
Research Article
A Norm Compliance Approach for Open and Goal-Directed
Intelligent Systems

Patrizia Ribino and Carmelo Lodato

Istituto di Calcolo e Reti ad Alte Prestazioni, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa, 153, 90146 Palermo, Italy

Correspondence should be addressed to Patrizia Ribino; patrizia.ribino@icar.cnr.it

Received 3 December 2018; Accepted 11 February 2019; Published 8 April 2019

Academic Editor: Xianming Zhang

Copyright © 2019 Patrizia Ribino and Carmelo Lodato. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The increasing development of autonomous intelligent systems, such as smart vehicles, smart homes, and social robots, poses new
challenges to face. Among them, ensuring that such systems behave lawfully is one of the crucial topics to be addressed for improving
their employment in real contexts of daily life. In this work, we present an approach for norm compliance in the context of open and
goal-directed intelligent systems working in dynamic normative environments where goals, services, and norms may change. Such
an approach complements a goal-directed system modifying its goals and the way to achieve them for taking norms into accounts,
thus influencing the practical reasoning process that goal-oriented systems implement for figuring out what to do. The conformity
to norms is established at the goal level rather than at the action level. The effect of a norm that acts at the goal level spreads out at
the lower level of actions, thus also improving system flexibility. Recovery mechanisms are provided to face exceptional situations
that could be caused by normative changes. A case study in the field of the business organizations is presented for demonstrating
the strengths of the proposed solution.

1. Introduction

Intelligent systems are increasingly used with some degree
of autonomy. Thus, their behaviour is not entirely defined
by the designer, but it is the result of cognitive capabilities.
Modern intelligent systems can determine by themselves the
behaviour to adopt for achieving their objectives. In doing so,
they could be involved in behaviours that in real-world life are
regulated by more or less stringent norms that could produce
different effects. For example, smart cars have to obey the city
traffic laws. Intelligent information systems have to comply
with data protection laws to manage private information.
Social robots have to respect social norms during interaction
with humans. Smart workflow management systems have to
respect business rules to perform business processes and so
on.

A growing issue in the field of artificial intelligence is how
to ensure that the behaviour of intelligent systems complies
with the normative environment they should operate so that
these systems can be well-accepted and efficiently employed
in real contexts of the everyday life [1].

In conventional approaches, norms are fully specified at
design-time, and the system is designed in such a way that
its behaviour does not violate such rules. These approaches,
based on hard-coded static norms, are not practical solutions
because all the possible situations that a system has tomanage
should be established at design-time. Otherwise, system
redesigning is necessary [2]. Most advanced approaches
use model-checking techniques for verifying the system
behaviour off-line. Such methods result in impracticable or
limitedwhen the autonomyof the system increasesmaking its
behaviours not entirely predicted. Moreover, because norma-
tive environments in which systems operate are increasingly
dynamic, to avoid the shutdown of the system and its
reconfiguration, norm compliance has to be guaranteed at
run-time.

In this paper, we present an approach for ensuring system
run-time compliance with a dynamic set of norms in the
context of open and goal-directed systems. The conformity
with norms is guaranteed at a higher level of abstraction
(i.e., the goal level). Such an approach complements a goal-
directed system modifying its goals and the way to achieve

Hindawi
Complexity
Volume 2019, Article ID 7895875, 20 pages
https://doi.org/10.1155/2019/7895875

http://orcid.org/0000-0003-3266-9617
http://orcid.org/0000-0001-9736-1192
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/7895875

2 Complexity

them for taking norms into account, thus influencing the
practical reasoning process [3] that the goal-oriented systems
implement for figuring out what to do. In our approach, we
also faced the problem to manage normative changes during
system execution that may produce system incoherence with
existing norms providing recoverymechanisms. In this work,
we refined some theoretical foundations that have been
preliminarily presented in [4], and we introduced new ones
for defining the algorithms that implement the proposed
approach. A widely known case study in the context of
business organizations [5] is also presented for illustrating
the behaviour of a goal-oriented system that implements our
algorithms.

The rest of the paper is organized as follows. Sections 2
and 3 present some grounding literature and the theoretical
background of the paper, respectively. In Section 4, a general
overview of the approach is presented. Sections 5 and 6
present the key concepts and the algorithms for normative
reasoning. Section 7 illustrates a case study in the context of
business organizations. Finally, in Section 8 conclusions are
drawn.

2. Related Works

Norms like obligations, permissions, and prohibitions
have been implemented in automatic systems to specify
(un)desired or (un)lawful behaviours. Normative systems [6]
are commonly defined as systems that specify every possible
transition, whether or not that transition is considered to be
legal or not. They determine which actions or which states
should be achieved or avoided [7–9].

Much work has been done about normative frameworks
in the field of Electronic Institutions or Virtual Organizations
where norms have found a natural implementation. Only
to cite a few, Alechina et al. [10] present a programming
framework for developing normative organizations based on
N-2APL, a BDI-based agent programming language sup-
porting normative concepts such as obligations, prohibitions,
and sanctions. In such a work, the interaction between
agents and the environment is regulated by a “normative
exogenous organization” which is defined using a set of
conditional norms. A norm-aware deliberation approach is
also proposed. It allows agents to determine the set of plans
(adopted for satisfying a goal) of highest priority which does
not violate higher priority prohibitions. In [11], Kollingbaum
and Norman proposed the Normative Agent Architecture
(NoA). It supports the implementation of norm-governed
practical reasoning agents. NoA agents are motivated by
norms to act. In the NoA language, all the effects of a
plan are declared in a plan specification. These effects are
considered by agents for reasoning about plan selection and
execution. Moreover, the norms governing the behaviour of
an NoA agent refer to actions that are obligatory, permitted,
forbidden, or states of affairs that are obligatory, permit-
ted, or forbidden. The NoA language enables an agent to
be programmed in terms of plans and norms. Normative
statements formulated in the NoA language express obli-
gations, permissions, and prohibitions of an agent. In [12],

the problem of regulating the operation of open multiagent
systems in which multiple interrelated activities take place
is addressed, thus involving the distributed management of
norms. Authors propose normative structures as a means to
observe and manage the evolution of normative positions in
each activity and their propagation in distributed activities.
In [13], authors treated a computer supported cooperative
work (CSCW) system as an organization in a society to
use the abstraction of an organizational model. Hence, they
propose a logical predication-based organizational model
with an organizational state machine (OSM) to describe
norms in CSCW systems. The organizational model allows
describing the behavioural rules of roles, and the OSM allows
for checking the logical conflict among the rules.

Some other works have been conducted for addressing
norm change and norm consistency providing agents with
mechanisms for enacting behaviour modification. Typically,
new plans/actions have been created to comply with new
norms [14–16]. In [17], Jiang et al. propose a normative
structure, named Norm Nets (NNs) for modeling sets of
interrelated regulations. NNs are aimed at verifying whether
executions of business processes complied with process
regulations. Authors define a norm as a tuple of elements that
specify the type of deontic operator, the pair role-action (the
target) to which the deontic modality is assigned, a deadline
of norm validity, and a precondition that determines when
the target is initiated. A formal method for checking norm
compliance by using Colored Petri Nets is proposed. In [18,
19], authors propose a means for automatically detecting and
solving conflict and inconsistency in norm-regulated Virtual
Organization and Electronic Institution.

This work is developed in the context of the open and
goal-directed systems that are able to work in dynamic
normative environments and to organize their behaviour
according to environmental changes.

The approach we propose is founded on a norm compli-
ance algorithm, starting from the knowledge about norms,
goals, and state of the world and acting at the goal level,
which allows the system to plan the right behaviour in
conformity with the normative context. Such an algorithm
also allows the system to address exceptional situations that
may occur, mainly when several norms act simultaneously.
Three possible cases we considered in detail: inconsistent
norms that contain a logical contradiction, the presence of
an antinomy, namely, a conflict between two norms that are
mutually exclusive, and, finally, norms that are incompatible
with system requirements, in other words, that make goals
not satisfiable.

3. Background

This section is organized in two parts.Thefirst one introduces
norms and normative reasoning. The second one gives some
details about antinomies in the legal theory.

3.1. Normative Reasoning. Norms are everywhere in our daily
life. We are obligated to follow the traffic regulations during
driving. We have to respect contractual restrictions at work.

Complexity 3

We try to follow etiquette to be well-accepted in society, and
so on. These examples spread from hard to soft constraints.
Generally speaking, norms can be seen as normative rules
used for governing conducts, procedures, or state of affairs
within a particular sphere of knowledge. The normative
reasoning is the reasoning conforming to or based on norms.
It is formally studied through the deontic logic [20], which
is the study of the logical relationships among propositions
asserting that specific actions or state of affairs are obligatory,
forbidden, or permitted. From the application point of view,
deontic logic is the logic that deals with actual as well as
the ideal behaviour of systems [21]. Differently from the
classic logic, when working with norms the main issue to
be considered is that norms are neither true nor false. For
overcoming this issue, a common approach is to consider
the deontic logic as a logic of normative propositions. The
underlying concept is that, even if norms are neither true nor
false, someone may state that something ought to be done
(according to norms): the statement Mary ought to pay the
taxes is, then, true or false description of a normative situation
[22].

Standard deontic logic [23, 24] is the most studied
system of deontic logic and one of the first deontic logics
axiomatically specified. It is obtained from the modal logic
and employs three modal operators 𝑂, 𝑃, and 𝐹, where 𝑂𝐴
means that it is obligatory that A,𝑃𝐴means that it is permitted
that A and 𝐹𝐴 that it is forbidden that A. Let 𝑂 be primitive,
the operators P and F can be defined by the equivalences
𝑃𝐴 ≡ ¬𝑂¬𝐴 and 𝐹𝐴 ≡ 𝑂¬𝐴, where PA means that it is
not obligatory that not A and FA means that it is obligatory
that not A. In this context, A designates a proposition that
asserts that an act of the sort A is done. Thus, OA is read as
“it is obligatory that the situation described by the descriptive
sentence A is realized”.

3.2. Antinomy in Legal Theory. In legal theory, an antinomy
is defined as an incompatibility relation between two norms
belonging to the same legal system. If we refer to the
classic logic, the incompatibility between two propositions is
determined by the impossibility that they are both true. In
legal theory, the concept of incompatibility is founded on the
deontic logic, which refers to the obligatory of the prescriptive
assertions.

The deontic square of oppositions [24] shows all the
possible relations between two norms in terms of obligations,
prohibitions, permissions, and negative permissions (see
Figure 1). The most common types of oppositions between
the four modalities are as follows: (1) Incompatibility between
a norm that prescribes𝑃 and a norm that prohibits𝑃. Only one
of them may be in effect at any time.

(2) Incompatibility between a norm that prescribes 𝑃 and a
norm that allows not 𝑃. An action is either obligatory or not.
Omissible corresponds to the absence of an obligation (may
¬(𝑋) ≡ ¬ must(X)) and vice versa.

(3) Incompatibility between a norm that prohibits 𝑃 and a
norm that allows 𝑃. An action is either forbidden or allowed.
Permission therefore corresponds to the absence of a pro-
hibition (may(X)≡ ¬ (must 𝑛𝑜𝑡(𝑋))). For solving antinomy,

Must

Obligatory

Must not

Prohibited

May

Permitted

May not

Omissible

Contraries

Subcontraries

Implications ImplicationsContradictories

Figure 1: The deontic square of oppositions.

three criteria are adopted in legal theory. The legis posterior
that states the younger law overrides the older law. The legis
specialis establishes that a law governing a specific subject
matter (lex specialis) overrides a law which only governs
generalmatters (lex generalis). Finally, the lex superior derogat
legi inferiori principle states that higher law overrides the
lower law, because a legal system is commonly based on a
power hierarchy. The proposed approach takes inspiration
from this theory for addressing conflicting situations in the
context of open and goal-directed intelligent systems.

4. Overview of the Proposed Approach

As previously said, the proposed work is developed in the
context of open and goal-directed intelligent systems that
work in dynamic normative environments. In this kind of
systems, goals can be seen as motivators that provide them
with the reason for doing something. Moreover, the open
systems we considered may evolve at run-time because (i)
new services could be made available for satisfying existing
goals and (ii) new goals may be required to the system.

Hence, working in dynamic normative environments
with systems that may evolve their behaviour requires new
methods able to ensure norm compliance also for norms and
system behaviours that are not defined at design-time. For
addressing such issues, our approach is based on a triplet of
elements, namely, state of the world, goal, and norm. A state
of the world represents the particular conditions of the system
and the context in which it works in a specific time. A Goal
expresses the desired state of the world the system wants to
achieve when certain conditions are verified. Finally, Norms
regulate the state of the world using obligations, permissions,
and prohibitions. In particular, we considered two different
cases. In the first case, obligation and prohibition norms
modify the desired state of the world according to the
admissible state expressed by obligations or prohibitions.
Permission may or may not change the desired state of the
world. In the second case, norms are considered as promoters
or inhibitors of the system in pursuing goals. Practically, a
permission relaxes the constraints expressed by the condi-
tions under which a goal has to be satisfied. Conversely, a
prohibition nullifies the commitment with a goal under the
circumstances defined by the prohibition norm. Finally, an

4 Complexity

Go to (Country)

Book a
flight

Book a
train

OR

Norms

Goal Level

Service Level

B B

Figure 2: Services that could be chosen for satisfying the goal.

obligation introduces further conditions under which a goal
has to be reached. In this vision, the effect of the norms is
that theymay increase the possibility for the system to pursue
a goal (permissions). Conversely, they may inhibit system
intentions to pursue a goal (prohibitions). Finally, norms
may force the system to pursue a goal (obligations). The
main feature of the proposed approach is to obtain a norm
compliance behaviour by exploiting normative reasoning
applied to the state of affairs a system wants to achieve.
Thus, norms regulate the system at goal level providing some
advantages and overcoming some limitations of conventional
approaches.

For illustrating typical problems, we provide some exam-
ples (some norms used in the following examples are inspired
to existing real norms). Let us suppose an intelligent system
able to plan and organize a personal agenda of a user. Let us
suppose that such a system can satisfy the user goal 𝐺1 : I
want to go to country A. We also assume the user has already
obtained the entry visa for the country A that is a prerequisite
for achieving 𝐺1. Let us also suppose that, at the moment of
the goal commitment, the system knows only two ways for
satisfying the goal 𝐺1: by booking a flight or a train. Figure 2
shows a goal model with services the system may use for
producing a postsituation which satisfies 𝐺1. We have also
depicted two levels of abstractions to empathize the difference
between goals and services.

Let us suppose that a norm𝑁1 states that “It is prohibited
that a person visits the country A if he has visited a country B”.
Let us assume that the user has already visited the country B.
Thus, the presence of such norm does not permit the user
to go to country A. For complying with such a normative
requirement, the system does not have to plan the user trip.
The proposed approach allows the system to revise its current
commitment to that goal. Hence, rather than disabling all the
possible ways the system can follow to satisfy the goal, the
norm applied at the goal level does not allow the system to
pursue the goal because it inhibits its intentions.

Let us assume, instead, that the personal agenda is
committed to fulfilling two user goals, go to country A and go
to country B. For complyingwith𝑁1, the personal agenda has
to be able to plan the trip for country A firstly and then the
trip for country B. Our approach allows the system to reason
about the effect of the norm on its desired state of the world.
Because choosing firstly to pursue the goal go to country B

Go to (Country)

Book a
flight

Book a
train

OR Goal Level

Service Level

Rent a
car

B B

Norms

Figure 3: The availability of the new service Rent a car gives the
system a new mean for satisfying the goal Go to (country).

leads the system in an unlawful state of the world, the system
will plan the two goals opportunely.

Let us suppose now that a new service “rent a car” is
available at run-time for satisfying the goal “go to (country)”
(see Figure 3).The run-time introduction of this new element
does not involve any change in the system configuration.

We do not need to modify anything to adapt the
behaviour of the system tomanage this new situation because
the norm defined at the goal level spreads to the service
level. The approach we propose allows maintaining norm
compliance although the service level is changed.

Conversely, let us suppose that a norm 𝑁2 states that “In
country A, it is prohibited to enter foreign cars”. Let us suppose
that available rent car services do not have cars produced in
the country A. This kind of norm does not prohibit to pursue
the goal𝐺1, but it has effects on it. In our approach, such kind
of norm introduces constraints to the final state of the world
the system wants to reach. Thus, the system will choose the
book a flight or book a train service in order to achieve 𝐺1.

Finally, let us suppose that a norm 𝑁3 “It is permitted
that a person goes to country A if he is a citizen of a member
state of the organization X” is at run-time introduced in the
system. We also assume that the user has not an entry visa
for the country A, yet. The single effect of 𝑁3 on the system
(i.e., without considering the presence of 𝑁1 and 𝑁2) is to
relax the conditions under which the goal has to be satisfied.
The system could plan to fulfill the goal go to country A also
without its prerequisite which is satisfied (i.e., without an
entry visa for Country A). On the contrary, the simultaneous
presence of 𝑁1 and 𝑁3 creates a joint effect on the system
because they affect the same goal “go to country A”. In
particular, the injection of𝑁3 could cause a system deadlock.
Indeed, if the conditions of 𝑁1 and 𝑁3 are simultaneously
valid for the user, an antinomy is generated, and the system
does not know how to behave. The compliance with 𝑁3
causes to be uncompliant with 𝑁1. It is a classic example of
a conflict generated when two norms are contradictory. Our
normative reasoning approach implements recovery criteria
for addressing such situations. In particular, in this situation
𝑁3 is a norm defined by superior institutional power. Thus it
should prevail on the second one.

Such examples show only some of the situations that an
open system should manage working in a dynamic norma-
tive environment. Several other anomalous situations deter-
mining system deadlock can occur in implementing norm

Complexity 5

compliance. In this work, we address the following ones: (1)
The first isThe introduction into the system of an inconsistent
norm. It means that the norm is self-contradictory because
it contains a logical contradiction, namely, the conjunction
of a statement S and its denied, not S. (2) The second is The
presence of an antinomy. An antinomy designates a conflict
of two norms that are mutually exclusive or that oppose
one another. (3) The third is The run-time injection of norms
incompatible with a system goal.Thismeans that pursuing that
goal always violates the prescribed norms.

In our approach, we manage these situations in dynam-
ically changing environments, where conflicting situations
among norms may change according to the particular exe-
cution context. For addressing this concern, we introduce
some new definitions about conflicts and inconsistencies that
are based on a representation of the execution context. The
norm compliance approach is defined through algorithms
that are based on these definitions. In the following section,
the theoretical foundations of the approach are introduced.

5. Theoretical Foundations

This section formally introduces the theoretical foundations
of the proposed approach. Firstly, the definitions of the state
of the world, goals, and norms are introduced. Then, formal
definitions about norm compliance and anomalous situations
are presented. It is worth noting that such definitions imply
a formalization of a sphere of knowledge within the system
operates. In particular, to establish a relationship between the
formal specification of goals and state of the world and the
formal representation of the normative framework it is nec-
essary to refer to the same semantic layer. This requirement
can be satisfied by adopting a knowledge formalization based
on proper domain ontology (it is out of the scope of the paper
how to build the ontology.The reader may refer to the several
approaches proposed in the literature).

5.1. State of the World, Goals and Norms. The state of the
world represents a set of declarative information about events
occurring within the environment and relations among
events at a specific time. An event can be defined as the
occurrence of some fact that can be perceived by or be
communicated to the intelligent system. Events can be used to
represent any information that can characterize the situation
of an interacting user as well as a set of circumstances in
which the intelligent system operates at a specific time.

Definition 1 (state of the world). LetD be the set of concepts
defining a domain. Let L be a first-order logic defined on
D with ⊤ a tautology and ⊥ a logical contradiction, where
an atomic formula 𝑝(𝑡1, 𝑡2 . . . , 𝑡𝑛) ∈ L is represented by a
predicate applied to a tuple of terms (𝑡1, 𝑡2 . . . , 𝑡𝑛) ∈ D and
the predicate is a property of or relation between such terms
that can be true or false. A state of the world in a given time t
(W𝑡) is a subset of atomic formulae whose values are true at
the time t:

W
𝑡 = [𝑝1 (𝑡1, 𝑡2, . . . , 𝑡ℎ) , . . . , 𝑝𝑛 (𝑡1, 𝑡2, . . . , 𝑡𝑚)] (1)

Definition 1 is based on the close world hypothesis [25]
that assumes all facts that are not in the state of the world are
considered false. Resuming the previous example, a possible
state of the world at a given time t could be represented as

W
t = [has (entry visa, country A) ,

booked (flight, AR302)]
(2)

It means that, at a given time t, the user has an entry visa
for country A and has received the confirmation of the flight
𝐴𝑅302 reservation.

Definition 2 (goal). Let D, L, and 𝑝(𝑡1, 𝑡2 . . . , 𝑡𝑛) ∈ L be as
previously introduced in Definition 1. Let 𝑡𝑐 ∈ L and 𝑓𝑠 ∈
L be formulae that may be composed of atomic formulae
by means of logic connectives AND(∧), OR (∨), and NOT
(¬). A Goal is a pair ⟨𝑡𝑐, 𝑓𝑠⟩ where 𝑡𝑐 (trigger condition) is
a condition to evaluate over a state of the world W𝑡 when
the goal may be actively pursued and 𝑓𝑠 (final state) is a
condition to evaluate over a state of the world 𝑊𝑡+Δ𝑡 when
it is eventually addressed:

(i) a goal is active if 𝑡𝑐(W𝑡) ∧ ¬𝑓𝑠(W𝑡) = 𝑡𝑟𝑢𝑒
(ii) a goal is addressed if 𝑓𝑠(W𝑡+Δ𝑡) = 𝑡𝑟𝑢𝑒

A Goal describes a desired state of affairs the actor wants
to achieve. It is represented by a couple of elements named
trigger condition and final state. The final state represents
the desired state of affairs. A goal is activated when some
conditions occur (i.e., the trigger conditions) and it is satisfied
when a new state of the world contains the final state.

The previous goal 𝐺1 = 𝑔𝑜 𝑡𝑜(𝑐𝑜𝑢𝑛𝑡𝑟𝑦 𝐴) (according to
common goal-oriented methodologies, we give a name to a
goal for referring to it [26]) could be represented as follows:

𝐺1 = ⟨has (entry visa, country A) ,

visited (country A)⟩
(3)

It means that 𝑔will be actively pursued after receiving the
entry visa for country A. The goal is considered addressed in
a new state of the world where the user is in country A.

Definition 3 (norm). Let D, L, and 𝑝(𝑡1, 𝑡2 . . . , 𝑡𝑛) ∈ L be
as previously introduced in Definition 1. Let 𝜙 ∈ L and
𝜌 ∈ L be formulae composed of atomic formula by means of
logic connectives AND(∧), OR (∨), and NOT (¬). Moreover,
let 𝐷𝑜𝑝 = {𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛, 𝑜𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛, 𝑝𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛} be the set of
deontic operators. A Norm is defined by the elements of the
following tuple:

𝑛 = ⟨𝑟, 𝑔, 𝜌, 𝜙, 𝑑⟩[𝑠𝑐𝑜𝑝𝑒] , (4)

where 𝑠𝑐𝑜𝑝𝑒 identifies the field of reference of the norm; 𝑟 ∈
R is the Role the norm refers to; 𝑔 ∈ G is the Goal the norm
refers to; 𝜌 ∈ L is a formula expressing the set of actions
and/or state of affairs that the norm disciplines; 𝜙 ∈ L is
a logic condition (to evaluate over a state of the world W𝑡)
under which the norm is applicable; 𝑑 ∈ 𝐷𝑜𝑝 is the deontic

6 Complexity

operator applied to 𝜌 that the norm prescribes to the couple
(𝑟, 𝑔) ∈ R ×G:

𝑑 (𝜌) =
{{{{
{{{{
{

𝜌 if 𝑑 = 𝑜𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛
¬𝜌, if 𝑑 = 𝑝𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛
𝜌 ∨ ¬𝜌 if 𝑑 = 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛

(5)

An obligation imposes to obtain the state of affairs 𝜌.
A prohibition defines 𝜌 as a not-acceptable state of affairs.
Finally, permissions do not have a restrictive role. We also
introduce the concept of scope for relating a norm to a specific
context. The scope also allows establishing some hierarchy
among norms.

The previous norm stating that “It is prohibited that a
person visits the country A if he has visited a country B” could
be represented as follows:

n1 = ⟨tourist, g1, visited (country A) ,

visited (country B) , prohibition⟩[safety]
(6)

Hereafter, we assume that given a norm 𝑛 = ⟨𝑟, 𝑔, 𝜌, 𝜙, 𝑑⟩;
the actor that is pursuing the goal 𝑔 plays the role 𝑟.

Definition 4 (applicable norm). LetW𝑡 be a state of the world
in a given time t. A norm 𝑛 = ⟨𝑟, 𝑔, 𝜌, 𝜙, 𝑑⟩ is 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 at
time t if

(𝜙 (W𝑡) = 𝑡𝑟𝑢𝑒) ∨ (𝜙 = ⊤) (7)

Definition 4 establishes when in a given context a norm is
workable. When the statement representing the applicability
condition results in a tautology, the norm is applicable in each
state of the world the system is.

Definition 5 (active norm). LetW𝑡 be a state of the world in
a given time t and let 𝑔 = ⟨𝑡𝑐, 𝑓𝑠⟩ be a not addressed goal. A
norm 𝑛 = ⟨𝑟, 𝑔, 𝜌, 𝜙, 𝑑⟩ is 𝑎𝑐𝑡𝑖V𝑒 at time t if

𝑛 𝑖𝑠 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 ∧ (𝑡𝑐 (W𝑡) = 𝑡𝑟𝑢𝑒) (8)

Definition 5 establishes when a given norm may produce
an effect on the system. In particular, it occurs when the
norm is applicable and the goal is active (namely, the system
intends to pursue that goal). For the previous example, 𝑛1 is
applicable for a user that has already visited country B, but it
may produce an effect only if the user has an entry visa for
country A that triggers the system to try to pursue the goal.

5.2. Norm Compliance. The definition of normative compli-
ance is based on the concept of inadmissible state of the world
defined as follows.

Definition 6 (inadmissible state of the world). A state of the
world at a given time t

W
𝑡 = [𝑝1 (𝑡1, 𝑡2, . . . , 𝑡ℎ) , . . . , 𝑝𝑛 (𝑡1, 𝑡2, . . . , 𝑡𝑚)] (9)

is an Inadmissible State of the World if ∃ 𝑛 = ⟨𝑟, 𝑔, 𝜌, 𝜙, 𝑑⟩ |
𝐶𝑜𝑛𝑑𝐴 ∧ 𝐶𝑜𝑛𝑑𝐵 are verified where

𝐶𝑜𝑛𝑑𝐴 : 𝜙 (W𝑡−Δ𝑡) ∧ ¬𝜌 (W𝑡−Δ𝑡) = 𝑡𝑟𝑢𝑒

when 𝑑 = 𝑝𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛

𝐶𝑜𝑛𝑑𝐵 : 𝑝1 (𝑡1, 𝑡2, . . . , 𝑡ℎ) ∧ ⋅ ⋅ ⋅ ∧ 𝑝𝑛 (𝑡1, 𝑡2, . . . , 𝑡𝑚)

∧ 𝑑 (𝜌) =⊥

(10)

The first condition allows ensuring the nonretroactive
effect of a prohibition norm. It disciplines the case where the
state of affair regulated by a prohibition norm has occurred
before the applicability of the norm. Therefore, if 𝑛 is a
prohibition and 𝜌 = 𝑡𝑟𝑢𝑒 before the norm came into force,
the state of the world cannot be considered inadmissible.The
second condition verifies ifW𝑡 is contrastingwith the deontic
constraint the norm prescribes.

It is worth noting that because of 𝜌 may refer to a state
of affairs then it might coincide with the desired state of the
world (i.e., 𝜌 = 𝑓𝑠). This means that the norm disciplines
directly to the goal fulfillment. Conversely, when 𝜌 ̸= 𝑓𝑠,
the norm constrains the way to reach the final state of the
world by pursuing the goal. In the following definition, we
differentiated these two cases.

Definition 7 (norm compliance). Let us consider a norm 𝑛 =
⟨𝑟, 𝑔, 𝜌, 𝜙, 𝑑⟩ and a goal 𝑔 = ⟨𝑡𝑐, 𝑓𝑠⟩. Let us consider a state
of the worldW𝑡 in a given time t in which 𝑛 is active and let
W𝑡+Δ𝑡 be the state of the world in which 𝑓𝑠 is true. Pursuing
the goal 𝑔 is compliant with the norm 𝑛 ifW is an admissible
state of the world where

W ≡
{{{
{{{
{

W𝑡+Δ𝑡 𝑓𝑠 = 𝜌
𝑡+Δ𝑡

⋃
𝑘=𝑡

W𝑘 𝑓𝑠 ̸= 𝜌
(11)

The first case allows ensuring that the final state of the
world achieved by pursuing a goal does not contain any
violations of the normative constraints. The second case
allows establishing that the system moved along a path
which satisfies the norm passing through various states of
the worlds appropriately. Definition 7 is strictly correlated
to practical reasoning of goal-oriented systems. Practical
reasoning is reasoning directed towards actions; it is the
process of figuring out what to do [3]. It consists of two
activities: deliberation, deciding what goals to achieve, and
means-ends reasoning, determining how to meet these goals.
The central aspect of goal deliberation is “How can the
system deliberate on its goals to decide which ones shall be
pursued?” [27]. A goal-oriented system sees some of its goals
merely as possible options. Goal deliberation has the task
to decide which goals a system actively pursues, which ones
it delays, and which ones it abandons. Conversely, means-
ends reasoning are aimed at providing operationalization of
goals. It is the process of deciding how to achieve a goal using
the available means (e.g., actions, services, and resources).
In our approach, a mean describes a particular trajectory in

Complexity 7

terms of the state of the world the system may intentionally
use to address a given result. Thus the system knows its
effect on the state of the world. The definition we introduce
about norm compliance directly influences the process of
goal deliberation. The first condition of Definition 7 has a
direct impact on the choice of goals that can be pursued. A
system can deliberate to pursue a goal based on run-time
conditions by envisaging the normative effects of the goal.
Conversely, means-ends reasoning is a process that allows
choosing the appropriateways to fulfill a deliberated goal.The
second condition of norm compliance is implicitly related to
this process. A system can determine the way to reach a goal
by envisaging the normative effects of available means that it
can choose.

5.3. Anomalous Situations. This section formalizes the types
of exceptional situations that can occur working with norma-
tive propositions.

Definition 8 (inconsistent norm). A norm 𝑛 =
⟨𝑟, 𝑔, 𝜌, 𝜙, 𝑑⟩[𝑠𝑐𝑜𝑝𝑒] is 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 if 𝜙 =⊥.

A norm 𝑛 = ⟨𝑟, 𝑔, 𝜌, 𝜙, 𝑑⟩[𝑠𝑐𝑜𝑝𝑒] is inconsistent when it
contains a logical contradiction. This means that its appli-
cability condition 𝜙 contains the conjunction of a statement
S and its denied not S. For example, let us suppose a norm
N: It is prohibited that a person enters in building site if
he is unauthorized, and if he is without protection and he
is authorized. This norm contains the conjunction of two
contradictory statements (i.e., he is an unauthorized user and
he is an authorized user). In this case, the normwill always be
not applicable without effect on the system behaviour. Such a
situation could occur during the definition of norms with a
complex condition, or a writing error could determine it. In
the previous example, the corrected norm could be as follows:
It is prohibited that a person enters in building site if he is
unauthorized or if he is without protection andhe is authorized.

Definition 9 (incompatibility). Let 𝑔 = ⟨𝑡𝑐, 𝑓𝑠⟩ be a not
addressed goal. A norm 𝑛 = ⟨𝑟, 𝑔, 𝜌, 𝜙, 𝑑⟩ is incompatible
with 𝑔 if

(𝑖) 𝜙 = ⊤

(𝑖𝑖) 𝑓𝑠 ∧ 𝑑 (𝜌) =⊥
(12)

An incompatibility exists between a norm and a goal
when pursuing the goal always violates the prescribed norm.

Let us consider a norm 𝑛 = ⟨𝑟, 𝑔, 𝜌, 𝜙, 𝑑⟩ and a goal 𝑔 =
⟨𝑡𝑐, 𝑓𝑠⟩; the following incompatibility cases may arise.

Case A. 𝑓𝑠 = 𝜌, 𝑑 = 𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 and 𝜙 = ⊤; then 𝑛 modifies
the final state of 𝑔 as follows:

𝑓󸀠𝑠 = 𝑓𝑠 ∧ ¬𝑓𝑠 (13)

In this case, 𝑛 prohibits the state of affairs 𝑓𝑠 directly; as
a consequence it forbids to pursue the goal 𝑔 in any way. In
some cases, this type of norm could be used for inhibiting
some system behaviours, but a run-time injection of a norm

whose applicability condition is erroneously written in such a
way to determine a tautology may cause an undesired system
deadlock. For example, let us consider the following norm
It is prohibited to go to country A. It directly constrains the
achievement of the goal go to country A.

Case B. (𝑓𝑠 ̸= 𝜌) ∧ (𝑓𝑠 ∩ 𝜌 ̸= ⌀), 𝑑 = 𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 and 𝜙 = ⊤;
then 𝑛 modifies the final state of 𝑔 as follows:

𝑓󸀠𝑠 = 𝑓𝑠 ∧ ¬𝜌 (14)

In this case, 𝑛 indirectly constraints the achievement of
the goal because 𝑛 forbids to be in a state that is necessary for
the accomplishment of the goal. For example, let us consider
a simple example to remain in the context of the previous
case. The norm It is prohibited to be in motion highlights the
impossibility to pursue the goal go to country A in compliance
with the norm.

Definition 10 (deontic contradiction). Let 𝑊𝑡 be a state of
the world at time t and let 𝑛1 = ⟨𝑟1, 𝑔1, 𝜌1, 𝜙1, 𝑑1⟩ and 𝑛2 =
⟨𝑟2, 𝑔2, 𝜌2, 𝜙2, 𝑑2⟩ be two norms where 𝑟1 = 𝑟2, 𝑔1 = 𝑔2,
𝜌1 = 𝜌2. Norms 𝑛1 and 𝑛2 are 𝑑𝑒𝑜𝑛𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑜𝑟𝑦 if

(𝑖) 𝜙1 (W𝑡) ∧ 𝜙2 (W𝑡) = 𝑡𝑟𝑢𝑒

(𝑖𝑖) 𝑑1 ̸= 𝑑2
(15)

As previously said, an antinomy designates a conflict of
two norms that are mutually exclusive or that oppose one
another. Somenorms can generate an antinomyunder certain
circumstances. In autonomous systems, such cases are not
predetermined. Thus, systems have to be able to evaluate
each particular situation at run-time. In the following, we
discuss some possible scenarios that could occur during
system execution that are related to the possible kinds of
antinomy presented in Section 3.2.

Let 𝑛1 and 𝑛2 be two norms, 𝑛1 = ⟨𝑟1, 𝑔1, 𝜌1, 𝜙1, 𝑑1⟩ and
𝑛2 = ⟨𝑟2, 𝑔2, 𝜌2, 𝜙2, 𝑑2⟩, where 𝑟1 = 𝑟2, 𝑔1 = 𝑔2 = 𝑔, and
𝑔 = ⟨𝑡𝑐, 𝑓𝑠⟩:

Case C. If𝑑1 = 𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛,𝑑2 = 𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛 and𝜌1 = 𝜌2 = 𝜌,
the joint effect of 𝑛1 and 𝑛2 modifies 𝑔 as follows:

𝑔󸀠 =
{{{{
{{{{
{

(𝑡𝑐, 𝑓𝑠 ∧ ¬𝜌 ∧ 𝜌) 𝑖𝑓 𝜙1 ∧ 𝜙2
(𝑡𝑐, 𝑓𝑠 ∧ ¬𝜌) 𝑖𝑓 𝜙1 ∧ ¬𝜙2
(𝑡𝑐, 𝑓𝑠 ∧ 𝜌) 𝑖𝑓 ¬𝜙1 ∧ 𝜙2

(16)

In the first case, the system is in a conflict situation
because of the contemporaneous applicability of 𝑛1 and 𝑛2.
Thus, there is no way to be compliant with both norms; the
system adopts the recovery criteria. In the other cases, the
final state is constrained to be compliant with the applicable
norm.

8 Complexity

Case D. If 𝑑1 = 𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛, 𝑑2 = 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛, 𝜌1 = 𝜌, and
𝜌2 = ¬𝜌, the joint effect of 𝑛1 and 𝑛2 modifies 𝑔 as follows:

𝑔󸀠 =
{{{{
{{{{
{

(𝑡𝑐, (𝑓𝑠 ∧ 𝜌) ∨ (𝑓𝑠 ∧ ¬𝜌 ∧ 𝜌)) 𝑖𝑓 𝜙1 ∧ 𝜙2
(𝑡𝑐, 𝑓𝑠 ∧ 𝜌) 𝑖𝑓 𝜙1 ∧ ¬𝜙2
(𝑡𝑐, (𝑓𝑠 ∧ ¬𝜌) ∨ (𝑓𝑠 ∧ 𝜌)) 𝑖𝑓 ¬𝜙1 ∧ 𝜙2

(17)

In the first case, the system avoids a conflict situation
pursuing 𝑔 in such a way that the final state of the world
includes the state of affair expressed by 𝜌. In other cases, 𝑛1
and 𝑛2 do not create a conflict.

Case E. If 𝑑1 = 𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛, 𝑑2 = 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛, and 𝜌1 = 𝜌2 =
𝜌, the joint effect of 𝑛1 and 𝑛2 modifies the final state of 𝑔 as
follows:

𝑔󸀠 =
{{{{
{{{{
{

(𝑡𝑐, (𝑓𝑠 ∧ ¬𝜌 ∧ 𝜌) ∨ (𝑓𝑠 ∧ ¬𝜌)) 𝑖𝑓 𝜙1 ∧ 𝜙2
(𝑡𝑐, 𝑓𝑠 ∧ ¬𝜌) 𝑖𝑓 𝜙1 ∧ ¬𝜙2
(𝑡𝑐, (𝑓𝑠 ∧ 𝜌) ∨ (𝑓𝑠 ∧ ¬𝜌)) 𝑖𝑓 ¬𝜙1 ∧ 𝜙2

(18)

In the first case, to be compliant with norms the system
fulfills 𝑔 in such a way to avoid the state of affair expressed by
𝜌. In the other cases, 𝑛1 and 𝑛2 do not create a conflict.

In particular, when 𝜙1 = 𝑡𝑟𝑢𝑒 and 𝜙2 = 𝑡𝑟𝑢𝑒 and 𝑓𝑠 = 𝜌
the previous cases can be represented as follows.

Case F. If 𝑑1 = 𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛, 𝑑2 = 𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛, 𝑓𝑠 = 𝜌1, and
𝜌1 = 𝜌2, the joint effect of 𝑛1 and 𝑛2 leads the final state of 𝑔
in a contradictory state of the world:

𝑓󸀠𝑠 = ¬𝑓𝑠 ∧ 𝑓𝑠 (19)

In this case, there is no way to be compliant with both
norms; the system adopts the recovery criteria.

Case G. If 𝑑1 = 𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛, 𝑑2 = 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛, 𝑓𝑠 = 𝜌1, and
𝜌2 = ¬𝜌1, the joint effect of 𝑛1 and 𝑛2 modifies the final state
of 𝑔 as follows:

𝑓󸀠𝑠 = 𝑓𝑠 ∧ ¬𝑓𝑠 ∨ 𝑓𝑠 (20)

This case does not have a real effect on the system. In any
case, the system pursues 𝑔.

Case H. If 𝑑1 = 𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛, 𝑑2 = 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛, 𝑓𝑠 = 𝜌1, and
𝜌1 = 𝜌2, the joint effect of 𝑛1 and 𝑛2 modifies the final state of
𝑔 as follows:

𝑓󸀠𝑠 = 𝑓𝑠 ∧ ¬𝑓𝑠 (21)

Also, in this case, there is no way to be compliant with
both norms. Indeed, the system should not pursue 𝑔 for not
violating any norms.

It is worth noting that a norm is logically contradictory
when the contradiction concerns the logical conditions (𝜙 ∈
L) under which the norm is applicable. On the contrary, we
talk about deontically contradictory when the contradiction
concerns the semantic meaning of the deontic operator (𝑑 ∈
𝐷𝑜𝑝) the norms apply to.

6. Algorithms for Norm Compliance

In this section, the algorithms that implement norm compli-
ance for open and goal-directed systems are presented. For
space concerns, they are placed at the end of the paper.

Algorithm 1 implements the normative compliance. It
ensures that the system behaves in conformity with the
normative environment it is operating.The triple of elements
it works is a state of the world W𝑡, a set of goal G the system
has to satisfy and finally a set of norms N the system has to
obey to comply with the normative environment. Both N,
W𝑡, and G may change during system execution. The state
of the world may change due to some events that can occur
or some actions that can be performed in the environment.
The set of norms may change due to the introduction of new
normative requirements that can come into force or due to
the deletion of existing ones. The updating of the existing
norms is regarded as new norms. For the scope of the paper,
in the algorithm, we highlight the case of the introduction of
new norms that is the most interesting case that can generate
anomalous situations. Finally, the set of goals may change for
satisfying new user requirements.

StepAmakes a preliminary check on new norms (if any)
that are dynamically introduced in the system to avoid the
presence of anomalies according to Definitions 8 and 9 (see
Algorithm2). Such step ensures that norms are consistent and
there is no incompatibility with the goal they refer. Step B
is the core of the normative reasoning. The system is in the
state of the world (W𝑡). The norms may have effects on the
system goals only if goals are not addressed yet. Thus, the set
of applicable norms is filtered (i.e., 𝜙(𝑊𝑡) = 𝑡𝑟𝑢𝑒). For each
goal 𝑔𝑖 the system has to satisfy, the set of associated norms
(N𝑖) is initially processed to separate norms where 𝑓s = 𝜌
by norms with 𝑓𝑠 ̸= 𝜌 because they produce a different effect
on the system behaviour. As previously said, when 𝑓𝑠 ̸= 𝜌
norms act as constraints on the final state of the world, in
particular, the compliance has to be ensured for obligations
and prohibitions. It is worth noting that when 𝑓𝑠 ̸= 𝜌,
permissions are not taken into consideration. Permissions
do not play a direct role in norm compliance because they
cannot be violated. Conversely, when 𝑓𝑠 = 𝜌, norms act as
constraints on system goal fulfillment. In particular, norms
are promoters or inhibitors of the system in pursuing goals. In
this case, permissions, obligations, and prohibitions have to
be considered. As previously said, prohibitions do not allow
the system to pursue a goal; obligations further constrain
the conditions under which a goal can be pursued, and
permissions conversely relax such conditions. Then, three
different situations can occur.

The most simple one (step�) is that there are no norms
for 𝑔𝑖. In such a case, there are no restrictions and the system
can pursue the goal𝑔𝑖.The second situation (step�) is a basic
case in which the set of norms contains only one norm. In
such a case, there are two possible occurrences:

(i) Step : 𝑓𝑠 = 𝜌 then if the norm is a permis-
sion/obligation and it is applicable, the system can
fulfill that goal even if the original 𝑡𝑐(W𝑡) = 𝑓𝑎𝑙𝑠𝑒;
if the norm is a prohibition, it further constraints the

Complexity 9

Data:W𝑡,G,N
while system is running do
N𝑡𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 ←󳨀 𝑖𝑛𝑗𝑒𝑐𝑡 𝑛𝑒𝑤 𝑛𝑜𝑟𝑚𝑠
AN𝑜𝑢𝑡 ←󳨀 𝐶ℎ𝑒𝑐𝑘 𝑁𝑜𝑟𝑚 𝐶𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛(N𝑡𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑)
N ←󳨀 𝑐𝑜𝑛𝑐𝑎𝑡(N𝑜𝑢𝑡,N)
B foreach 𝑔𝑖 ∈ G do

⟨𝑡𝑐𝑖, 𝑓𝑠𝑖⟩ ←󳨀 𝑔𝑖
if ¬𝑓𝑠𝑖(W𝑡) then

N𝑖 ←󳨀 {𝑛 ∈ N : 𝑛 = ⟨𝑟, 𝑔𝑖, 𝜌, 𝜙, 𝑑⟩ ∧ 𝜙(W𝑡) = 𝑡𝑟𝑢𝑒}
for 𝑗 ←󳨀 1 to 𝑠𝑖𝑧𝑒(N𝑖) do

⟨𝑟, 𝑔𝑖, 𝜌𝑗, 𝜙𝑗, 𝑑𝑗⟩[𝑠𝑐𝑜𝑝𝑒] ←󳨀 𝑛𝑗
if 𝑓𝑠𝑖 = 𝜌𝑗 then 𝑎𝑑𝑑(𝑛𝑗, 𝐿𝑖𝑠𝑡1)
else if 𝑑𝑗 = 𝑂𝑏𝑙 ∨ 𝑑𝑗 = 𝑃𝑟𝑜ℎ𝑖𝑏 then 𝑎𝑑𝑑(𝑛𝑗, 𝐿𝑖𝑠𝑡2)

� if 𝑐𝑎𝑟𝑑{N𝑖} = 0 then 𝑔󸀠𝑖 ←󳨀 ⟨𝑡𝑐𝑖, 𝑓𝑠𝑖⟩
� if 𝑐𝑎𝑟𝑑{N𝑖} = 1 then

if 𝑐𝑎𝑟𝑑{𝐿𝑖𝑠𝑡1} = 1 then
⟨𝑟, 𝑔𝑖, 𝜌, 𝜙, 𝑑⟩ ←󳨀 𝑛
if (𝑑 = 𝑃𝑒𝑟𝑚 ∨ 𝑑 = 𝑂𝑏𝑙) then 𝑡󸀠𝑐𝑖 = 𝑂𝑅 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑡𝑐𝑖, 𝜙)
else 𝑡󸀠𝑐𝑖 = 𝐴𝑁𝐷 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑡𝑐𝑖, ¬𝜙)
𝑔󸀠𝑖 ←󳨀 ⟨𝑡󸀠𝑐𝑖, 𝑓𝑠𝑖⟩
if 𝑐𝑎𝑟𝑑{𝐿𝑖𝑠𝑡2} = 1 then
if 𝑡𝑐𝑖(W𝑡) = 𝑡𝑟𝑢𝑒) then

𝑓󸀠𝑠𝑖 ←󳨀 𝐶𝑜𝑛𝑠𝑡 𝐹𝑖𝑛𝑎𝑙 𝑆𝑡𝑎𝑡𝑒(𝑛, 𝑓𝑠𝑖)
𝑔󸀠𝑖 ←󳨀 ⟨𝑡𝑐𝑖, 𝑓󸀠𝑠𝑖⟩

D if 𝑐𝑎𝑟𝑑{N𝑖} > 1 then
if 𝑐𝑎𝑟𝑑{𝐿𝑖𝑠𝑡1} ≥ 2 then

𝐿𝑖𝑠𝑡1 ←󳨀 𝐶ℎ𝑒𝑘 𝐴𝑛𝑡(𝐿𝑖𝑠𝑡1, 𝑡𝑦𝑝𝑒1) Case F

𝐿𝑖𝑠𝑡1 ←󳨀 𝐶ℎ𝑒𝑘 𝐴𝑛𝑡(𝐿𝑖𝑠𝑡1, 𝑡𝑦𝑝𝑒3) Case H

if 𝑐𝑎𝑟𝑑{𝐿𝑖𝑠𝑡2} ≥ 2 then 𝐿𝑖𝑠𝑡2 ←󳨀 𝐶ℎ𝑒𝑘 𝐴𝑛𝑡(𝐿𝑖𝑠𝑡2, 𝑡𝑦𝑝𝑒1) Case C

(𝜙𝑂𝑅, 𝜙𝐴𝑁𝐷) ←󳨀 𝐶𝑜𝑚𝑝 𝑁𝑜𝑟𝑚 𝐶𝑜𝑛𝑑(𝐿𝑖𝑠𝑡1)
𝑡󸀠𝑐𝑖 ←󳨀 𝑂𝑅 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑡𝑐𝑖, 𝜙𝑂𝑅)
𝑡󸀠𝑐𝑖 ←󳨀 𝐴𝑁𝐷 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑡󸀠𝑐𝑖, 𝜙𝐴𝑁𝐷)
𝑓󸀠𝑠𝑖 ←󳨀 𝑓𝑠𝑖; ℎ ←󳨀 1
while ℎ ≤ 𝑠𝑖𝑧𝑒(𝐿𝑖𝑠𝑡2) do

⟨𝑟, 𝑔𝑖, 𝜌ℎ, 𝜙ℎ, 𝑑ℎ⟩[𝑠𝑐𝑜𝑝𝑒] ←󳨀 𝑛ℎ
𝑐𝑜𝑛𝑡 ←󳨀 𝑓𝑎𝑙𝑠𝑒; 𝑘 ←󳨀 ℎ + 1
while 𝑘 ≤ 𝑠𝑖𝑧𝑒(𝐿𝑖𝑠𝑡2) ∧ (𝑐𝑜𝑛𝑡 = 𝑓𝑎𝑙𝑠𝑒) do

⟨𝑟, 𝑔𝑖, 𝜌𝑘, 𝜙𝑘, 𝑑𝑘⟩[𝑠𝑐𝑜𝑝𝑒] ←󳨀 𝑛𝑘; 𝑘 ←󳨀 𝑘 + 1
if 𝜌ℎ = 𝜌𝑘 then

if (𝑑ℎ = 𝑂𝑏𝑙 ∧ 𝑑𝑘 = 𝑃𝑒𝑟𝑚) ∨ (𝑑𝑘 = 𝑂𝑏𝑙 ∧ 𝑑ℎ = 𝑃𝑒𝑟𝑚) then
𝑓󸀠𝑠𝑖 = 𝑓󸀠𝑠𝑖 ∧ 𝜌ℎ Case D

if (𝑑ℎ = 𝑃𝑟𝑜ℎ ∧ 𝑑𝑘 = 𝑃𝑒𝑟𝑚) ∨ (𝑑𝑘 = 𝑃𝑟𝑜ℎ ∧ 𝑑ℎ = 𝑃𝑒𝑟𝑚)
then 𝑓󸀠𝑠𝑖 = 𝑓󸀠𝑠𝑖 ∧ ¬𝜌ℎ Case E

𝑐𝑜𝑛𝑡 ←󳨀 𝑡𝑟𝑢𝑒
𝐿𝑖𝑠𝑡2 ←󳨀 𝑟𝑒𝑚𝑜V𝑒(𝑛, 𝜌 = 𝜌ℎ, 𝐿𝑖𝑠𝑡2)

if 𝑐𝑜𝑛𝑡 = 𝑓𝑎𝑙𝑠𝑒 then
𝑓󸀠𝑠𝑖 ←󳨀 𝐶𝑜𝑛𝑠𝑡𝑟 𝐹𝑖𝑛𝑎𝑙 𝑆𝑡𝑎𝑡e(𝑛ℎ, 𝑓󸀠𝑠𝑖); ℎ ←󳨀 ℎ + 1

𝑔󸀠𝑖 ←󳨀 ⟨𝑡󸀠𝑐𝑖, 𝑓󸀠𝑠𝑖⟩
if 𝑡󸀠𝑐𝑖(W𝑡) = 𝑡𝑟𝑢𝑒 then

𝑝𝑢𝑟𝑠𝑢𝑒(𝑔󸀠𝑖)

Algorithm 1: Norm compliance.

goal activation and the system cannot pursue that goal
as long as the norm is applicable (i.e., 𝜙(W𝑡) = 𝑡𝑟𝑢𝑒).

(ii) Step : 𝑓𝑠 ̸= 𝜌 then a new constrained final state is
determined (see Algorithm 3) and the system tries to
achieve such constrained final state.

The last situation (step D) is the general case in which
norms aremore than one, and they can have different deontic
operators. In this case, Algorithm 1 allows modifying goals,
making them norm compliant according to a set of norms.
Because norms are more than one, the presence of antinomy
is possible. Thus, for each set of norms, antinomies are

10 Complexity

Data: a list of normsN
Result: a listN𝑜𝑢𝑡 of consistent norms
N𝑜𝑢𝑡 ←󳨀 ⌀
A for 𝑖 ←󳨀 1 to 𝑙𝑒𝑛𝑔𝑡ℎ(N) do

⟨𝑟, 𝑔, 𝜌, 𝜙𝑖, 𝑑⟩[𝑠𝑐𝑜𝑝𝑒] ←󳨀 𝑛𝑖
⟨𝑡𝑐, 𝑓𝑠⟩ ←󳨀 𝑔
if (𝜙 ̸= ⊥) then

if (𝑓𝑠 ∧ 𝑑(𝜌) ̸= ⊥) ∨ (𝜙𝑖 ̸= ⊤) then
add 𝑛𝑖 toN𝑜𝑢𝑡

else
if𝑓𝑠 = 𝜌 then

𝑎𝑙𝑒𝑟𝑡(𝑛𝑖) (see Case A)
else

𝑟𝑒V𝑖𝑠𝑒(𝑛𝑖) (see Case B)
else

𝑟𝑒V𝑖𝑠𝑒(𝑛𝑖)

Algorithm 2: Check Norm Contradiction.

Data: an applicable norm 𝑛, a final state 𝑓𝑠
Result: a constrained final state 𝑓󸀠𝑠
⟨𝑟, 𝑔, 𝜌, 𝜙, 𝑑⟩ ←󳨀 𝑛
switch 𝑑 do

case Permission
𝑓󸀠𝑠 ←󳨀 𝑓𝑠 ∧ (𝜌 ∧ ¬𝜌)

case Prohibition
𝑓󸀠𝑠 ←󳨀 𝑓𝑠 ∧ ¬𝜌

case Obligation
𝑓󸀠𝑠 ←󳨀 𝑓𝑠 ∧ 𝜌

Algorithm 3: Constrain Final State.

checked (see Algorithm 4). If 𝑓𝑠 ̸= 𝜌 the recovery is applied
only for Case C. Conversely, if 𝑓𝑠 = 𝜌 the recovery is
applied for Case F and Case H. Hence, Algorithm 1 firstly
works on norms where 𝑓𝑠 = 𝜌 that modify goal’s trigger
condition. Indeed, by encapsulating the condition expressed
by the norms into the goal they refer, it is possible to modify
the activation of that goal thus making it compliant with the
norms.

Such composition (see Algorithm 5) takes into consider-
ation different types of norms, and it accordingly modifies
the activation of a goal. Secondly, Algorithm 1 works on the
set of norms where 𝑓𝑠 ̸= 𝜌 that modify goal’s final state. In
particular, if such set of norms contains at least two norms,
Algorithm 1 checks if Case D or Case E exists and in such case
it accordinglymodifies the resulting final state to complywith
such norms, and it removes from the list all norms that refer
to the analysed case. Otherwise, it constrains the final state
of the goal with the current norm according to Algorithm 3.
In the following, we detail the algorithms that are invoked by
the Algorithm 1.

6.1. CheckNormContradictionAlgorithm. CheckNormCon-
tradiction Algorithm (see Algorithm 2) allows detecting

incompatibility and inconsistent norms. In particular, Algo-
rithm 2, for each norm, firstly checks the applicability condi-
tion to verify that it does not contain a logical contradiction
(i.e., 𝜙 ̸= ⊥). If it is the case, the norm has to be revised. This
control is useful for avoiding the useless work of the system in
evaluating some norms that will always be inapplicable. The
second check of the Algorithm 2 (i.e., (𝑓𝑠 ∧ 𝑑(𝜌) ̸= ⊥) ∧ (𝜙 ̸=
⊤)) allows avoiding norms that are always in contradiction
with the goal they refer to. Therefore, norms prevent the
fulfillment of a goal in any state of the world. During this
control, two different cases are highlighted (i.e., 𝑓𝑠 = 𝜌 and
𝑓𝑠 ̸= 𝜌). If 𝑓𝑠 = 𝜌, typically the norm is a prohibition
for pursuing a goal (Case A). Because this norm could be
deliberately introduced in the system to block a particular
functioning, a simple alert is notified. If𝑓𝑠 ̸= 𝜌 and𝑓𝑠∩𝜌 ̸= ⌀,
this means that the norm affects only a portion of the final
state of the world of the goal (Case B). Because in this case,
the system would try to reach a goal which effectively cannot
be reached creating a system overflow, a norm revision is
mandatory.

6.2. Constrain Final State Algorithm. Algorithm 3 allows
modifying a final state 𝑓𝑠 according to the constraints
expressed by a norm 𝑛. In particular, if norm 𝑛 is a
permission the constrained final state can or cannot include
the state of affair the normdisciplines (i.e.,𝑓󸀠𝑠 = 𝑓𝑠∧(𝜌∧¬𝜌)).
If norm 𝑛 is a prohibition the constrained final state can
not include the state of the affair the norm disciplines (i.e.,
𝑓󸀠𝑠 = 𝑓𝑠 ∧ ¬𝜌) and the contrary in the case of an obligation
norm (i.e., 𝑓󸀠𝑠 = 𝑓𝑠 ∧ 𝜌).

6.3. Check Antinomy Algorithm. When there is more than
an applicable norm in the system, it is necessary to check
for deontological contradictions among norms and remove
them (if any). In our context, antinomy could be generated
by different norms relating to the same goal. For instance,
if there is an applicable norm 𝑛1 that prohibits to pursue a
goal𝑔1 and another applicable norm 𝑛2 that obliges to pursue
the same goal 𝑔1, then 𝑛1 and 𝑛2 generate an antinomy.
According to Section 5.3, Algorithm 4 manages three types
of antinomy. We adopt the legis posterior and legis superior
criteria coming from the legal theory. By adopting the legis
posterior criterion, the most recent norm takes precedence.
Conversely, by adopting the legis superior, the norm imposed
by the prominent institutional power takes precedence. As we
previously said, norms for different scopes could be defined.
Norms for user well-being, for emergency management, and
for ordinary situations could come in force. Some scopes are
more crucial compared to other ones; a weight is applied for
determining the relevance of a norm. We assign a priority
to each norm taking into account the scope’s weight and the
publication date of the norm in the system, as follows.

Definition 11 (priority). Let a norm 𝑛 = ⟨𝑟, 𝑔, 𝜌, 𝜙, 𝑑⟩[𝑠𝑐𝑜𝑝𝑒].
Let 𝑤𝑠𝑐𝑜𝑝𝑒 be the weight of the scope and let 𝑤𝑡𝑖𝑚𝑒 be the
weight of the time. The priority of 𝑛 is

𝑃𝑛 = 𝑤𝑠𝑐𝑜𝑝𝑒 + 𝑤𝑡𝑖𝑚𝑒 (22)

Complexity 11

Data: a list of applicable normsN, Type of Antinomy
Result: a listN𝑜𝑢𝑡 of consistent norms
switch 𝑇𝑦𝑝𝑒 do

case 𝑇𝑦𝑝𝑒1
𝑑𝐴 = 𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛
𝑑𝐵 = 𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛

case 𝑇𝑦𝑝𝑒2
𝑑𝐴 = 𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛
𝑑𝐵 = 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛

case 𝑇𝑦𝑝𝑒3
𝑑𝐴 = 𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛
𝑑𝐵 = 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛

A N𝑜𝑢𝑡 ←󳨀 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑜𝑟𝑑𝑒𝑟(N)
M𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 ←󳨀 ⌀
B for 𝑖 ←󳨀 1 to 𝑙𝑒𝑛𝑔𝑡ℎ(N𝑜𝑢𝑡) do

⟨𝑟, 𝑔, 𝜌, 𝜙𝑖, 𝑑𝑖⟩ ←󳨀 𝑛𝑖
M𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠[𝑖][𝑖] ←󳨀 1
for 𝑗 ←󳨀 𝑖 + 1 to 𝑙𝑒𝑛𝑔𝑡ℎ(N𝑜𝑢𝑡) do
if 𝑟𝑖 = 𝑟𝑗 ∧ 𝜌𝑖 = 𝜌𝑗 ∧ 𝑑𝑖 ̸= 𝑑𝑗 ∧ ((𝑑𝑖 = 𝑑𝐴 ∧ 𝑑𝑗 = 𝑑𝐵) ∨ (𝑑𝑖 = 𝑑𝐵 ∧ 𝑑𝑗 = 𝑑𝐴)) then
M𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠[𝑖][𝑗] ←󳨀 1

else
M𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠[𝑖][𝑗] ←󳨀 0

M𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠[𝑗][𝑖] ←󳨀 M𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠[𝑖][𝑗]
N󸀠𝑜𝑢𝑡 ←󳨀 N𝑜𝑢𝑡
C for 𝑖 ←󳨀 𝑙𝑒𝑛𝑔𝑡ℎ(N󸀠𝑜𝑢𝑡) to 1 do

𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ←󳨀 N󸀠𝑜𝑢𝑡[𝑖]
for 𝑗 ←󳨀 𝑖 − 1 to 2 do
if M𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠[𝑖][𝑗] = 1 then

𝑑𝑒𝑙𝑒𝑡𝑒(N𝑜𝑢𝑡, 𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
break;

Algorithm 4: Check Antinomy.

Data: a list of norms 𝑁𝑜𝑟𝑚𝐿𝑖𝑠𝑡
Result: a couple (𝜙𝑚𝑒𝑟𝑔𝑒𝑑𝑂𝑅, 𝜙𝑚𝑒𝑟𝑔𝑒𝑑𝐴𝑁𝐷)
𝐿𝑖𝑠𝑡𝜙 𝑂𝑅 ←󳨀 ⌀
𝐿𝑖𝑠𝑡𝜙 𝐴𝑁𝐷 ←󳨀 ⌀
// Identification of norm types

for 𝑗 ←󳨀 1 to 𝑠𝑖𝑧𝑒(𝑁𝑜𝑟𝑚𝐿𝑖𝑠𝑡) do
⟨𝑟, 𝑔, 𝜌, 𝜙, 𝑑⟩ ←󳨀 𝑁𝑜𝑟𝑚𝐿𝑖𝑠𝑡[𝑗]
switch 𝑑 do

case Obligation
break

case Prohibition
add ¬𝜙 to 𝐿𝑖𝑠𝑡𝜙 𝐴𝑁𝐷

case Permission
add 𝜙 to 𝐿𝑖𝑠𝑡𝜙 𝑂𝑅

// Permissions give alternatives (OR)

if 𝑆𝑖𝑧𝑒(𝐿𝑖𝑠𝑡𝜙 𝑂𝑅) ̸= 0 then
𝜙𝑚𝑒𝑟𝑔𝑒𝑑𝑂𝑅 ←󳨀 𝐿𝑖𝑠𝑡𝜙 𝑂𝑅[1]
for ℎ ←󳨀 2 to 𝑆𝑖𝑧𝑒(𝐿𝑖𝑠𝑡𝜙 𝑂𝑅) do

𝜙𝑚𝑒𝑟𝑔𝑒𝑑𝑂𝑅 ←󳨀 𝑂𝑅 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝜙𝑚𝑒𝑟𝑔𝑒𝑑𝑂𝑅, 𝐿𝑖𝑠𝑡𝜙 𝑂𝑅[ℎ])
// Prohibition are mandatory (AND)

if 𝑆𝑖𝑧𝑒(𝐿𝑖𝑠𝑡𝜙 𝐴𝑁𝐷) ̸= 0 then
𝜙𝑚𝑒𝑟𝑔𝑒𝑑𝐴𝑁𝐷 ←󳨀 𝐿𝑖𝑠𝑡𝜙 𝐴𝑁𝐷[1]
for ℎ ←󳨀 2 to 𝑆𝑖𝑧𝑒(𝐿𝑖𝑠𝑡𝜙 𝐴𝑁𝐷) do

𝜙𝑚𝑒𝑟𝑔𝑒𝑑𝐴𝑁𝐷 ←󳨀 𝐴𝑁𝐷 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝜙𝑚𝑒𝑟𝑔𝑒𝑑𝐴𝑁𝐷, 𝐿𝑖𝑠𝑡𝜙 𝐴𝑁𝐷[ℎ])

Algorithm 5: Compose Norm Condition.

12 Complexity

For removing conflicts, Algorithm 4 generates a conflicts
matrixM𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 whereM𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠[𝑖][𝑗] = 1 indicates a conflict
between 𝑖𝑡ℎ and 𝑗𝑡ℎ norm (step B). Such a matrix is built
starting from an ordered list of norms according to their
priority (step A). Hence, norms with the lowest priority are
removed (stepC).

6.4. Compose Norm Condition Algorithm. Compose Norm
Condition Algorithm, taking in input a list of norms related
to a single goal 𝑔where for each norm 𝜌 = 𝑓𝑠, allowsmerging
in a unique activation condition, the conditions expressed by
each norm. The algorithm takes into consideration different
types of deontic operators. In the case of permissions, the
resulting merged condition is an OR chain obtained by
the single norm conditions, which relaxes the activation
condition of the goal the norms refer to. Conversely, in the
case of prohibitions, the resulting merged condition is an
ANDchain obtained by negating the conditions of the norms,
which constrains the activation condition of the goal the
norms refer to.

In the following, the approach is evaluated using the well-
known case study in the field of the business rules.

7. Eurent Case Study

The Eurent scenario is a widely known case study adopted
in the field of business processes for demonstrating the capa-
bilities of the proposed solution. It was initially developed by
Model System, Ltd. Briefly, the case study presents a car rental
company with branches in several countries which provides
common rental services. It also owns information about cars,
branches, employees, and so on. Particular attention is paid to
the information about the customers that allows establishing
if they are good or bad clients. Each branch of the company

owns a predetermined number of cars that are available for
rental. A customer may rent a car through an advanced
reservation or a walk-in rental. In an advanced reservation,
the rental period and the car group are specified at the time
of reservation. Conversely, walk-in rentals (i.e., immediate
reservations) are also accepted if cars are available. When
cars are returned, the renting branch has to ensure that it is
returned at the end of the rental period.Moreover, a customer
can have several reservations but only one car rented at the
time.The company keeps information about customers, their
rentals, and bad experiences such as late return, problems
with payments, and damage to cars. The Eurent company
adopts several rules for governing their business.

Some rules are related to the driver. For example, each
customer must have a valid driver’s license for driving the
car and (s)he has to be insured. Some rules are defined for
rental reservation acceptance. For example, if the customer
requesting the rental has been blacklisted, the rental must be
refused. A customer may have multiple future reservations
but may have only one car at any time. In the case of advance
reservations, if the requested model is not available, a car
in the same group as the request model has to be assigned.
If there are several available cars of the model requested,
the one with the lowest mileage has to be assigned and so
on. A small portion of a conceptual schema of the Eurent
case study is shown in Figure 4. It defines the domain of
knowledge used in the following. The proposed approach
has been implemented in a simulated intelligent system able
to manage car reservations. Figure 5 shows a portion of
the system goal model. We adopt the following template for
exemplifying a goal 𝑔𝑜𝑎𝑙(𝑡𝑐, 𝑓𝑠)[𝐼𝑑], where 𝑡𝑐 is the trigger
condition of the goal,𝑓𝑠 is the final state to be reached, and 𝐼𝑑
is an identification code for the goal. In the following, a small
subset of Eurent goals is as follows:

𝑔0: goal(start(customer,rental agreement), or([state(rental

agreement,closed), state(rental agreement,open), state(rental

agreement, cancelled)])

𝑔1: goal(requested(customer,rental agreement),

done(make reservation))

𝑔2: goal(cancel requested(customer,rental agreement),

done(cancel reservation))

Thefirst onemeans that when the system is committed to
managing reservation, the system tries to reach a state of the
world where one of three possible final states is verified. The

choice depends on the current state of the world the system is.
In the following, it is shown a small subset of norms related to
a 𝑔2 where 𝜌 = 𝑓𝑠 (i.e., 𝑁1, 𝑁2,𝑁3) and 𝜌 ̸= 𝑓𝑠 (i.e., 𝑁4, 𝑁5):

𝑁1: norm(role(), 𝑔2 , done(cancel reservation),

is blacklisted(customer,true)),type(obligation))

𝑁2: norm(role(customer), 𝑔2 , done(cancel reservation),

state(car,assigned),type(permission))

𝑁3: norm(role(customer), 𝑔2 , done(cancel reservation),

state(car,in rent)),type(prohibition))

Complexity 13

Car

Car ModelCar Group

model

Numbermileage

Date

last service date

States:
Available
Assigned

In rent

state

Rental
Agreement

Advance
Reservation

Walk-in
rental

pick_up_day
drop_off_day

preference model

Types:
cash

credit_card
loyalty club points

payment type
States:

Reservation
Open

Closed
Canceled

state

EU_Rent
People of
Interest

driver_license

Customer

Boolean

Additional
driver

owns Booleanvalidity

date_of_birth

Boolean

is_blacklisted

driver

second_driver

Boolean
car

damage

payment
problem

Boolean

requested

Boolean

registered

belongs
to

member of
loyalty scheme

Figure 4: A portion of Eurent domain.

Manage
Reservation

g0

Cancel
Reservation

g2

Make
Reservation

g1

Make
walk_in
rental

g3

Make
Advance_Re

servation
g4

Customer
Registration

g5

Choose
Model Car

g6

Register
advanced_in

formation
g7

Rent
available car

g12

OR

AND

Introduce
Customer

g8

Manage
loyalty
Scheme

g9
Join loyalty

Scheme
g10

Cancel loyalty
Scheme

g11
AND

OR
OR

AND

AND

Figure 5: A portion of Eurent goal model.

14 Complexity

Authority
Notification

Cancel
Reservation

Cancel
Booking

Delete
Booking

Goal Level
Service Level

Norms

Other
Services

Other
Goals

Other
Norms

．1 ．2

．3 ．4

．5

(Ａ2) (ＡＨ)

Figure 6: A subset of available services for Eurent case study.

𝑁4: norm(role(), 𝑔2 , activity(cancel(record)),

is blacklisted(customer,true),type(prohibition))

𝑁5: norm(role(), 𝑔2 , activity(signal(authority)),

and([owns(customer,driver license),

validity(driver license,false)]),type(obligation))

In particular, 𝑁1 states if a customer is placed on a
blacklist then all his bookings must be cancelled. 𝑁2 states
that it is permitted to cancel a reservation (without penalties)
if a car has been only assigned to the customer. In this case, the
customer is charged with no cost. Conversely complying to
𝑁3, it is prohibited to cancel a reservation (without penalties)
if the car is in rent (the state of the car is changed from
assigned to in rent the day of the pick-up). In this case,
one day-rental will be charged. 𝑁4 differently states that it
is prohibited to cancel the record related to a blacklisted
customer. This norm avoids making erroneous cancellations
from the organization database of blacklisted customers.
Finally, 𝑁5 imposes the obligation on the rental companies
to alert the authority if a customer has no valid driver
license. Figure 6 highlights some available services the system
may use for satisfying its goals. For example, according to

Eurent case study, two services allow the system for satisfying
𝑔2, although they produce a different state of the world.
In particular, the service Cancel Booking cancels only the
customer’s reservation. Conversely, the serviceDelete Booking
deletes not only the reservation but also all the data relating
to the customer. Moreover, in Figure 6 we also emphasize
Authority Notification Service that will be used by the system
for informing the authority about unlawful behaviours of the
customers.

Each simulated scenario presents (i) an initial state of the
world (𝑊0) that determines the applicability of some norms
and the activation of some goals, (ii) a set of norms, (iii) the
steps of the normative reasoning the system performs, and,
finally, (iv) a brief analysis of the behaviour of the system. For
the sake of simplicity, we isolated only the reasoning about
goal 𝑔2.

Scenario 1.

INITIAL CONDITIONS:

𝑊0 =cancel requested(customer,rental agreement), 𝑡𝑐(𝑊0) =true
APPLICABLE NORMS: No applicable norms

NORMATIVE REASONING:

[system] Trying to achieve 𝑔2
[system] Found available service: cancel booking service

[system] EXECUTING STEP A: NO NORMS for 𝑔2
[system] . . .invoking cancel booking service

[monitor] The project is correctly terminated!

Complexity 15

Scenario 1 shows the most simple situation, where no
norm constrains the system. Thus, no change occurs in the

normal behaviour of the system. The system pursues the
triggered goal (𝑔2) by executing the initially selected service.

Scenario 2.

INITIAL CONDITIONS:

𝑊0 = {is blacklisted(customer, true)} , 𝑡𝑐(𝑊0) =false
APPLICABLE NORMS:

𝑁1 = norm(role(customer), 𝑔2 , done(cancel reservation),

is blacklisted(customer,true)),type(obligation))

NORMATIVE REASONING:

[system monitor] Injected 𝑁1
[system] SKIP STEP A

[system] EXECUTING STEP Bi: ONE NORM (Permission or Obligation) where RHO=FS for 𝑔2
[system] Trying to achieve 𝑔2
[system] Found available service: cancel booking service

[system] . . .invoking cancel booking service

[monitor] The project is correctly terminated!

Without normative constraints, the system pursues a
goal when its trigger condition is verified. By introducing
a norm that obligates to obtain some state of affairs, the

system is forced to pursue that goal when the condition of
the obligation is verified although the trigger condition is not
verified yet.

Scenario 3.

INITIAL CONDITIONS:

𝑊0 = {state (car,in rent)} , 𝑡𝑐(𝑊0) = false

APPLICABLE NORMS:

𝑁3 = norm(role(customer), 𝑔2 , done(cancel reservation),

state(car,in rent)),type(prohibition))

NORMATIVE REASONING:

[system monitor] Injected 𝑁3
[system] SKIP STEP A

[system] EXECUTING STEP Bi: ONE NORM (Prohibition) where RHO=FS for 𝑔2
[system] SKIP STEP A

[system] EXECUTING STEP Bi: ONE NORM (Prohibition) where RHO=FS for 𝑔2
. . .

When the trigger condition of a goal is false, the presence
of a norm that prohibits pursuing that goal has no effects on
the system behaviour. According to Definitions 4 and 5, such

norm is applicable but not active. The system waits for any
change in its state of the world.

Scenario 4.

INITIAL CONDITIONS:

𝑊0 = {state (car,in rent), cancel requested(customer,rental agreement)} , 𝑡𝑐(𝑊0) = true

16 Complexity

APPLICABLE NORMS:

𝑁3 = norm(role(customer), 𝑔2 , done(cancel reservation),

state(car,in rent)),type(prohibition))

NORMATIVE REASONING:

[system] Trying to achieve 𝑔2
[system] Found available service: cancel booking service

[monitor] Injected 𝑁3
[system] SKIP STEP A

[system] EXECUTING STEP Bi: ONE NORM (Prohibition) where RHO=FS for 𝑔2
[system] REPLANNING. . .

. . .

In this case, the presence of an active norm that prohibits
pursuing a goal (𝑔2) nullifies the commitment of the system
with that goal, thus causing a system replanning. As a result,

after the replanning, the goal (𝑔2) is deleted by the set of the
committed goals.

Scenario 5.

INITIAL CONDITIONS:

𝑊0 = {is blacklisted(customer,true), cancel requested(customer,rental agreement)} , 𝑡𝑐(𝑊0)
= true

APPLICABLE NORMS:

𝑁4 = norm(role(), 𝑔2 , activity(cancel(record)),

is blacklisted(customer,true),type(prohibition))

NORMATIVE REASONING:

[system] Trying to achieve 𝑔2
[system] Found available service: delete booking service

[monitor] Injected 𝑁4
[system] SKIP STEP A

[system] SKIP STEP Bi

[system] EXECUTING STEP Bii: ONE NORM (any type) where RHO/==FS for 𝑔2
[system] REPLANNING. . .
[system] Trying to achieve 𝑔󸀠2

𝑔󸀠2 =goal(condition(cancel requested(customer,rental agreement)),

condition(and([done(cancel reservation), neg(cancel(record))])),

[system] Found available service: cancel booking service

[system] EXECUTING STEP A, NO NORMS for 𝑔󸀠2
[system] . . .invoking cancel booking service

[monitor] The project is correctly terminated!

To pursue the goal 𝑔2, the system can invoke two
services, Cancel or Delete Booking. As we previously said, the
first one allows cancelling only the reservation. The second
one allows also deleting the customer details. Thus, the
system initially chooses the Delete Booking to pursue 𝑔2. At

run-time, a new norm that prohibits cancelling customer
details if the customer is blacklisted is injected. Thus, to be
compliant with the new norm, the system replans its goals.
The effect of such norm is a change in the final state of the goal
𝑔2, as can be seen after the replanning. Hence, to pursue 𝑔󸀠2,

Complexity 17

the system chooses the service Cancel Booking, and because
in the current state of the world the trigger condition of such
goal is verified, the system executes the step A because after

replanning no other norms have been introduced. As a result,
the system has achieved the desired state of affair compliant
with the normative in force.

Scenario 6.

INITIAL CONDITIONS:

𝑊0 = {is blacklisted(customer,true), owns(customer,driver license), validity(driver license,

false)} 𝑡𝑐(𝑊0) = false

APPLICABLE NORMS:

𝑁1: norm(role(), 𝑔2 , done(cancel reservation), is blacklisted(customer,true)),type

(obligation))

𝑁4: norm(role(), 𝑔2 , activity(cancel(record)), is blacklisted(customer,true),type

(prohibition))

𝑁5: norm(role(), 𝑔2 , activity(signal(authority)), and([owns(customer,driver license),validity

(driver license,false)]),type(obligation))

NORMATIVE REASONING:

[monitor] Injected 𝑁1 , 𝑁4 , 𝑁5
[system] SKIP STEP A

[system] SKIP STEP Bi

[system] SKIP STEP Bii

[system] EXECUTING STEP C: ONE OR MORE NORMS (permission or obligation) where RHO==FS, NORMS (any

type) where RHO/==FS for 𝑔2
[system] REPLANNING. . .
[system] Trying to achieve 𝑔󸀠2

𝑔󸀠2 =goal(condition(is blacklisted(customer,true)), condition(and([and([done(cancel

reservation),signal(authority)]), neg(cancel(record))]))

[system] Found available service: cancel booking service, authority notification service

[system] EXECUTING STEP A, NO NORMS for 𝑔󸀠2
[system] . . .invoking authority notification service

[system] . . .invoking cancel booking service

[monitor] The project is correctly terminated!

In this scenario the run-time injection of three norms
applicable simultaneously is simulated. The effect of the first
one 𝑁1 is to force the system to cancel reservations made
by blacklisted customers although nobody has demanded
the system to commit with 𝑔2 (indeed 𝑡𝑐(𝑊𝑡)=false). For
obtaining such an effect, the trigger condition of 𝑔2 is
changed. Conversely, the other two norms (𝑁4 and𝑁5) act on
the final state of 𝑔2 to lead the system in an admissible state
of the world. As can be seen, after the replanning the system

tries to achieve the new goal 𝑔󸀠2 by selecting two services
that allow the system to reach the new constrained final
state. It is worth noting that our approach does not change
the practical reasoning of common goal-oriented systems.
Our approach modifies the elements on which the system
performs the practical reasoning, thus leading the system to
make appropriate choices, both about what goals to deliberate
and what means to choose for achieving the deliberated
goal.

Scenario 7.

INITIAL CONDITIONS:

𝑊0 = {is blacklisted(customer,true),is memberof(eurent,true), cancel requested(customer,

rental agreement)} 𝑡𝑐(𝑊0) =true

18 Complexity

APPLICABLE NORMS:

𝑁4: norm(role(), 𝑔2 , activity(cancel(record)), is blacklisted(customer,true),type

(prohibition))

𝑁6: norm(role(), 𝑔2 , activity(cancel(record)), is memberof(eurent,true),type(obligation))

NORMATIVE REASONING WITHOUT ANTINOMY DETECTION:

[monitor] Injected 𝑁6
[monitor] Injected 𝑁4
[system] SKIP STEP A

[system] SKIP STEP Bi

[system] SKIP STEP Bii

[system] EXECUTING STEP C: TWO OR MORE NORMS (any Type) with RHO/==FS for 𝑔2
[system] REPLANNING. . .
[system] Trying to achieve 𝑔󸀠2

𝑔󸀠2 =goal(condition(cancel requested(customer,rental agreement)),condition(and([and

([done(cancel reservation),cancel(record)]), neg(cancel(record))]))

[system] ERROR solutions not found . . .
NORMATIVE REASONING WITH ANTINOMY DETECTION:

[monitor] Injected 𝑁6
[monitor] Injected 𝑁4
[system] SKIP STEP A

[system] SKIP STEP Bi

[system] SKIP STEP Bii

[system] EXECUTING STEP C:TWO OR MORE NORMS (any Type) where RHO/==FS for 𝑔2
[system] ANTINOMY DETECTED . . . REMOVED 𝑁6
[system] REPLANNING. . .
[system] Trying to achieve 𝑔󸀠2

𝑔󸀠2 =goal(condition(cancel requested(customer,rental agreement)),condition(

and([done(cancel reservation),neg(cancel(record))])),

[system] Found available service: cancel booking service

[system] EXECUTING STEP A, NO NORMS for 𝑔󸀠2
[system] . . .invoking cancel booking service

[monitor] The project is correctly terminated!

In this scenario, we introduced a new norm 𝑁6 that is
not defined in the original Eurent case study. Its purpose is

to simulate the presence of an anomalous situation. Such a
norm is contrary with respect to𝑁4.

𝑁6: norm(role(),𝑔2, activity(cancel(record)),
is memberof(eurent,true),type(obligation))

In the first situation without antinomy detection, the
system is not able to find an appropriate solution to maintain
compliance with both norms. Conversely, in the second case,
the system detects the antinomy and removes it. In doing so,
the system deletes𝑁6 because it is before𝑁4 and pursues the

new goal constrained only by 𝑁4. In such simulated system,
we assume without loss of generality that each norm refers
to the same scope and the time to come into force is trivially
considered to be the one in which the norm was injected into
the system.

Complexity 19

The scenarios we presented show some possible situations
that can occur in a dynamic normative context, highlighting
the strengths of the proposed approach that we can summa-
rize as follows:

(i) Working with a dynamic set of norms: norms may
change for several reasons. For example, for employ-
ing the system in different working environments reg-
ulated by different normative corpus, for managing
unexpected situations, and so on. In the proposed
approach, the ability of the system to work with
a dynamic set of norms is realized by decoupling
the norms from the execution level. Norms act to a
higher level of abstraction (i.e., goal level) without any
modification to the action level. Scenario 5 shows how
the introduction of a new norm acts directly on the
goal by modifying it to reach the state of the world
the norm prescribes. No change occurs at the action
level.

(ii) Ensuring norm compliance at run-time: working with
a dynamic set of norms requires that the system
has to be able to verify the compliance with new
injected norms during its execution. Scenarios 2 and
4 provide two examples of run-time compliance.
Precisely, we can see the different effects on the system
of an obligation and a prohibition. To act according
to an obligation means to do what the obligation
prescribes. Conversely, behaving compliant with a
prohibition means not perform what the norm for-
bids. Scenario 2 shows how the system changes its
behaviour as a consequence of the introduction of
an obligation during the execution, by deliberating
that goal whose fulfillment leads the system to be
compliant to the norm. Conversely, Scenario 4 shows
how the system changes its behaviour nullifying that
already deliberated goal whose achievement would
lead to a violation of the prohibition. Finally, Scenario
5 shows how the system reacts to a prohibition that
regulates not the final state of the world, but the way
the system has to reach the goal. Indeed, although the
system has already planned the behaviour to execute
for satisfying the current goal, the introduction of
the norm leads the system to adapt to this new
situation replans its behaviour choosing a new service
to comply with the new norm.

(iii) Handling norm conflict: working with a dynamic
set of norms may cause anomalous situations as
aforementioned. Our approach provides mechanisms
to avoid system deadlocks. An example is provided by
Scenario 7 that shows how the system can detect an
antinomy, remove it, and replan its behaviour taking
into consideration the most recent norm.

(iv) Improving system flexibility: system flexibility is com-
monly viewed as the ability of the system to adapt to
changes. The proposed approach improves flexibility
endowing the system with the ability to adjust its
behaviour for ensuring norm compliance also for
norms that have not been defined at design-time.

Precisely, the system may pursue a goal not initially
deliberated that is become mandatory by the intro-
duction of a norm, or it may inhibit the fulfillment of
prohibited goals. In other cases, the system changes
its behaviour to comply with new norms by choosing
different services to pursue its goals.

8. Conclusions

The increasing employment of artificial systems that perform
autonomously relevant tasks in several contexts raises the
problem to provide them with the normative reasoning to
ensure that they behave lawfully.

In this paper, we presented a normative reasoning
approach for addressing norm compliance in the context of
open and goal-directed systems. They are systems conceived
for also satisfying not designed user requirements. They
may evolve by increasing the objectives they can fulfill and
by discovering new ways of achieving them. The approach
presented in this work ensures run-time compliance with a
dynamic set of norms that may change during system execu-
tion. The reasoning algorithm starting from the knowledge
about norms, goals, and the state of the world allows the
system to make decisions in conformity with the normative
context, thus ensuring norm compliance at a higher level of
abstraction (i.e., goal level) compared to the actions level.
Thus, the effect of a norm acting at a goal level spreads out at
the lower level of actions. Hence, a norm at goal level avoids
defining normative constraints for each possible actions that
a system could perform for reaching an objective and it
makes the system free to choose such actions for reaching not
constrained goals.

The flexibility of the approach also lies in the possibility
of changing the set of norms dynamically without system
redesigning. This feature poses a new issue to be addressed
related to the possibility of introducing conflicting norms.
The proposed algorithm taking into consideration the simul-
taneous presence of multiple norms related to the same goal,
thus determining their joined effect by checking and solving
norm conflicts and inconsistencies during system execution.

We are working for enlarging the normative reasoning by
introducing alethic operators (such as necessity and possibil-
ity) to consider also definitional norms that are directed to
regulate the elements of the knowledge domain rather than
the behavioural aspect. Currently, we are also moving in the
context of the social robots where the conformity of their
behaviour according to social norms is considered extremely
important to be accepted in daily human life.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

20 Complexity

References

[1] H. Prakken, “On how ai & law can help autonomous systems
obey the law: a position paper,” AI4J–Artificial Intelligence for
Justice, vol. 42, 2016.

[2] N. Criado, “Reasoning about norms within uncertain environ-
ments,” in Proceedings of the 10th International Conference on
Autonomous Agents and Multiagent Systems 2011, AAMAS 2011,
pp. 1255-1256, Taiwan, May 2011.

[3] M. E. Bratman, D. J. Israel, and M. E. Pollack, “Plans and
resource-bounded practical reasoning,” Computational Intelli-
gence, vol. 4, no. 3, pp. 349–355, 1988.

[4] P. Ribino, C. Lodato, and M. Cossentino, “Modeling business
rules compliance for goal-oriented business processes,” in
Proceedings of the Workshop on Enterprise and Organizational
Modeling and Simulation, pp. 83–99, Springer, 2014.

[5] L. Frias, A. Queralt Calafat, and A. Olivé Ramon, “Eu-rent car
rentals specification,” Technical Report LSI Research Report.
LSI-03-59-R, 2003.

[6] F. Dignum, “Autonomous agents with norms,” Artificial Intelli-
gence and Law, vol. 7, no. 1, pp. 69–79, 1999.

[7] T. Agotnes, W. Van Der, J. Hoek, C. Sierra, and M. Wooldridge,
“On the logic of normative systems,” in Proceedings of the
Twentieth International Joint Conference onArtificial Intelligence
(IJCAI’07), pp. 1181–1186, 2007.

[8] M. Sergot, “Action and agency in norm-governed multi-agent
systems,” in Engineering Societies in the Agents World VIII, p.
54, Springer, 2007.

[9] M. Dastani, N. A. M. Tinnemeier, and J.-J. C. Meyer, “A
programming language for normative multi-agent systems,”
Handbook of Research on Multi-Agent Systems: Semantics and
Dynamics of Organizational Models, pp. 397–417, 2009.

[10] N. Alechina, M. Dastani, and B. Logan, “Programming norm-
aware agents,” in Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems-Volume 2, Inter-
national Foundation for Autonomous Agents and Multiagent
Systems, pp. 1057–1064, 2012.

[11] M. J. Kollingbaum and T. J. Norman, “A contract management
framework for supervised interaction,” in Proceedings of the
Working Notes of the 5th UK Workshop on Multi-Agent Systems
UKMAS, 2002.

[12] W. W. Vasconcelos, A. Garćıa-Camino, D. Gaertner, J. A.
Rodŕıguez-Aguilar, and P. Noriega, “Distributed normmanage-
ment formulti-agent systems,”Expert SystemswithApplications,
vol. 39, no. 5, pp. 5990–5999, 2012.

[13] S. Zhang, N. Gu, and J. Yang, “An norm-driven state machine
model for CSCW systems,” Expert Systems with Applications,
vol. 31, no. 4, pp. 800–807, 2006.

[14] F. Meneguzzi and M. Luck, “Norm-based behaviour modifi-
cation in BDI agents,” in Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent Systems-
Volume 1, International Foundation for Autonomous Agents and
Multiagent Systems, pp. 177–184, 2009.

[15] N. Tinnemeier, M. Dastani, and J.-J. Meyer, “Programming
norm change,” in Proceedings of the 9th International Conference
on Autonomous Agents and Multiagent Systems: volume 1-
Volume 1, International Foundation for Autonomous Agents and
Multiagent Systems, pp. 957–964, 2010.

[16] M. Knobbout, M. Dastani, and J. C. Meyer, “Reasoning about
dynamic normative systems,” in Logics in artificial intelligence,
vol. 8761 of Lecture Notes in Comput. Sci., pp. 628–636, Springer,
Cham, 2014.

[17] J. Jiang, H. Aldewereld, V. Dignum, andY.-H. Tan, “Compliance
checking of organizational interactions,” ACM Transactions on
Management Information Systems (TMIS), vol. 5, no. 4, 2015.

[18] W. Vasconcelos, M. J. Kollingbaum, and T. J. Norman, “Resolv-
ing conflict and inconsistency in norm-regulated virtual orga-
nizations,” inProceedings of the 6th international joint conference
onAutonomous agents andmultiagent systems, ACM, p. 91, 2007.

[19] M. Esteva, W. Vasconcelos, C. Sierra, and J. A. Rodŕıguez-
Aguilar, “Norm consistency in electronic institutions,” in
Advances in Artificial Intelligence – SBIA 2004, vol. 3171 of
Lecture Notes in Computer Science, pp. 494–505, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004.

[20] N. B. Cocchiarella,Notes on Deontic Logic, RetrievedNovember
20 2015.

[21] R. J. Wieringa and J.-J. Meyer, “Applications of deontic logic
in computer science: a concise overview,” Deontic Logic in
Computer Science, pp. 17–40, 1993.

[22] C. E. Alchourrón, “Logic of norms and logic of normative
propositions,” Logique et Analyse, vol. 12, pp. 242–268, 1969.

[23] G. H. Von Wright, “Deontic logic,” Mind, vol. LX, no. 237, pp.
1–15, 1951.

[24] J. Hansen, Imperatives and Deontic Logic, On the Semantic
Foundations of Deontic Logic, 2008.

[25] R. Reiter, On Closed World Data Bases, Springer, 1978.
[26] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J.

Mylopoulos, “Tropos: An agent-oriented software development
methodology,” Autonomous Agents and Multi-Agent Systems,
vol. 8, no. 3, pp. 203–236, 2004.

[27] L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf, “Goal
representation for BDI agent systems,” in Proceedings of the
Second International Workshop on Programming Multi-Agent
Systems, ProMAS 2004, pp. 44–65, Springer, July 2004.

Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

