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Many real-world infrastructure networks, such as power grids and communication networks, always depend on each other by their
functional components that share geographic proximity. A lot ofworkswere devoted to revealing the vulnerability of interdependent
spatially embedded networks (ISENs) when facing node failures and showed that the ISENs are susceptible to geographically
localized attacks caused by natural disasters or terrorist attacks. How to take emergencymethods to prevent large scale of cascading
failures on interdependent infrastructures is a longstanding problem. Here, we propose an effective strategy for the healing of local
structures using the connection profile of a failed node, called the healing strategy by prioritizing minimum degrees (HPMD), in
which a new link between two active low-degree neighbors of a failed node is established during the cascading process. Afterwards,
comparisons are made between HPMD and three healing strategies based on three metrics: random choice, degree centrality,
and local centrality, respectively. Simulations are performed on the ISENs composed of two diluted square lattices with the same
size under localized attacks. Results show that HPMD can significantly improve the robustness of the system by enhancing the
connectivity of low-degree nodes, which prevent the diffusion of failures from low-degree nodes to moderate-degree nodes. In
particular, HPMD can outperform other three strategies in the size of the giant component of networks, critical attack radius, and
the number of iterative cascade steps for a given quota of newly added links, whichmeansHPMD ismore effective, more timely, and
less costly. The high performance of HPMD indicates low-degree nodes should be placed on the top priority for effective healing
to resist the cascading of failures in the ISENs, which is totally different from the traditional methods that usually take high-degree
nodes as critical nodes in a single network. Furthermore, HPMD considers the distance between a pair of nodes to control the
variation in the network structures, which is more applicable to spatial networks than previous methods.

1. Introduction

It is clear that almost all real-world infrastructure networks
interact with each other [1].This has led to a new field of study
in network science that is called interdependent networks
[2].The interactions across networks keep systems functional
by providing critical sources to each other. However, these
dependency connections enhance the vulnerability of inter-
dependent networks against random failures or malicious
attacks by providing the risk of failure diffusion across
networks [3], and even a small fraction of nodes can cause the

breakdown of the whole network [4].The robustness of inter-
dependent networks has been studied in many aspects [5–8],
such as the effects of attack strategies, topology properties,
or coping methods across networks. Some infrastructural
networks (like power grids and water networks) are subject
to long-range dynamics [9], and the cascading processes
are thus nonlocal in these networks [10–12]. In fact, many
modern infrastructure networks are embedded in geographic
space and the dependency connections among the functional
components in different infrastructures are restricted by
their spatial distance [13]. Therefore, it is reasonable to
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consider the space restrictions as an important property
for the investigation of the interdependence of complex
networks. Two-dimensional lattices can be used as a typical
metaphor to model networks with spatial properties [14],
and thus some interdependent systems embedded in the
ground space can be represented by two coupled square
lattices with nodes in one lattice depending on the ones in
the other within a certain range [15–17], called interdependent
spatially embedded networks (ISENs). It is worth noting that,
facing random failures, the ISENs are more vulnerable than
nonembedded interdependent networks [18].

Recent researches revealed that failures in systems are
not often random [19]. Localized attack is a geographical
attack induced by natural disasters (e.g., earthquakes) or
malicious attacks (e.g., weapons of mass destruction); i.e.,
the connected cluster in a certain geographical radius breaks
down [20, 21]. The main difference between localized attack
and random failure is that the former is always limited to
local area, while the latter is distributed throughout the
whole network without any space restriction. Such localized
attacks on some networks are significantly more destructive
than random failures [22–25], since the failures of several
nodes can trigger an avalanche. Therefore, it is interesting
and of practical application to study how to enhance the
resilience of ISENs against localized attacks. In the past
years [26], several strategies have been proposed to restrain
the cascading of failures on interdependent networks (like
autonomous mechanism [27, 28] and protecting high-degree
nodes [29, 30]). Moreover, there are self-healing procedures
that are limited to a given set of redundant resources, and
these procedures can highly improve the resilience of infras-
tructural networks [31–34]. Among them, the spontaneous
recovery strategies of single network [35] and interdependent
networks [36] have recently attracted more attention. Muro
et al. [36] showed that the recovery strategy, which selects a
pair of nodes that belong to the mutual boundary of the giant
component during the cascading of failures and reconnecting
them to the giant component and reactivating them, can
greatly enhance the resilience of interdependent networks.
However, the recovery strategy on ISENs may be effective to
resist the spreading of random failures, but not for localized
attacks [37]. This is because the localized attacks always
simultaneously destroy a set of connected nodes and their
edges. In order to avoid catastrophic events, it is necessary to
improve the ratio of restored nodes on ISENs. On the other
hand, when the localized attacks occur, considerable effort
is made to reorganize the remaining networks by healing
strategy [38], i.e., establishing new links among active nodes.

A lot of link-addition strategies for the network heal-
ing have been proposed in both single network [39] and
interdependent networks [40–43]. For instance, Stippinger
et al. [38] developed a simple healing strategy as a remedy
of the collapse instability, where a new connectivity link is
generatedwith a probability, called randomhealing, to bridge
two random active neighbors of a failed node in the cascading
process. However, the random healing may not work well
for localized attacks or other types of attacks. Firstly, the
random healing proved the effect of adding new links under
random failures but in realistic failures may be resulting

from localized attacks. Secondly, it is more reasonable to
consider different healing strategies to response different
types of failures caused by various attacks [44–47]. In this
paper, we propose an effective strategy for the healing of local
structures by using the connection profile of a failed node,
called the healing strategy by prioritizing minimum degrees
(henceforth labeled as HPMD), which establishes a new link
between two active low-degree neighbors of a failed node
during the cascading process. It is clearly different from the
previous approaches that usually take the high-degree nodes
as critical nodes. Meanwhile, HPMD also considers the dis-
tance between a pair of nodes to avoid changing the network
structures toomuch. Applying HPMD to synthetic networks,
we find that our strategy is more effective than other healing
strategies, including random choice (HRC), degree centrality
(HDC), and local centrality (HLC). Specifically, our strategy
has a higher size of the final giant component, higher critical
attack radius, and lower peak of the number of iterative
cascade steps for a given quota of newly added links.

This paper is organized as follows: Section 2 describes the
model of ISENs and the localized attack. Section 3 introduces
the procedures of healing and the HPMD strategy. Section 4
shows the simulation results and corresponding analyses.
Section 5 makes a summary and expectation for this work.

2. Network Model and Localized Attack

In this section, we introduce the interdependent spatially
embedded networks and the localized attack.

2.1. Interdependent Spatially Embedded Networks. According
to Ref. [15], the ISENs have two distinctive characteristics: (a)
each node is only connected to the nodes in its spatial vicinity
in a network; (b) the dependence links between networks
are not random but have a certain dependency distance 𝑟,
which represents the maximum distance from a node in one
network to its counterpart node in another network. Here,
for the sake of simplicity and without loss of generality, we
generate two 𝑁 = 𝐿 ∗ 𝐿 diluted square lattices (as the real
power grids have amean degree of 2.5≤ ⟨𝑘⟩ ≤ 3 [48]) A and B
with periodic condition, to represent the real complex system
embedded in geographic space. In the ISENs, a node has two
kinds of links: connectivity links and dependency links. Each
node in network A is connected with its nearest neighbors
in the same network by connectivity links and depends on a
node in network B via a dependency link which is chosen at
random from all the nodes within a radius 𝑟. That is, a node
𝑎𝑖 located at (𝑥𝑖, 𝑦𝑖) in network A is only coupled with a node
𝑏𝑗 located at (𝑥𝑗, 𝑦𝑗) in network B with the condition:

󵄨󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑥𝑗
󵄨󵄨󵄨󵄨󵄨 ≤ 𝑟

𝑎𝑛𝑑 󵄨󵄨󵄨󵄨󵄨𝑦𝑖 − 𝑦𝑗
󵄨󵄨󵄨󵄨󵄨 ≤ 𝑟.

(1)

This work used the same assignment of parameters as in
Ref. [16], namely, 𝑟 = 15, 𝐿 = 100, and the value of ⟨𝑘⟩ is
approximately equal to 3. A schematic diagram of the ISENs
can be found in Figure 1.
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Figure 1: A schematic diagram of the ISENs. The ISENs are
constructed by coupling two diluted square lattices A and B with the
same size, where each node has two kinds of links: connectivity link
(blue) anddependency link (yellow). Eachnode is connectedwith its
neighbors via connectivity links, and each node 𝑎𝑖 located at (𝑥𝑖, 𝑦𝑖)
in network A is coupled with one and only one node 𝑏𝑗 located
at (𝑥𝑗, 𝑦𝑗) in network B via a dependency link, with the constraint
|𝑥𝑖 − 𝑥𝑗| ≤ 𝑟 and |𝑦𝑖 − 𝑦𝑗| ≤ 𝑟. The dependency link means that for
an interdependent node pair; if one node fails, the other fails too.

2.2. Localized Attacks. Localized attacks that are often caused
by natural disasters or malicious attacks can result in
geographically localized damage. A group of failed nodes
concentrate in a geographical domain, triggering failure of
adjacent nodes. According to Ref. [16], localized damage
forms an initial circular hole with a root as center and the 𝑟ℎ
as attack radius, and the failures propagate from the random
location to the entire network. Following this way, we firstly
initiate the localized attack process by randomly choosing a
node in networkA as a root. Next, we remove all nodeswithin
a radius 𝑟ℎ from the root in the network, as the initial hole.
The dependent partners of the removed nodes in network
B fail and trigger more failures in network A due to the
dependencies between networks. This cascading process will
not terminate until no more nodes fail. After the attack,
only nodes in the giant component (GC) of network are still
functioning [49].

3. Healing Procedure and HPMD Strategy

3.1. Healing Procedure. The healing strategy adds new links
among active nodes, which is immediately implemented at
the first stage of the cascading failures, to avoid or resist the
collapse of the interdependent networks [38]. The healing
process mimics the repair or recovery of complex system
in the real world: (i) failures propagate rapidly in networks,
and damaged devices cannot be timely replaced by new ones;
(ii) in many real infrastructure networks it is reasonable
to reinforce adjacent active nodes of a failed node. After
the failures occurring in network A, the healing strategy
intervenes in that time step. Then the failures spread from

network A to B, and the coupled nodes of the failed nodes are
removed from the network B through the dependent links.
Due to the dependence of embedded spatial systems, further
failures might propagate back and forth within the system
and are also intervened by healing strategy. Note that the
traditional random healing strategy [38], which establishes
a new link among two random active neighbors of a failed
node, may greatly change the topology. Here, we denote 𝑛 =
0, 1, . . . as the time steps of the cascading processes, and the
procedures in the 𝑛-th step are given by the following:

(1) Cascading in network A, at 𝑛-th step:
Nodes in network A become failed if they lose
dependent partners in network B at (𝑛-1)-th step, or
if they do not belong to the 𝐺𝐶 of network A via
connectivity links.

(2) Healing in network A, at 𝑛-th step:
Select a pair of active neighbors of a failed node and
build a link between them. Self-loop and multiple
links are not allowed.This procedure will be repeated
unless the maximum number of newly added links
reaches.

(3) Cascading in network B, at 𝑛-th step:
Nodes in network B fail if they lose their counterpart
nodes due to the cascade of failures, or if they do not
belong to the 𝐺𝐶 of network B via connectivity links.

(4) Healing in network B, at 𝑛-th step:
It is the same as (2).

This procedure is repeated until a steady state reaches, and
then we are left with the giant component. Note that a steady
state reaches only when the network is still functioning and
no more nodes fail, or fully collapsed.

3.2. HPMD Strategy. In a recent study [16], it is found that
the localization of dependency links amplifies the destructive
effect of localized attacks and leads to a cascading collapse
of the whole network. The interdependent nodes will fail
due to the loss of dependency partners. The next damage is
highly concentrated around the initial hole via connectivity
links, making a failure propagates back and forth. It is quite
obvious that the most straightforward healing strategy is
random choice (RC), where two random active neighbors
of a failed node will be connected by a new link. However,
there is no guarantee that this RC leads to the most effec-
tive healing. Furthermore, the RC strategy can change the
network structures because it does not consider the distance
between remote nodes of a new link. The low-degree nodes
that bordered the initial hole are more easy to disconnect
from the giant component and go to fail in the cascading
failures, and failed nodes can disenable the corresponding
dependent partners in the other network, which keep failures
propagating [50]. On the contrary, the higher the degree
of a node is, the lower the probability of failure is in next
time step.Therefore, our strategy, namely, the healing strategy
by prioritizing minimum degrees (HPMD), is reasonable to
establish a new link between two active low-degree neighbors
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Figure 2: A schematic illustration of HPMD strategy: (a) a failed node 𝑥 which is represented by red solid circle at the end of the arrow is
removed and affects its functioning neighbors (V𝑥𝑎 , V

𝑥
𝑏 , V
𝑥
𝑐 , V
𝑥
𝑑) via connectivity links (blue). (b) In random healing, two active neighbors of the

failed node 𝑥 are randomly chosen to establish a new link. (c) According to the HPMD strategy, by counting the number of connectivity links
of active nodes V𝑥𝑎 and V𝑥𝑐 with 𝑘𝑐(V

𝑥
𝑎) = 𝑘𝑐(V𝑥𝑐 ) = 2 of the failed node 𝑥, and their distance that is equal to 2 in the original network, after

calculating the healing priority index 𝐻(V𝑥𝑎 , V
𝑥
𝑐 ) = 4, then a new connectivity link (red) is preferentially established between two remaining

neighbors V𝑥𝑎 and V𝑥𝑐 to heal the network.

of a failed node. HPMD enhances the connectivity of low-
degree neighbors and reduces the risk of dependency failures
in each time step and is quite different from the previous
approaches that usually take the high-degree nodes as critical
nodes. Our healing strategy can limit the distance between
two neighbors of a failed node tomake sure connectivity links
remain local. The procedures of HPMD at healing stage are
described as follows (see Figure 2).

(1) In healing stage, 𝐹 is the set of all failed nodes in the
network.

(2) Let 𝐿 be the union of all pairs (V𝑥𝑖 , V
𝑥
𝑗 ) of active

neighbors of a failed node 𝑥 in 𝐹; self-loop andmultiple links
are not allowed. Then, we calculate the healing priority for
each pair (V𝑥𝑖 , V

𝑥
𝑗 ).The healing priority index𝐻 of pair (V𝑥𝑖 , V

𝑥
𝑗 )

is defined as follows:

𝐻(V𝑥𝑖 , V
𝑥
𝑗 ) =
𝑒𝑖,𝑗∈𝑙𝑜𝑐𝑎𝑙

𝑘𝑐 (V
𝑥
𝑖 ) + 𝑘𝑐 (V

𝑥
𝑗 ) (2)

where 𝑒𝑖,𝑗 ∈ 𝑙𝑜𝑐𝑎𝑙 denotes the length of the shortest
path between nodes V𝑥𝑖 and V𝑥𝑗 that are no more than 2 in
original network. 𝑘𝑐(V) denotes the current number of the
remaining connectivity links of node V. In real world, the local
information of a power station or an Internet node is easy to
capture, but the global structural information is unavailable
[51, 52]. If it is far from chosen range of functioning neighbors
to failed nodes, the search region is wider, search time is
longer, and computation complexity is higher. Furthermore,
installing a new electrical cable between two remote stations
in spatial system is impractical and expensive. Therefore,
reconnecting two nodes in spatial neighborhood is a fast
and costless way for healing the local structures of a spatial
network.

(3)We sort all pairs in the 𝐿 by healing priority index𝐻
in ascending order. If some pairs have the same𝐻, randomly
sort them.

(4) Next, we build a queue 𝑄 = {𝐻1, 𝐻2, 𝐻3, . . .}, where
𝐻𝑖 represents the 𝑖th healing priority index 𝐻. Select a node

pair V𝑥𝑖 and V𝑥𝑗 from the queue in turn, and connect node V𝑥𝑖
to node V𝑥𝑗 by a new connectivity link.

(5) Repeat (4) until the maximum number of new links is
reached, which is calculated as the total number of pairs in 𝐿
multiplied by the healing rate 𝜔.

Many criteria in complex networks have been presented
for evaluating the importance of nodes [36]. To demonstrate
the effect of HPMD, we use three well-known criteria to rank
the priority of active neighbor pairs in the healing process:
random choice (HRC), degree centrality (HDC), and local
centrality (HLC).

(1) In HRC strategy, a pair of nodes in the union 𝐿 are
picked randomly.

(2) In HDC strategy, we sort all pairs in 𝐿 by healing
priority index 𝐻 in descending order, but not in ascending
order. In other words, the new link is added between the pair
of nodes with maximum degrees [53].

(3) In HLC strategy, the healing priority index 𝐻 is
calculated by computing local centrality of V𝑥𝑖 and V𝑥𝑗 , where
the local centrality is defined as the total number of the
nearest and the next nearest neighbors of node V as in Ref.
[52, 54], and then all pairs in 𝐿 by𝐻 are sorted in descending
order.

4. Results

To compare the performance of our proposed strategy in
healing process, we present experimental results of different
strategies, including HRC, HDC, HLC, andHPMD strategies
on ISENs when facing localized attacks. All experimental
results are obtained by average over 104 independent runs for
each healing rate 𝜔 and attack radius 𝑟ℎ.

For different healing rates 𝜔, the robustness of ISENs
under localized attacks with different healing strategies is
shown in Figure 3. Here, we define 𝑟ℎ as attack radius of
initial hole from network A and 𝑆 as the size of the giant
component at the end of the cascading failures [15, 38].
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Figure 3:�e effectiveness of healing strategy on the giant component. The size of the giant component 𝑆 as a function of attack radius 𝑟ℎ under
different healing strategies, for different 𝜔 = 3% (a), 𝜔 = 5% (b), and 𝜔 = 10% (c), respectively.

The higher 𝑆 indicates the better performance of healing
strategy. In Figure 3, the black cross-shaped curve labeled as
None represents the result without healing. It is obvious that
the maintenance of network connectivity by using healing
strategy is much better than that without healing under
localized attacks, and the resilience of ISENs is improved.
Furthermore, we compare HPMD with the other strategies
for 𝜔 = 3% (a), 𝜔 = 5% (b), and 𝜔 = 10% (c). It can be seen
that from the perspective of 𝑆 that the order of performance
is HPMD > HRC > HDC > HLC in most cases of 𝑟ℎ, at
different healing rates 𝜔. The advantage of HPMD becomes
more apparent as 𝑟ℎ increases. Results indicate that HPMD
is, in general, more effective against localized attacks since it
resists the collapse of the ISENs.

The critical attack radius 𝑟ℎ𝑐 is the minimum radius of
localized attacks needed to break the entire network [16].
It will trigger a cascade failure which destroys the entire
network as long as 𝑟ℎ > 𝑟ℎ𝑐 . A larger 𝑟ℎ𝑐 means a better
effect of healing strategy. We calculate the point of maximum
fluctuation of 𝜎 of giant component 𝑆 which is usually
expected to be large for both first-order and second-order
transitions [55–57], to estimate the 𝑟ℎ𝑐 [see Figure 4(b)]. In
Figure 4(a), the 𝑟ℎ𝑐 of HPMD is always higher. The HPMD is
significantlymore effective andworks better than three others
in the same condition. In comparison, the HDC and HLC
have similar results and perform the worst. Figure 4 indicates
that HPMD works better than the other three strategies
within a small certain healing rate 𝜔 and is more effective to
resist localized attacks on the ISENs.

TheNOI is the number of iterative cascade steps required
for the ISENs to reach the steady state, which indicates the
time scale of the process, as shown in Figure 5. It is known
that in a conventional cascade failure the NOI displays a
sharp peak at the critical threshold [36], which means the
network requires a long period of time to reach the steady

state. Therefore, an effective healing strategy is expected to
have a low peak of NOI. Figure 5 shows that the peak of NOI
is lower for that ofHPMD, as comparedwithHRC,HDC, and
HLC strategies. From these subfigures, we find the following:
(i) the NOI increases with 𝑟ℎ, when 𝑟ℎ < 𝑟ℎ𝑐 ; (ii) the NOI with
theHPMDdisplays a lower peak and few steps.Thefirst result
means that larger attack radius 𝑟ℎ requires higher NOI. The
second indicates that the required time steps for controlling
the failures by the HPMD are lease at the same attack radius,
and 𝑟ℎ𝑐 for HPMD is greater than all other strategies.

Let 𝐸ℎ be the total number of established new connec-
tivity links during the healing process until the steady state
reaches, which means that an efficient healing strategy is
one that fewer new links are required when the cascade
terminates. Figure 6 reports 𝐸ℎ as a function of attack radius
𝑟ℎ at different 𝜔. It is shown that HPMD still has the best
performance as 𝐸ℎ increases slowly, and HDC and HLC
strategies will have a higher cost under the same conditions.
The results further confirm that HPMD needs fewer new
links to enhance the resilience in a reasonable cost. Clearly,
our strategy is the first choice to determine which pairs of
active neighbors of a failed node should be connected by a
new link.

One drawback of random healing is that it does not
consider the topology distance between nodes and may
change the structure considerably by bridging long-range
edges as the time goes on [38]. Here, the long-range edges
refer to the links between two nodes whose topology distance
𝑑 > 2 in the original network. Table 1 shows the proportion
of long-range edges in the current network until steady
state reaches at a certain 𝜔. Let 𝐸𝑑 be the number of long-
range edges with original topology distance 𝑑 in remaining
networks at steady state, and let 𝐸𝑟 be the total number of
edges in remaining networks at steady state. Furthermore,
we calculate the proportion of edges, 𝑃(𝑑) = 𝐸𝑑/𝐸𝑟, with a
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Table 1: Comparisons of the proportion of long-range edges between pairs under different healing strategies, when healing rate 𝜔 = 10%.

𝑃(𝑑 = 1) 𝑃 (𝑑 = 2) 𝑃(𝑑 = 3) 𝑃(𝑑 = 4)
HPMD 99.56% 0.44% 0% 0%
HRC 99.46% 0.51% 0.02% 0.01%
HDC 99.11% 0.83% 0.05% 0.01%
HLC 99.05% 0.80% 0.10% 0.05%
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Figure 4:�e effectiveness of healing strategy on the critical attack radius. (a)The critical attack radius 𝑟ℎ𝑐 as a function of healing rate 𝜔 under
different healing strategies. (b) To estimate the 𝑟ℎ𝑐 , we calculate the point of 𝑟ℎ of maximum 𝜎 of the size of the giant component by different
healing strategies. For example, when 𝜔 = 5%, the 𝑟ℎ𝑐 of HPMD is 17 for the reason that the fluctuation of giant component at that point
(𝑟ℎ = 17) is maximum (𝜎 = 0.35).
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Figure 5: �e effectiveness of HPMD on the number of iterative cascade steps. The number of iterative cascade steps (NOI) required for the
ISENs to reach the steady state as a function of attack radius 𝑟ℎ for different healing strategies, at different 𝜔 = 3% (a), 𝜔 = 5% (b), and
𝜔 = 10% (c), respectively.
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Figure 6:�e effectiveness of healing strategy on the number of established new links. The total number of established new connectivity links
during the healing process𝐸ℎ as a function of attack radius 𝑟ℎ for different healing strategies, at different𝜔 = 3% (a),𝜔 = 5% (b), and𝜔 = 10%
(c), respectively.

given original topology distance 𝑑. The average of 𝑃(𝑑) over
different attack sizes 𝑟ℎ is defined as

𝑃 (𝑑) = ∑
𝑟ℎ

𝑃 (𝑑) (3)

where 𝑟ℎ ∈ [4, 35] and Δ𝑟ℎ = 1, when 𝜔 = 10%. In
Table 1, when 𝑃(𝑑 = 2), the order is HPMD < HRC <
HDC < HLC, and the proportion of edges between remote
nodes 𝑃(𝑑 = 3) and 𝑃(𝑑 = 4) are zero by the HPMD. It
is because HPMD aims at adding the link only between two
adjacent active neighbors of a failed node, and the changing of
network structure is minor. As a result, the giant component
at the end of the cascading process is still lattice structure by
HPMD. In general, our proposed strategy can avoid changing
the network structure a lot, which is more applicable to real
spatial networks.

To study the influence of spatial constraints on healing
effectiveness, we have performed experiments on the critical
attack radius 𝑟ℎ𝑐 as a function of the distance of dependency
links 𝑟 on the ISENs, as shown in Figure 7. The 𝑟ℎ𝑐 of HPMD
is higher than which of the other three strategies, when the
distance of dependency links 𝑟 is variable. Furthermore, we
can see the nonmonotonic curves of the 𝑟ℎ𝑐 that decrease
firstly and then increase, because (i) for a small spatial
distance (e.g., 𝑟 ≤ 10), where nodes can only couple with their
adjacent nodes, the cascading failure is mostly restricted in a
local area and a larger attack radius is required to initiate an
avalanche; (ii) for an intermediate spatial distance, the failure
could not only propagate away, but also lead to large scale of
failed nodes. But even so, HPMD still has better performance
compared with the other strategies; (iii) for a long spatial
distance (e.g., 𝑟 = 100) a given node’s dependency link can be
located farther away, and failures can also propagate away, but
the density of failed nodes is too sparse to trigger a cascading
process.
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Figure 7:�e influence of the spatial constraints on healing effective-
ness. The critical attack radius 𝑟ℎ𝑐 as a function of the distance of
dependency links 𝑟 under different healing strategies, at 𝜔 = 10%.

The reasons why HPMD can reinforce the resilience of
the ISENs effectively are as follows. Firstly, the low-degree
nodes are more easily apart from the giant component, and
their coupled nodes would be failed easily. Figure 8 shows
that the failure probability of nodes with different degrees 𝑃𝑓
varies with time steps 𝑛, without any healing. Except for the
initial stage, the 𝑃𝑓(𝑘 = 1) is always higher than 𝑃𝑓(𝑘 = 2),
𝑃𝑓(𝑘 = 3), and 𝑃𝑓(𝑘 = 4), when 𝑟ℎ = 12 (the point of
maximumfluctuationwithout healing).More fundamentally,
the low-degree nodes may be connected to other nodes with
high degrees through one interdependency link, therefore
magnifying the impact of low-degree nodes. Such interde-
pendency characteristics make the local low-degree nodes
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Figure 8: �e failure probability of nodes at different degrees varies
with time steps. The failure probability of node 𝑃𝑓 with different
degrees 𝑘 in network A, as a function of time 𝑛-th step during the
cascading process when 𝑟ℎ = 12.

result in a cascade of failures with catastrophic consequences.
It is completely different from a single network, where the
failures of low-degree nodes do not have a great impact on the
network due to their low connectivity. HPMD aims at adding
new link between two active low-degree neighbors of a failed
node in healing process, in the sense thatHPMDcan keep the
functionality of ISENs adaptively.

5. Conclusions

In this paper, we aimed at improving the performance of
healing strategy against localized attacks on interdependent
spatially embedded networks and found that two active low-
degree neighbors of a failed node should be the first choice
to heal by establishing a new link between them. An effective
healing strategy based on local structures by using the con-
nection profile of a failed node, called HPMD, was proposed.
We launch a series of simulations to compare HPMD with
the other three healing strategies based on three metrics:
random choice, degree centrality, and local centrality on the
ISENs. Results show thatHPMD remarkably outperforms the
others in the size of the giant component of networks, critical
attack radius, and the number of iterative cascade steps for
a given quota of newly added links. The comparisons also
demonstrate that HPMD is more effective, more timely, and
less costly for the healing of the ISENs. In addition, HPMD
considers the distance between two nodes at the ends of a
new added link to restrain a great variation in the network
structures. In general, HPMD can significantly improve the
robustness of the system by enhancing the connectivity of
low-degree nodes, which prevent the diffusion of failures
from low-degree nodes to moderate-degree nodes. The high
performance of HPMD indicates that low-degree nodes
should be placed on the top priority for effective healing to
resist localized attacks in the ISENs, which is totally different

from the traditional methods that usually take high-degree
nodes as critical nodes in a single network. In the meantime,
HPMD is operational in reality, because a node typically has
the local information of its neighborhood.

In this work, we considered the robustness of spatially
embedded coupled systems and designed a new healing
strategy. Except the model networks with diluted square
lattices, our next studywill involve evaluating effect ofHPMD
in real spatially embedded networks that would more closely
resemble the natural world. Overall, our strategy is helpful
in the development of intervention strategies against crisis
and provides guidance on how to build robust ISENs against
potential localized attacks.

Data Availability

The synthetic data used to support the findings of this study
are included within the article. In particular, the performance
ofHPMD is evaluated on synthetic networks generated by the
model of ISENs in Section 2.1. The synthetic networks have
the same assignment of parameters as in Ref. [16]; namely,
𝑟 = 15, 𝐿 = 100, and ⟨𝑘⟩ ≈ 3.
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