of

D
iff
er
en
tP

ro
ce
ss
St
ru
ct
ur
es
.

St
ru
ct
ur
e

Ti
m
e

C
os
t

Re
lia
bi
lit
y

Pa
ra
lle
l

qt
im

e
pa
r
=m

ax
(q i(

no
de
))+

m
ax
(q j(

ed
ge
))

qc
os
t

pa
r
=n ∑ i=

1

q i
(nod

e )+
m ∑ i=
1

q j
(edg

e)
qr

el
i

pa
r
=n ∏ i=

1

q i
(nod

e )×
m ∏ j=
1

q j
(edg

e)
Se
le
ct
iv
e

qt
im

e
se
l
=n ∑ i=

1

q i
(nod

e )×
𝜔 i+

m ∑ j=
1

q j
(edg

e)×
𝜔 j

qc
os
t

se
l
=n ∑ i=

1

q i
(nod

e )×
𝜔 i+

m ∑ j=
1

q j
(edg

e)×
𝜔 j

qr
el
i

se
l
=n ∏ i=

1

q i
(nod

e )×
𝜔 i×

m ∏ j=
1

q j
(edg

e)×
𝜔 j

Cy
cl
ic

qt
im

e
se
l
=𝜃

× (
n ∑ i=
1

q i
(nod

e )+
m ∑ j=
1

q j
(edg

e ))
qt

im
e

se
l
=𝜃

× (
n ∑ i=
1

q i
(nod

e )+
m ∑ j=
1

q j
(edg

e ))
qr

el
i

pa
r
=𝜃

× (
n ∏ i=
1

q i
(nod

e )×
m ∏ j=
1

q j
(edg

e ))



Complexity 9

(5) Utility Function. In this model, the utility function
describes the overall performance of the optimal service
composition path in different QoS aspects. Since different
QoS indexes have different scales, the QoS indexes are
normalized in the utility function.

The QoS indexes are divided into two kinds: positive
indexes and negative indexes. Reliability is a positive multi-
plicative index, while time and costs are negative cumulative
indexes. The utility function is calculated by

𝑈 (𝑇, 𝐶, 𝑅) = 𝑤𝑇 × 𝐴 (𝑇V𝑠󳨀→V𝑡)𝑇𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑠 + 𝑤𝐶 × 𝐴 (𝐶V𝑠󳨀→V𝑡)𝐶𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑠
+ 𝑤𝑅 × ln (𝐴 (𝑅V𝑠󳨀→V𝑡))

ln (𝑅𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑠)
(8)

In the equation, wT, wC, wR are the weights of T, C, R,
respectively, with the conditions of wT + wC + wR = 1 and0 < wT,wC,wR < 1.
(6) Traditional Service Composition Model. In the existing
studies, the manufacturing service composition problem can
be described as a 0-1 integer constrained multiobjective
optimization problem based on the model in Figure 1. The
traditional service composition model is formulated as

min𝑈 (𝑇, 𝐶, 𝑅)
0 ≤ 𝐴 (𝑇V𝑠󳨀→V𝑡) ≤ 𝑇𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑠
0 ≤ 𝐴 (𝐶V𝑠󳨀→V𝑡) ≤ 𝐶𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑠
0 ≤ 𝐴 (𝑅V𝑠󳨀→V𝑡) ≤ 𝑅𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑠

(9)

In these studies, this problem is usually solved using meta-
heuristic algorithms such as genetic algorithms (GA), particle
swarm optimization (PSO), ant colony optimization (ACO),
and bee colony algorithms (BA).Thesemethods usually work
pretty well.

(7) Multiple Constrained Optimization Path Selection Model.
In the improved model (Figure 2), there are more con-
straints to ensure the existence of edges between the selected
manufacturing service nodes. In summary, the problem of
manufacturing service composition can be abstracted as a
multiconstrained optimization path selection problem and
formulated as (10). In (10), m is the number of subtasks;
di is the number of candidate services in candidate service
set j; and xi,j is the decision variable. xi,j equals 1 if the ith
manufacturing service in service candidate j is chosen and
otherwise it equals 0.

min 𝑈 (𝑇, 𝐶, 𝑅)
s.t. 0 ≤ 𝐴 (𝑇V𝑠󳨀→V𝑡) ≤ 𝑇𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑠

0 ≤ 𝐴 (𝐶V𝑠󳨀→V𝑡) ≤ 𝐶𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑠

0 ≤ 𝐴 (𝑅V𝑠󳨀→V𝑡) ≤ 𝑅𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑠
𝑑1∑
𝑖=1

𝑥𝑖,1 = 1
𝑑2∑
𝑖=1

𝑥𝑖,2 = 1
. . .
𝑑𝑚∑
𝑖=1

𝑥𝑖,𝑚 = 1
𝑥𝑖,𝑗 = 0 𝑜𝑟 1

(10)

The meta-heuristic algorithms can also solve the service
selection problem with multi-QoS constraints and decision
variable constraints. However, [40] proved that they have low
efficiencies in finding a near-optimal solution in large-scale
networks. Taking GA as an example, with the increase of
node scale, the algorithm takes a very long time to obtain
the near optimal solution, and it is often unable to obtain the
feasible solution within the set upper limit of iteration times.
Compared with meta-heuristic algorithms, the proposed
DHA OSCP is a more direct and effective algorithm to solve
this problem. This is ascribed to the advantage that the
DHA OSCP algorithm can always satisfy the constraints of
decision variables in the process of execution.

4. Service Composition Path
Selection Algorithms

In this section, some existing approximation algorithms for
theMCOP selection problem are firstly introduced, including
H MCOP, H OSTP, and MFPB HOSTP. Then a novel Dual
Heuristic Functions based Optimal Service Composition
Path algorithm (DHA OSCP) is described in detail.

4.1. Existing Algorithms

(1) H MCOP. H MCOP [8] is a heuristic algorithm proposed
by Korkmaz and Krunz for the multiple–constrained optimal
path selection problem. This algorithm first proposed a
method of QoS aggregation which is also the target of the
reverse search, as shown in

𝑔𝜆 (𝑝) ≜ (𝑞1 (𝑝)𝑄1
V𝑠,V𝑡

)𝜆 + (𝑞2 (𝑝)𝑄2
V𝑠,V𝑡

)𝜆 + ⋅ ⋅ ⋅
+ (𝑞𝑚 (𝑝)𝑄𝑚

V𝑠,V𝑡

)𝜆
(11)

H MCOP first adopts Dijkstra’s shortest path algorithm to
find the path with the minimum 𝑔𝜆(𝑝) and investigates
whether there exists a feasible path satisfying all QoS con-
straints. If the 𝑔𝜆(𝑝) of an intermediated node vk is greater
than m, it is proved that there is no feasible path from vk to vt.
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If there exists at least one feasible solution, then this algorithm
will search the network from vs to vt in order to identify a
feasible path with the minimal cost of services.

Before the H OSTP algorithm [35] was proposed in 2010,
H MCOP was one of the most promising algorithms for
the MCOP selection problem. It proved to outperform prior
existing algorithms in terms of both efficiency and solution
quality.

(2)H OSTP. InH OSTP, Liu et al. first proposed the objective
function given in (12) and adopted the backward search
algorithm to identify whether there was a feasible path with
the minimal 𝛿 from vt to vs. If a feasible solution exists,
H OSTP then adopts the forward search algorithm to deliver
a near-optimal solution.

𝛿 (𝑝) ≜ max{ 1 − 𝑇𝑝1 − 𝑄𝑇
V𝑠,V𝑡

, 1 − 𝑇𝑝1 − 𝑄𝑇
V𝑠,V𝑡

, 1 − 𝑇𝑝1 − 𝑄𝑇
V𝑠,V𝑡

} (12)

H OSTP designed a target function 𝛿(p) which is better than
H MCOP for reverse search, and this algorithm can provide
an optimal service composition path that is no worse than
H MCOP. In addition, through the reverse search strategy,
H OSTP can calculate whether the foreseen path is feasible
in advance which reduces the search space of the algorithm
and improves the efficiency of the algorithm. However, this
algorithm has some shortcomings in balancing different QoS
attributes.

(3) MFPB HOSTP. In order to solve the imbalance prob-
lem of H OPTP, Liu et al. proposed the MFPB HOSTP
algorithm [36] in 2013. In addition to selecting 𝛿(p) as the
target to search a network, the algorithm also identifies the
optimal paths with the searching target Tmin, Cmin, and
Rmax. When the imbalance problem occurs, MFPB-HOSTP
determines the QoS index (for example, T) that does not
satisfy the constraint. Then the algorithm selects the node
of the Tmin path to replace the node with the best 𝛿(p)
path as the starting point for the next searching stage. At
the same time, the algorithm defines the CBLP path sets to
prevent the new imbalance problem. By this method, the
algorithm can get a near-optimal path that is no worse than
H OSTP.

TheMFPB HOSTP algorithm inherits a lot of advantages
fromH OSTP and uses the CBLP path sets to solve the imbal-
ance problem that best 𝛿(p) searching may bring. However,
this algorithmwill incur a large amount of computation when
there are lots of imbalance problems or complex processes in
the service network.

4.2. �e DHA OSCP Algorithm

(1) Overview. First of all, some definitions are introduced.

Definition 1 (feasible heuristic path). In a subnetwork from
vs to vt, a Feasible Heuristic Path (FHP) is the path from vt to
the intermediate node vk, identified by the Delta Backward
Search with (13) as the target.

𝛿 (𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑘󳨀→V𝑡 )
= min(max

{{{
𝑇𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑘󳨀→V𝑡𝑇𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡V𝑠󳨀→V𝑡

, 𝐶𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑
V𝑘󳨀→V𝑡𝐶𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
V𝑠󳨀→V𝑡

, ln (𝑅𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑘󳨀→V𝑡 )
ln (𝑅𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡V𝑠󳨀→V𝑡 )

}}})
(13)

Definition 2 (utility heuristic path). In a subnetwork from vs
to vt, a Utility Heuristic Path (UHP) is the path from vt to
the intermediate node vk, identified by the utility backward
search with (14) as the target.

𝑢𝑡𝑖 (𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑘󳨀→V𝑡 ) = 𝑤𝑇 × 𝑇
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖
V𝑘󳨀→V𝑡𝑇𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡V𝑠󳨀→V𝑡

+ 𝑤𝐶

× 𝐶𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖
V𝑘󳨀→V𝑡𝐶𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
V𝑠󳨀→V𝑡

+ 𝑤𝑅

× ln (𝑅𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑘󳨀→V𝑡 )
ln (𝑅𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡V𝑠󳨀→V𝑡 )

(14)

Definition 3 (forward path). In a subnetwork from vs to vt,
a Forward Path (FP) is the path from vs node vt, identified
by the forward search. The forward path is no worse than the
FHP and UHP.

Based on the definitions above, a novel Dual Heuristic
Functions based Optimal Service Composition Path algo-
rithm (DHA OSCP) is proposed in this paper, which adopts
two heuristic functions and the pruning searching strategy to
obtain feasible heuristic path (FHP) and utility heuristic path
(UHP).

The DHA OSCP algorithm is divided into two parts,
namely, the backward search process determining twoheuris-
tic functions and the forward search process confirming
the best utility path. In the backward search procedure, the
algorithm determines the feasible heuristic path (FHP) from
vk to vt (denoted by pbackwardvk󳨀→vt ) by using (12) as the search
target. Then the algorithm determines the utility heuristic
path (UHP) from vk to vt (denoted by pbackwardutivk󳨀→vt ) with (13)
as the search target. The overview of DHA OSCP algorithm
is shown in Figure 5.

(2) Description. A more detailed description of the proposed
DHA OSCP algorithm is given below. The algorithm is
divided into four main steps: the pruning of the manufactur-
ing service network, the feasible backward search, the utility
backward search, and the A∗ forward search. These parts
will be introduced in turn. The pseudocode of the proposed
DHA OSCP is given in Appendix A.

Step 1 (network pruning). Designing appropriate pruning
strategies can effectively reduce the search space and the time
complexity of the DHA OSCP algorithm without affecting
the quality of the solution. The following two strategies are
used to prune the manufacturing service network.

The first strategy is pruning based on the process flow.
According to the decomposition of themanufacturing service
task, the nodes and the edges of themanufacturing service are
extracted so that the manufacturing service network suitable
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Input()

Input the QoS value (T,C,R) of the nodes and edges of
manufacturing network.

Input the constraints and weights of QoS attributes.

Prune()

Pruning the nodes and edges that do not satisfy the QoS 
constraints.

Backward_Search()

Carry out backward search procedure twice with (12) 
and (13) as the target respectively to obtain feasible 

heuristic path (FHP) and utility heuristic path (UHP).

Forward_Search()

Carry out forward search procedure twice with FHP and 
UHP as the heuristic function to find out whether there 

is a better path than FHP and UHP.

Output()

Output the near optimal path and the utility value.

Figure 5: Overview of DHA OSCP algorithm.

for the task is obtained. In the manufacturing network, the
edges caused by other process flows are removed by the
pruning strategy.

The second strategy is pruning based on QoS constraints.
Nodes and edges that cannot satisfy QoS constraints are
removed from the network according to (15) where 𝛾 repre-
sents the threshold.

min(𝑇𝑛𝑜𝑑𝑒/𝑒𝑑𝑔𝑒𝑇𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡V𝑠󳨀→V𝑡

, 𝐶𝑛𝑜𝑑𝑒/𝑒𝑑𝑔𝑒𝐶𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
V𝑠󳨀→V𝑡

, ln (𝑅𝑛𝑜𝑑𝑒/𝑒𝑑𝑔𝑒)
ln (𝑅𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡V𝑠󳨀→V𝑡 )) > 𝛾 (15)

Step 2 (identification of a feasible backward path with
minimal delta). In feasible backward search procedure, the
DHA OSCP algorithm searches the service network from
vt to intermediate vk, to investigate whether there exists
a feasible solution in the manufacturing network. Feasible
backward search can define the FHP of each intermediate
node vk, which is one of the heuristic functions to support
the A∗ forward search procedure. The pseudocode of Delta
Backward Search is given in Appendix B.

�eorem 4. In the feasible backward search procedure, the
search process can successfully find a feasible solution if there is
at least one feasible solution that exists in the service network.

The proof of Theorem 4 is given in Appendix C.

Step 3 (identification of a backward path with the best utility).
In the utility backward search procedure, the DHA OSCP
algorithm searches the service network from V𝑡 to each
intermediate node V𝑘 and identifies the best weighted mean
path using a greedy strategy. 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑘󳨀→V𝑡 participates in the
A∗ forward search procedure as another heuristic function.
The utility backward search procedure needs to be employed
to handle the imbalance problems which may occur in the
forward search procedure. For example, the QoS constraints
of the service network are (T ≤ 1,C ≤ 1,R ≥ 0.4). The
QoS values of the paths from V𝑡 to two intermediate nodes
V𝑖, V𝑗 are𝑄𝑜𝑆(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑖󳨀→V𝑡

) = (0.5, 0.1, 0.9) and𝑄𝑜𝑆(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑗󳨀→V𝑡
) =(0.45, 0.45, 0.45). Then the feasible backward search proce-

dure will select V𝑗 as the next node while the utility backward
search procedurewill select V𝑖 as the next node.Obviously, the
node V𝑖 has a larger QoS value to spare so that V𝑖 is easier to
avoid the imbalance problem. Therefore, choosing the dual
heuristic function strategy of FHP and UHP can effectively
avoid the occurrence of the imbalance problem and generate
a chance to deliver a better solution.The pseudocode of utility
backward search is given in Appendix D.

Step 4 (identification the near-optimal path based on FHP
and UHP). The forward search procedure will investigate
whether there is a path 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑡 that is better in quality than
both 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑡 and 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑠󳨀→V𝑡 . The pseudocode of forward
search is given in Appendix E. In this procedure, DHA OSCP
searches the path with the best utility from V𝑠 to V𝑡 based
on A∗ algorithm. Assume that V𝑘𝑓 and V𝑘𝑢 are selected as
the intermediate nodes based on FHP and UHP; then two
foreseen paths 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑘𝑓󳨀→V𝑡 and 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑠󳨀→V𝑘𝑢󳨀→V𝑡 are
formed. According to the feasibility of these two paths, DHA-
OSCP uses the following strategies to identify the optimal
path.

Case 1 (both 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑘𝑓󳨀→V𝑡 and 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑠󳨀→V𝑘𝑢󳨀→V𝑡 are
feasible). The DHA-OSCP algorithm calculates the unity
values of the two foreseen paths and then continues to search
the network.

Case 2 (𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑘𝑓󳨀→V𝑡 is feasible and 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑠󳨀→V𝑘𝑢󳨀→V𝑡 is
infeasible). The forward search procedure based on FHP can
continue to search. The forward search procedure based on
UHP will search another neighborhood node of V𝑠 with the
best utility and form a new foreseen path 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖󸀠V𝑠󳨀→V󸀠

𝑘𝑢
󳨀→V𝑡

.
Then the algorithm forms another hybrid foreseen path𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑘𝑢󳨀→V𝑡 based on FHP. The the algorithm moves
forward to determine whether these two foreseen paths are
feasible and choose the feasible path with higher utility to
continue searching. If both of the two paths are infeasible,
then the algorithm starts searching the path from V𝑠 in the
subnetwork without taking link V𝑠󳨀→ V𝑘𝑢 into consideration.

Case 3 (𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑘𝑓󳨀→V𝑡 is infeasible and 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑠󳨀→V𝑘𝑢󳨀→V𝑡
is feasible). The forward search procedure based onUHP can
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Table 2: Complexity analysis of the three algorithms.

Algorithm Complexity
H OSTP O(2×(NlogN+E)) [35]
MFPB HOSTP O(6×(NlogN+E)+KE) [36]
DHA OSCP O(4×(NlogN+E))

continue to search. The forward search procedure based on
FHP will search another neighborhood node of V𝑠 with the
minimal 𝛿 and form a new foreseen path 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑󸀠V𝑠󳨀→V󸀠

𝑘𝑓
󳨀→V𝑡

.
Then the algorithm forms another hybrid foreseen path𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑠󳨀→V𝑘𝑢󳨀→V𝑡 based on UHP. Next the algorithm moves
forward to determine whether these two foreseen paths are
feasible and choose the feasible path with higher utility to
continue searching. If both of the two paths are infeasible,
then the algorithm starts searching the path from V𝑠 in the
subnetwork without taking link V𝑠󳨀→ V𝑘𝑓 into consideration.

Case 4 (both 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑘𝑓󳨀→V𝑡 and 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑠󳨀→V𝑘𝑢󳨀→V𝑡 are
infeasible). The algorithm adopts the two processing meth-
ods described in Cases 2 and 3, respectively, when the cor-
responding path is infeasible. Then four new foreseen paths𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖󸀠V𝑠󳨀→V󸀠

𝑘𝑢
󳨀→V𝑡

, 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑘𝑢󳨀→V𝑡 , 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑󸀠V𝑠󳨀→V󸀠
𝑘𝑓
󳨀→V𝑡

, and

𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑠󳨀→V𝑘𝑢󳨀→V𝑡 are formed. Then the algorithm moves
forward to determine whether these foreseen paths are
feasible and choose the feasible path with higher utility
to continue searching. If all of these paths are infeasible,
then the algorithm starts searching the path from V𝑠 in the
subnetwork without taking link V𝑠󳨀→ V𝑘𝑢 and V𝑠󳨀→ V𝑘𝑓 into
consideration.

(3) Algorithm Complexity Analysis. Assume that only three
QoS attributes (i.e., T, C, and R) are taken into consideration;
the time complexity of these three algorithms is shown in
Table 2 where N is the number of nodes in the subnetwork
between V𝑠 and V𝑡, E is the number of the edges in the
manufacturing network, and K is the hops between V𝑠 and
V𝑡.

Below the detailed analysis of these representations is
given. Specifically, H OSTP takes twice as much time as
Dijkstra’s shortest path algorithm. As such, the time com-
plexity of this algorithm is O(2×(N logN + E)) which is
equal to O(N logN + E). MFPB HOSTP adopts Dijkstra’s
shortest path algorithm four times in the Backward Search
procedure with the time complexity of O(4×(N logN + E)).
In the Forward Search, MFPB HOSTP takes twice as much
time as Dijkstra’s shortest path algorithm, which means
the time complexity for this part is O(2×(N logN + E)).
Besides, the time complexity of finding the feasible foreseen
paths is O(KE). So the time complexity of MFPB HOSTP
is O(N logN+KE). DHA OSCP adopts Dijkstra’s shortest
path algorithm twice both in the Backward Search procedure
and in Forward Search procedure, so its time complexity is
O(4×(N logN + E)) which is equal to O(N logN + E).

The analysis above is based on the assumption that
only three QoS attributes are taken into account. If M QoS
attributes are taken into consideration, the time complexity of
MFPB HOSTP will turn into O(M×(N log N + E)+KE) while
the time complexity of DHA OSCP is still O(N logN + E),
meaning that the proposed algorithm is better for large-scale
problems.

5. Computational Experiments and Discussion

In order to evaluate the performance of the proposed
DHA OSCP algorithm, computational experiments are con-
ducted to make various comparisons between DHA OSCP
and popular H OSTP and MFPB HOSTP algorithms that
have been proved to be effective for service composition
problems.

The execution time and the quality of the solution are
influenced by the scale and structure of the network and
the QoS constraints. In order to study the performance of
the proposed heuristic algorithm under varied conditions,
the service networks with different scales and structures
are randomly generated. Then the qualities of the solutions
obtained by the three algorithms are compared in detail.
Figure 6 shows the comparisons of results under varied
conditions.There are 20 groups ofmanufacturing networks in
the experiments and 20 sets of QoS constraints in each group.
Therefore, the results of 400 groups of experiments are shown
in each subgraph of Figure 6. QoS preferences regarding the
task are chosen as 𝑤𝑇 = 0.5, 𝑤𝐶 = 0.6, 𝑤𝑅 = 0.8 and
the initial QoS constraint values are chosen as Tconstraints =0.9,Cconstraints = 0.9 Rconstraints = 0.2. Then the T, C are
increased by 0.01 and the R is reduced by 0.01.

Figure 6 shows that DHA OSCP algorithm has a larger
possibility to find a better solution under different net-
work scale and QoS constraints. The X-axis and the Y-
axis represent different network scales and QoS constraints,
respectively. The Z-axis represents the utility values obtained
by the three algorithms. Each point in the figure repre-
sents the utility value of the optimal path under certain
network scale and QoS constraints. As shown in the figure,
if there are no feasible solutions in the network, all of the
three algorithms can determine the infeasibility. Moreover,
DHA OSCP manages to find feasible solutions for all cases
without a utility value worse than that of H OSTP and
obtains better results than H OSTP in 12.375% of the total
experiments (i.e., 198 of 1600). DHA OSCP also obtains
better results than MFPB HOSTP in 10.875% of the total
experiments (i.e., 174 of 1600).This validates the effectiveness
of the DHA OSCP algorithm in finding a near-optimal
solution.The execution times of the algorithms are influenced
by the network scale and the number of hops in the network.
An additional experiment with details below is then designed
to compare the utility values and execution times of the three
algorithms.

Seven groups of networks are generated with a node size
of 100, 150, 200, 250, 300, 350, and 400, respectively. For each
group of networks, 20 sets of QoS constraints are taken and
20 networks are generated for each set of the QoS constraints
to carry out the experiment. The sum of utility values and
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Figure 6: Solution quality with different scales of service network.

execution time of the 400 experiments are compared for each
node size. The experiment results are shown in Tables 3–5.

Though the computational experiments were conducted
on networks with different scales, structures, and constraints,
we can draw the conclusion that on average DHA OSCP
can get the path with better utility value than that of
MFPB HOSTP at a lower time cost. In terms of mean
execution time, DHA OSCP can achieve reduction of time
cost by 43.7%, 50.3%, and 40.7%, respectively, for the
examples shown in Tables 3–5. Since both DHA OSCP and
MFPB HOSTP have measures of addressing the imbalance
problem at the cost of execution time, they achieve much
better utility values than those of H OSTP but more exe-
cution time is incurred. When both quality of result and
time cost are considered, DHA OSCP achieves better overall
performance compared with MFPB HOSTP and H OSTP,
which is important for working with manufacturing service
networks.

Additionally, compared with H OSTP, the DHA OSCP
algorithm adopts two heuristic functions in the forward

search procedure; this turns to ensure that, nomatterwhether
imbalanced problems of QoS attributes exist, it can always
get a near-optimal path that is no worse than the one
obtained using H OSTP. Although the execution time of
DHA OSCP is increased due to taking additionalmeasure for
addressing imbalance problems, it achieves the same level of
time complexity as that of H OSTP. In summary, DHA OSCP
can obtain solutions that are much better than H OSTP at a
reasonable time cost.

Both MFPB HOSTP and DHA OSCP can solve the
imbalance problem to a great extent. Nonetheless, the time
complexity of the DHA OSCP algorithm is lower. The time
complexity of MFPB HOSTP would become intolerable if
the number of hops in the manufacturing network increased
to a large level. Moreover, the DHA OSCP algorithm can
get a solution with a much better utility value than that
of MFPB HOSTP. This is because the forward search pro-
cedure adopts UHP as a heuristic function which takes
into account the coefficients of the utility function. This
is a better search strategy compared with MFPB HOSTP
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Table 3: Results of Different Node Size.

Node size H OSTP MFPB HOSTP DHA OSCP
Utility value Execution time Utility value Execution time Utility value Execution time

100 151.0454 12.1380 149.5541 30.1070 148.0524 23.4170
150 170.6428 25.1980 168.8756 77.0790 165.4677 52.9100
200 148.9640 43.8350 147.1278 94.9910 144.7855 138.0930
250 135.5056 67.2910 134.4681 218.9750 132.5991 147.5550
300 123.8503 98.1380 123.0763 321.9790 120.7582 214.1920
350 113.3137 133.9490 112.7778 466.6080 110.4149 292.3780
400 105.3334 177.5580 104.6502 592.8810 103.1810 385.6320

Table 4: Results of Different QoS Constraints.

QoS constraints H OSTP MFPB HOSTP DHA OSCP
T C R Utility value Execution time Utility value Execution time Utility value Execution time
0.90 0.90 0.2 214.9406 23.5230 214.8814 64.4120 209.3961 44.3610
0.94 0.94 0.18 195.6596 22.9250 195.6285 59.9620 188.4452 42.0600
0.98 0.98 0.16 179.0496 23.1040 179.0496 66.1650 177.2467 43.8820
1.02 1.02 0.14 170.1983 24.4250 170.1769 72.3250 169.8541 46.5420
1.04 1.04 0.12 175.3381 24.5360 171.7547 69.6620 170.1082 46.6200
1.08 1.08 0.10 199.5259 24.7680 198.3515 79.2850 196.7191 49.3220
1.10 1.10 0.08 133.8181 24.1440 133.3709 74.9020 132.6810 52.3690
1.12 1.12 0.06 153.5065 24.3210 153.0866 79.9630 149.5530 51.9410

Table 5: Results of Different Coefficient.

Coefficient H OSTP MFPB HOSTP DHA OSCP
wT wC wR Utility value Execution time Utility value Execution time Utility value Execution time
0.1 0.1 0.8 163.6718 27.3650 161.2995 76.7250 158.5643 55.7790
0.1 0.8 0.1 193.8172 25.1740 192.4318 75.6600 190.5009 52.1430
0.8 0.1 0.1 189.3298 25.6050 187.6882 76.2140 185.6349 54.6890
0.3 0.3 0.4 210.3357 25.0490 209.9200 73.9410 208.8499 52.9790
0.2 0.6 0.2 211.6633 24.9890 210.9084 74.4460 208.6980 53.8810
0.2 0.2 0.6 189.5776 24.8760 188.8923 74.0830 187.6530 51.3050
0.1 0.4 0.5 189.8427 24.5940 189.1458 73.4170 188.0153 52.3260
0.5 0.4 0.1 214.8865 25.1090 214.3177 74.2740 212.8045 52.6320

which uses CBLPs to solve the imbalance problem. With
the above discussions, it can be concluded that DHA OSCP
outperforms MFPB HOSTP in terms of solution quality and
time complexity.

6. Application to Automobile Manufacturing
Service Composition

The CASICloud (www.casicloud.com) is a CMfg platform
for registering and accessing manufacturing services, which
has a large number of service providers and service users.
In spite of being a popular platform, it can only recommend
a single manufacturing service provider for a manufactur-
ing task and the capability of conducting manufacturing
service composition for complex tasks is missing. To verify
the viability of the proposed model and algorithm, they
are implemented and integrated into the platform as an
add-on function and are tested using data from service

providers obtained from the CASICloud. In this case, an
automobile manufacturing process is chosen as an illustrative
example.

Figure 7 shows the graphical interface of the addi-
tional function of service composition, which also gives
detailed information about the service composition task
for automobile manufacturing being solved using the pro-
posed model and the DHA OSCP algorithm. Specifically, the
task of automobile manufacturing can be decomposed into
five subtasks, namely, body stamping, body welding, body
painting, automobile assembly, and automobile test. Each
subtask has a set of candidate manufacturing services that
can be selected to meet the requirements of the subtask.
Each candidate service provider can be abstracted as a node
in the manufacturing network. The logistics relationship
between service providers is recorded as an edge in the
manufacturing network. Using the DHA OSCP algorithm, a
near-optimal solution can be found from the starting node
of the manufacturing network to the end one. The choice

http://www.casicloud.com
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Figure 7: Selection of automobile manufacturing service provider.

of the path takes into account both the QoS attributes of
the manufacturing service provider and the logistics QoS
between the service providers. In this example of application,
a user of the system can specify both the QoS constraints (i.e.,
T, C, and R) and the coefficients of these constraints. After the
values are specified, the algorithm can execute the searching
process detailed in the previous sections and deliver a near-
optimal path. At the same time, the QoS of each selected
service provider and the logistics QoS between them are
also available to the user. The utility function is calculated
using (8)with values generated according to the specific result
chosen by the user.

This application illustrates the effectiveness of the pro-
posed algorithm in the field of automobile manufactur-
ing service composition. In this application, both the QoS
attributes of the service providers and logistics are taken into
consideration to choose the optimal service composition,
which is more accurate and credible in actual manufacturing
scenario than many other algorithms.

7. Conclusion

In this paper, a new model of manufacturing service com-
position based on network architecture is proposed. This

model not only inherits the advantages of the model based
on Cloud Computing but also takes the cooperation relation-
ship between services into account; this makes the service
composition process more accurate and closer to actual
manufacturing scenarios. To solve the NP-Complete problem
of selecting the optimal service composition path with end-
to-endQoS constraints in the service network, the advantages
and disadvantages of the existing efficient H OSTP and
MFPB HOSTP algorithms are first analyzed in detail. On
this basis, a novel DHA OSCP algorithm is developed to
solve the imbalance problem with less cost in terms of com-
putation time. Computational experiments are conducted
using various datasets to evaluate the performance of the
proposed DHA OSCP algorithm, and the results obtained
demonstrate that it outperforms existing methods including
MFPB HOSTP and H OSTP in optimal service path selec-
tion. Its application to a real-world application of automobile
manufacturing further shows that the proposed algorithm is
viable in searching for optimal service composition path with
excellent performance in terms of both solution quality and
execution efficiency.

Based on the work detailed in this paper, a service
composition search engine, which can work with more
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Data: SNV𝑠󳨀→V𝑡 (𝑇,𝐶, 𝑅), 𝑇𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
V𝑠󳨀→V𝑡 , 𝐶𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

V𝑠󳨀→V𝑡 , 𝑅𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡V𝑠󳨀→V𝑡
Result: 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑡

, 𝑈(𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑡
)

1 begin
2 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑡

= 0, 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑡
= 0

3 Delta Backward Search (SNV𝑠󳨀→V𝑡 (𝑇, 𝐶, 𝑅), 𝑇𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
V𝑠󳨀→V𝑡

, 𝐶𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
V𝑠󳨀→V𝑡

, 𝑅𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡V𝑠󳨀→V𝑡
)

4 if 𝛿(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑡 ) >1
5 Return no feasible solution
6 else
7 Utility Backward Search (SNV𝑠󳨀→V𝑡 (𝑇,𝐶, 𝑅), 𝑇𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

V𝑠󳨀→V𝑡
, 𝐶𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

V𝑠󳨀→V𝑡
, 𝑅𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡V𝑠󳨀→V𝑡

)
8 Forward Search (SNV𝑠󳨀→V𝑡 (𝑇, 𝐶, 𝑅), 𝑇𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

V𝑠󳨀→V𝑡 , 𝐶𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
V𝑠󳨀→V𝑡 , 𝑅𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡V𝑠󳨀→V𝑡 , 𝛿(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑘󳨀→V𝑡 ),𝑢𝑡𝑖(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑘󳨀→V𝑡 ), 𝑑𝑒𝑙𝑡𝑎𝑏𝑎𝑐𝑘𝜇(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑘󳨀→V𝑡 ), 𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑏𝑎𝑐𝑘𝜇(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑘󳨀→V𝑡 ), 𝜇 ∈ {T,C,R})

9 Return 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑡 𝑎𝑛𝑑 𝑈(𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑡 )
10 end if (line 4)
11 end

Algorithm 1: DHA OSCP.

Data: SNV𝑠󳨀→V𝑡 (𝑇, 𝐶, 𝑅), 𝑇𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
V𝑠󳨀→V𝑡

, 𝐶𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
V𝑠󳨀→V𝑡

, 𝑅𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡V𝑠󳨀→V𝑡
Result: 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑘󳨀→V𝑡 , 𝛿(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑘󳨀→V𝑡 ), 𝑑𝑒𝑙𝑡𝑎𝑏𝑎𝑐𝑘𝜇(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑘󳨀→V𝑡 ), 𝜇 ∈ {T,C,R}
1 begin
2 setVS = 0, 𝛿(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑘󳨀→V𝑡

) = ∞ (V𝑘 ̸= V𝑡), 𝛿(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑡󳨀→V𝑡
) = 0, 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑡󳨀→V𝑡

= V𝑡
3 move V𝑡 into VS
4 whileVS ̸= 0 then
5 find V𝑎(V𝑎𝑙𝑢𝑒) = min(V∗(V𝑎𝑙𝑢𝑒)) V∗ ∈ VS
6 if edge(V𝑘, V𝑎) exists
7 for each V𝑘

8 𝛿 (V𝑘 󳨀→ V𝑎 + 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑎󳨀→V𝑡
) = max(𝑑𝑒𝑙𝑡𝑎𝑏𝑎𝑐𝑘𝑇 (𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑎󳨀→V𝑡

) + SNV𝑠󳨀→V𝑡 (𝑇) [𝑎] [𝑘]𝑇𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
V𝑠󳨀→V𝑡

,

𝑑𝑒𝑙𝑡𝑎𝑏𝑎𝑐𝑘𝐶 (𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑎󳨀→V𝑡
) + SNV𝑠󳨀→V𝑡 (𝐶) [𝑎] [𝑘]𝐶𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

V𝑠󳨀→V𝑡

, ln (𝑑𝑒𝑙𝑡𝑎𝑏𝑎𝑐𝑘𝑅 (𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑎󳨀→V𝑡
) × SNV𝑠󳨀→V𝑡 (𝑅) [𝑎] [𝑘])

ln (𝑅𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡V𝑠󳨀→V𝑡
) )

9 if 𝛿(V𝑘 󳨀→ V𝑎 + 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑎󳨀→V𝑡
) < 𝛿(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑘󳨀→V𝑡 )

10 𝛿(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑘󳨀→V𝑡 ) = 𝛿(V𝑘 󳨀→ V𝑎 + 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑎󳨀→V𝑡
)

11 𝑑𝑒𝑙𝑡𝑎𝑏𝑎𝑐𝑘𝜇(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑘󳨀→V𝑡 ) = 𝑑𝑒𝑙𝑡𝑎𝑏𝑎𝑐𝑘𝜇(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑎󳨀→V𝑡 ) + SNV𝑠󳨀→V𝑡 (𝜇)[𝑎][𝑘], 𝜇 ∈ {T,C}
12 𝑑𝑒𝑙𝑡𝑎𝑏𝑎𝑐𝑘𝑅(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑘󳨀→V𝑡 ) = 𝑑𝑒𝑙𝑡𝑎𝑏𝑎𝑐𝑘𝑅(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑎󳨀→V𝑡 ) × SNV𝑠󳨀→V𝑡 (𝑅)[𝑎][𝑘]
13 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑘󳨀→V𝑡

= V𝑘 󳨀→ V𝑎 + 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑎󳨀→V𝑡
14 end if (line 9)
15 end (line 7)
16 end if (line 6)
17 Remove V𝑎 from VS
18 end (line 4)
19 return 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑘󳨀→V𝑡 , 𝛿(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑘󳨀→V𝑡 ), 𝑑𝑒𝑙𝑡𝑎𝑏𝑎𝑐𝑘𝜇(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑘󳨀→V𝑡 ), 𝜇 ∈ {T,C,R}
20 end

Algorithm 2: Delta Backward Search.

manufacturing applications, will be developed in the next
step. In this system, the proposed model and algorithm will
be extended to help a user select a better manufacturing
service composition path to meet the demand of various
end to end QoS constraints. Additionally, prediction and
service composition for dynamic QoS is also an essential
problem worth studying. The algorithms suitable for this
scenario will also be studied and developed in our future
work.

Appendix

A.

See Algorithm 1.

B.

See Algorithm 2.



Complexity 17

Data: SNV𝑠󳨀→V𝑡 (𝑇,𝐶, 𝑅), 𝑇𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
V𝑠󳨀→V𝑡

, 𝐶𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
V𝑠󳨀→V𝑡

, 𝑅𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡V𝑠󳨀→V𝑡
Result: 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑘󳨀→V𝑡

, 𝑢𝑡𝑖(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑘󳨀→V𝑡
), 𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑏𝑎𝑐𝑘𝜇(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑘󳨀→V𝑡

), 𝜇 ∈ {T,C,R}
1 begin
2 setVS = 0, 𝑢𝑡𝑖(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑘󳨀→V𝑡

) = ∞ (V𝑘 ̸= V𝑡), 𝑢𝑡𝑖(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑡󳨀→V𝑡
) = 0, 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑡󳨀→V𝑡

= V𝑡
3 move V𝑡 into VS
4 while VS ̸= 0 then
5 find V𝑎(V𝑎𝑙𝑢𝑒) = min(V∗(V𝑎𝑙𝑢𝑒)) V∗ ∈ VS
6 if edge(V𝑘, V𝑎) exists
7 for each V𝑘

8 𝑢𝑡𝑖 (V𝑘 󳨀→ V𝑎 + 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑎󳨀→V𝑡
) = weighed mean(𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑏𝑎𝑐𝑘𝑇 (𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑎󳨀→V𝑡

) + SNV𝑠󳨀→V𝑡 (𝑇) [𝑎] [𝑘]𝑇𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
V𝑠󳨀→V𝑡

,

𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑏𝑎𝑐𝑘𝐶 (𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑎󳨀→V𝑡
) + SNV𝑠󳨀→V𝑡 (𝐶) [𝑎] [𝑘]𝐶𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

V𝑠󳨀→V𝑡

, ln (𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑏𝑎𝑐𝑘𝑅 (𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑎󳨀→V𝑡
) × 𝑆𝑁V𝑠󳨀→V𝑡 (𝑅) [𝑎] [𝑘])

ln (𝑅𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡V𝑠󳨀→V𝑡
) )

9 if 𝑢𝑡𝑖(V𝑘 󳨀→ V𝑎 + 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑎󳨀→V𝑡
) < 𝑢𝑡𝑖(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑘󳨀→V𝑡

)
10 𝑢𝑡𝑖 (𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑘󳨀→V𝑡

) = 𝑢𝑡𝑖 (V𝑘 󳨀→ V𝑎 + 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑎󳨀→V𝑡
)

11 𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑏𝑎𝑐𝑘𝜇 (𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑘󳨀→V𝑡
) = 𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑏𝑎𝑐𝑘𝜇 (𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑎󳨀→V𝑡

) + SNV𝑠󳨀→V𝑡 (𝜇) [𝑎] [𝑘] , 𝜇 ∈ {T,C}
12 𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑏𝑎𝑐𝑘𝑅 (𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑘󳨀→V𝑡 ) = 𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑏𝑎𝑐𝑘𝑅 (𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑎󳨀→V𝑡 ) × SNV𝑠󳨀→V𝑡 (𝑅) [𝑎] [𝑘]
13 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑘󳨀→V𝑡

= V𝑘 󳨀→ V𝑎 + 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑎󳨀→V𝑡
14 end if (line 9)
15 end (line 7)
16 end if (line 6)
17 Remove V𝑎 from VS
18 end (line 4)
19 return 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑘󳨀→V𝑡

, 𝑢𝑡𝑖(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑘󳨀→V𝑡
), 𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑏𝑎𝑐𝑘𝜇(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑘󳨀→V𝑡

), 𝜇 ∈ {T,C,R}
20 end

Algorithm 3: Utility Backward Search.

C.

Proof. Assume that p∗ is the feasible solution in the net-
work and 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑡 is the path with the minimal 𝛿; then𝛿(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑡 ) ≤ 𝛿(𝑝∗). Assume that pbackwardvs󳨀→vt is not feasible;
then 𝛿(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑡 ) > 1. Since 𝑝∗ is a feasible solution with𝛿(𝑝∗) ≤ 1, we can get the conclusion that 𝛿(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑡 ) >𝛿(𝑝∗).This contradicts 𝛿(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑡 ) ≤ 𝛿(𝑝∗). So 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑡 is a
feasible solution.

The feasible backward search can identify whether there
is a feasible path that satisfies all QoS constraints. If𝛿(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑡 ) > 1, then there is no feasible solution in the
network and the algorithm will terminate. So the feasible
backward search process can avoid useless search processes
and make the algorithm more efficient. If 𝛿(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑡 ) ≤ 1,
there is a feasible solution 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑘󳨀→V𝑡 for each node V𝑘. The
feasible backward path set 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑘󳨀→V𝑡 can participate in the
forward search process and can be used as one of the heuristic
functions of the A∗ forward search.

D.

See Algorithm 3.

E.

See Algorithm 4.
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18 Complexity

Data: SNV𝑠󳨀→V𝑡 (𝑇,𝐶, 𝑅), 𝑇𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
V𝑠󳨀→V𝑡

, 𝐶𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
V𝑠󳨀→V𝑡

, 𝑅𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡V𝑠󳨀→V𝑡
, 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑘󳨀→V𝑡

, 𝑐𝑜𝑒(𝑇,𝐶, 𝑅), 𝛿(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑘󳨀→V𝑡
),𝑑𝑒𝑙𝑡𝑎𝑏𝑎𝑐𝑘𝜇(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑘󳨀→V𝑡

)𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑘󳨀→V𝑡
, 𝑢𝑡𝑖(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑘󳨀→V𝑡

), 𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑏𝑎𝑐𝑘𝜇(𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑘󳨀→V𝑡
), 𝜇 ∈ {T,C,R}

Result: 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑡
, 𝑈(𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑡

)
1 begin
2 SetVS1 = VS2 = 0, 𝑈1(𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1V𝑠󳨀→V𝑘

) = ∞ (V𝑘 ̸= V𝑠), 𝑈1(𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1V𝑠󳨀→V𝑠
) = 0, 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1V𝑠󳨀→V𝑠

= V𝑠𝑈2(𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2V𝑠󳨀→V𝑘
) = ∞ (V𝑘 ̸= V𝑠), 𝑈2(𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2V𝑠󳨀→V𝑠

) = 0, 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2V𝑠󳨀→V𝑠
= V𝑠

3 move V𝑠 into VS1 and VS2
4 whileVS1 ̸= 0 and VS2 ̸= 0 then
5 find V𝑎(V𝑎𝑙𝑢𝑒) = min(V∗(V𝑎𝑙𝑢𝑒)) V∗ ∈ VS1
6 find V𝑏(V𝑎𝑙𝑢𝑒) = min(V∗(V𝑎𝑙𝑢𝑒)) V∗ ∈ VS2
7 if V𝑎 = V𝑏 𝑎𝑛𝑑 𝑈(V𝑎) = 𝑈(V𝑏)
8 if edge(V𝑘, V𝑎) exists
9 for each V𝑘
10 start case (𝜇 ∈ {T,C,R})
11 Case 1𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑎󳨀→V𝑡 is feasible and 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑠󳨀→V𝑏󳨀→V𝑡 is feasible
12 if 𝑈1(𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑎󳨀→V𝑡

) < 𝑈1(𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1V𝑠󳨀→V𝑡
)

13 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1V𝑠󳨀→V𝑡
= 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1V𝑠󳨀→V𝑎

+ 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑎󳨀→V𝑡
14 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝜇 (𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1V𝑠󳨀→V𝑡

) = 𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝜇 (𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1V𝑠󳨀→V𝑎
) , 𝑑𝑒𝑙𝑡𝑎𝑏𝑎𝑐𝑘𝜇 (𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑎󳨀→V𝑡

))
15 end if (line 12)
16 if 𝑈2(𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑠󳨀→V𝑏󳨀→V𝑡

) < 𝑈2(𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2V𝑠󳨀→V𝑡
)

17 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2V𝑠󳨀→V𝑡
= 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2V𝑠󳨀→V𝑏

+ 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑏󳨀→V𝑡
18 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝜇 (𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2V𝑠󳨀→V𝑡 ) = 𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝜇 (𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2V𝑠󳨀→V𝑏

) , 𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑏𝑎𝑐𝑘𝜇 (𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑏󳨀→V𝑡 ))
19 end if (line 16)
20 Case 2𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑎󳨀→V𝑡

is feasible and 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑠󳨀→V𝑏󳨀→V𝑡
is infeasible

21 if 𝑈1(𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑎󳨀→V𝑡
) < 𝑈1(𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1V𝑠󳨀→V𝑡

)
22 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1V𝑠󳨀→V𝑡

= 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1V𝑠󳨀→V𝑎
+ 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑎󳨀→V𝑡

23 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝜇 (𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1V𝑠󳨀→V𝑡
) = 𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝜇 (𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1V𝑠󳨀→V𝑎

) , 𝑑𝑒𝑙𝑡𝑎𝑏𝑎𝑐𝑘𝜇 (𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑎󳨀→V𝑡
))

24 end if (line 21)
25 if 𝑈2(𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑏󳨀→V𝑡

) < 𝑈2(𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2V𝑠󳨀→V𝑡
)

26 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2V𝑠󳨀→V𝑡 = 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2V𝑠󳨀→V𝑏
+ 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑏󳨀→V𝑡

27 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝜇 (𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2V𝑠󳨀→V𝑡 ) = 𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝜇 (𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2V𝑠󳨀→V𝑏
) , 𝑑𝑒𝑙𝑡𝑎𝑏𝑎𝑐𝑘𝜇 (𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑏󳨀→V𝑡 ))

28 end if (line 25)
29 Case 3𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑎󳨀→V𝑡

is infeasible and 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑠󳨀→V𝑏󳨀→V𝑡
is feasible

30 if 𝑈1(𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑠󳨀→V𝑎󳨀→V𝑡
) < 𝑈1(𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1V𝑠󳨀→V𝑡

)
31 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1V𝑠󳨀→V𝑡

= 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1V𝑠󳨀→V𝑎
+ 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑎󳨀→V𝑡

32 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝜇 (𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1V𝑠󳨀→V𝑡
) = 𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝜇 (𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1V𝑠󳨀→V𝑎

) , 𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑏𝑎𝑐𝑘𝜇 (𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑎󳨀→V𝑡
))

33 end if (line 30)
34 if 𝑈2(𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑠󳨀→V𝑏󳨀→V𝑡

) < 𝑈2(𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2V𝑠󳨀→V𝑡
)

35 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2V𝑠󳨀→V𝑡 = 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2V𝑠󳨀→V𝑏
+ 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑏󳨀→V𝑡

36 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝜇 (𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2V𝑠󳨀→V𝑡 ) = 𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝜇 (𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2V𝑠󳨀→V𝑏
) , 𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑏𝑎𝑐𝑘𝜇 (𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑏󳨀→V𝑡 ))

37 end if (line 34)
38 end case (line 10)
39 end (line 9)
40 end if (line 8)
41 else (line 7)
42 if edge(V𝑘 , V𝑎) exists
43 for each V𝑘
44 if 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑎󳨀→V𝑡

is feasible and𝑈1(𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑎󳨀→V𝑡
) < 𝑈1(𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1V𝑠󳨀→V𝑡

)
45 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1V𝑠󳨀→V𝑡

= 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1V𝑠󳨀→V𝑎
+ 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑎󳨀→V𝑡

46 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝜇 (𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1V𝑠󳨀→V𝑡
) = 𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝜇 (𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1V𝑠󳨀→V𝑎

) , 𝑑𝑒𝑙𝑡𝑎𝑏𝑎𝑐𝑘𝜇 (𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑎󳨀→V𝑡
))

47 end if (line 44)
48 if 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑠󳨀→V𝑎󳨀→V𝑡

is feasible and𝑈1(𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑠󳨀→V𝑎󳨀→V𝑡
) < 𝑈1(𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1V𝑠󳨀→V𝑡

)
49 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1V𝑠󳨀→V𝑡

= 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1V𝑠󳨀→V𝑎
+ 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑎󳨀→V𝑡

Algorithm 4: Continued.



Complexity 19

50 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝜇 (𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1V𝑠󳨀→V𝑡
) = 𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝜇 (𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1V𝑠󳨀→V𝑎

) , 𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑏𝑎𝑐𝑘𝜇 (𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑎󳨀→V𝑡
))

51 end if (line 48)
52 end (line 43)
53 end if (line 42)
54 if edge(V𝑘 , V𝑏) exists
55 for each V𝑘
56 if 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑠󳨀→V𝑏󳨀→V𝑡

is feasible and𝑈2(𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑠󳨀→V𝑏󳨀→V𝑡
) < 𝑈2(𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2V𝑠󳨀→V𝑡

)
57 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2V𝑠󳨀→V𝑡 = 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2V𝑠󳨀→V𝑏

+ 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑏󳨀→V𝑡
58 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝜇 (𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2V𝑠󳨀→V𝑡 ) = 𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝜇 (𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2V𝑠󳨀→V𝑏

) , 𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑏𝑎𝑐𝑘𝜇 (𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑢𝑡𝑖V𝑏󳨀→V𝑡 ))
59 end if (line 56)
60 if 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑏󳨀→V𝑡

is feasible and𝑈2(𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2+𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑏󳨀→V𝑡
) < 𝑈2(𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2V𝑠󳨀→V𝑡

)
61 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2V𝑠󳨀→V𝑡 = 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2V𝑠󳨀→V𝑏

+ 𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑏󳨀→V𝑡
62 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝜇 (𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2V𝑠󳨀→V𝑡 ) = 𝑐𝑜𝑚𝑏𝑖𝑛𝑒 (𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝜇 (𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2V𝑠󳨀→V𝑏

) , 𝑑𝑒𝑙𝑡𝑎𝑏𝑎𝑐𝑘𝜇 (𝑝𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑V𝑏󳨀→V𝑡 ))
63 end if (line 60)
64 end (line 55)
65 end if (line 54)
66 end if (line 7)
67 Remove V𝑎 from VS1 and V𝑏 from VS2
68 End (line 4)
69 return 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑡

= better utility(𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑1V𝑠󳨀→V𝑡
, 𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑2V𝑠󳨀→V𝑡

) and 𝑈(𝑝𝑓𝑜𝑟𝑤𝑎𝑟𝑑V𝑠󳨀→V𝑡
)

70 end

Algorithm 4: Forward Search.

Intelligent Manufacturing System Technology [Grant No.
QYYE1601].
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