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Current research on pedestrian flows has mainly focused on evacuation optimization during or after emergencies; however, crowd
management before emergencies has received little attention.This paper examines the management of a Safe Pedestrian Flow Rate,
in which the Bayesian-Nash Equilibriummimics pedestrians’ decision-making, and a multiagent system is employed to reproduce
pedestrians’ interactions. In the model, the pedestrian tunnel is divided into cells, with each pedestrian in a cell receiving a utility
depending on the distance to the exit and the number of pedestrians in the cell. Then, each pedestrian uses the Bayesian-Nash
Equilibrium to search for the target cell with maximum expected utility, moves in, andmakes next decision until exiting the tunnel.
The simulation model is calibrated and validated from a real scenario. Finally, from the experimental data collected from different
simulation scenarios, this research reaches the conclusion that the Safe Pedestrian Flow Rate increases by about 2.96ped/s as the
tunnel width expanded by 1m.This paper offers a novel method for reducing potential losses caused by crowd emergencies and can
be a valuable reference for managing pedestrian flows and designing public places.

1. Introduction

As urbanization increases, urban populations worldwide
have grown exponentially. As a result, stampede accidents
such as the Shanghai New Year’s Eve stampede in 2015, the
Phnom Penh stampede in 2010, the Beijing Lantern Festival
stampede in 2004, and the Mecca Hajj stampedes have
become more frequent. According to incomplete statistics,
over 100 stampede accidents have occurred since 2001,
causing more than 10,000 deaths [1]. Therefore, research on
pedestrian flows, especially in dense situations, has become a
more important research focus.

However, as current crowd research mainly focused on
evacuation optimization after an emergency, the manage-
ment of pedestrian flows before an emergency received little
attention. From the two photographs in Figure 1, it can
be seen that as roads or venues are always crowded with
pilgrims or pedestrians moving in opposite directions during
ceremonies and holidays, accidents or near accidents can
easily occur.Therefore, studies onmanaging pedestrian flows

to prevent or control stampedes or other emergencies are
required.

In this paper, a model is developed to mimic pedestrian
crowddecision-making and determine a Safe Pedestrian Flow
Rate (SPFR) for different situations. The remainder of this
paper is organized as follows. Section 2 gives a brief review of
previous research on pedestrian flows. Section 3 introduces
the proposed simulation model in detail, including the
decision-making processes and the collision avoidance strate-
gies. Section 4 calibrates and validates the model with data
collected from an actual scene. Section 5 conducts simulation
experiments that consider pedestrians’ walking preferences
under different circumstances and reveals the relationships
between the SPFR and the tunnel width. Section 6 concludes
the work and discusses prospects for future research.

2. Literature Review

When analyzing an emergency, the period can be divided
into three phases: before emergency, during emergency,
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(a) The Duanqiao Bridge in Hangzhou (b) The Bund Park in Shanghai

Figure 1: Scenarios for pilgrims/tourists ((a) is downloaded fromhttp://www.163.com, and (b) is downloaded fromhttps://baike.baidu.com/).
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Figure 2: Definition of pre-emergency research and post-emergency research.

and after emergency. This paper classifies current emer-
gency research into two pre-emergency research and post-
emergency research, as shown in Figure 2. Generally, pre-
emergency research focuses on the work before emergencies
happen, such as crowdmanagement, risk analysis, and public
space design, while post-emergency research keeps an eye
on the work during or after emergencies happen, such as
evacuation planning and optimizing and loss prevention.

Present pedestrian flow models can be divided into
macroscopic and microscopic models. Macroscopic models
examine overall pedestrian flows and research pedestrian
characteristics using qualitative theories or methods from
other disciplines, such as the Fluid Dynamics Model pro-
posed by Huges [2, 3] and Wave Theory introduced by
Lu [4]. Microscopic models, on the other hand, such as
the Lattice Gas Model [5], the Social Force Model [6, 7],
the Cellular Automata Model [8, 9], and the Agent-based
Model [10, 11], focus on the influence of individual behavior
on pedestrian flows. As macroscopic models study overall
pedestrian flows and ignore the heterogeneity and complexity
of individuals, they are unable to accurately analyze the
mechanisms between the microscopic pedestrian behavior
and the macroscopic phenomena of the crowd. Therefore,
microscopic models have been the main methods used for

pedestrian flow research [12–15]. Table 1 summarizes recent
research on pedestrian flows.

From Table 1, it can be seen that nearly 75% of recent
research has been focused on post-emergency, such as repro-
ducing evacuation scenes and optimizing evacuations, with
very few examining situations before the crises occurred.
What is more, as most pre-emergency research has focused
on the reproduction of pedestrian flow phenomena and
the optimization of emergency plan, crowd management to
avoid accidents has received very little research attention.
Further, while many studies have examined the factors that
influence egress efficiency, neither the quantitative nor con-
crete relationships between these factors have been explored.
The common characteristic in current research has been
that almost all authors have employed a methodology that
combined at least two modeling methods, with one being
a decision or behavioral model that mimics pedestrians’
decision-making or behaviors and the other being an action
model that motivates pedestrians’ movement.

The main purpose of this research, therefore, is to deter-
mine a scientific, practical method for managing crowds at
a safe level to prevent possible emergencies. Game theory
has been found to be able to properly capture a pedestrian’s
decision-making processes and interactions, and agent-based

https://baike.baidu.com/
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Table 1: Brief summary of recent studies on pedestrian flow.

Article Methodology Focus of Research Pre-emergency
/Post-emergency

[10] Visual intelligence & AB Estimate evaluation time Pre-emergency
[11] Decision support system & AB Safety evaluation Pre-emergency
[16] Artificial Neural Network Route choice behavior Pre-emergency

[17] Combination of macroscopic model and
microscopic model Prediction of evacuation time Pre-emergency

[18] Fuzzy logic& microscopic simulation Model research Pre-emergency

[19] Multi-grid method & CA Characteristics of unidirectional pedestrian
flows Pre-emergency

[20] Toy model & microscopic simulation Bidirectional pedestrian flow Pre-emergency
[21] Improved CA Walking Strategies of Bidirectional Pedestrians Pre-emergency
[22] Monte-Carlo simulation & GameTheory Pedestrian Group-Crossing Behavior Pre-emergency
[6] Modified social force model Influence of information transmission Post-emergency
[8] Improved cellular automatonmodel Influence of route changes and group fields Post-emergency
[23] GA & microscopic pedestrian simulation Optimal evacuation plan Post-emergency

[24] Game theory & CA Influence of cooperation and psychological
factors Post-emergency

[25] Local optimal decision & SF Evacuations Post-emergency
[26] Game theory & AB Model research Post-emergency

[27] Experiments & improved force-based model
simulation

Impact of vision on uni- and bi-directional
flows Post-emergency

[28] Experimental study Relationship between crowd density and
crawling movements Post-emergency

[29] Surveys, evacuation experiments & statistical
analyses Exit choices for pedestrian crowd evacuees Post-emergency

[30] Improved cellular automatonmodel Group Influence Post-emergency

[31] Probabilistic model & Latin Hypercube Sampling
method Evacuation safety evaluation Post-emergency

[32] Evolving network & CA Decision-making process and cooperative
behavior Post-emergency

[33] Fuzzy theory & LG Influence of information transmission on
crowds Post-emergency

[34] Grouping algorithm & SF Influence of Groups Post-emergency
[35] Cost potential field & CA Influence of behavior variations Post-emergency
[36] Driving-forces model & AB Influence of moving threats Post-emergency
[37] Improved cellular automatonmodel Effect of psychological tension Post-emergency
[38] Empirical study Influence of social groups Post-emergency

[39] Route learning method & modified social force
model Factors for evacuation efficiency Post-emergency

In the table, AB is short for agent based model, CA is short for cellular automata model, LG is short for lattice gas model, and SF is short for social force model.

modeling methods have been proven to effectively mimic
pedestrian movements [13]. This paper, therefore, adopts
a multiagent system and the Bayesian-Nash Equilibrium
to formulate the simulation model. In the model, one or
more pedestrians are permitted to stay in a cell, with each
pedestrian assigned a utility that depends on their distance
to the exit and the number of other pedestrians sharing
the cell. The Bayesian-Nash Equilibrium is an equilibrium
achieved in incomplete information games in which each
player chooses a strategy to gain a maximum expected

utility based on the probability distributions of the others’
decisions. The simulation experiment in this model is self-
organized once it begins to run, as the pedestrian does not
know the exact choices their neighbors are going to make.
They choose a target cell to gain as much utility as possible
based on the probability distributions of the neighboring
pedestrians’ choices. Hughes pointed out that emergencies
can easily occur when pedestrian density is greater than
4ped/m2 [2]; therefore, this paper regards the density of
4ped/m2 to be theCritical EmergencyDensity and defines the
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Table 2: Main pedestrian flow measures.

Full Name Abbreviation Meaning
Critical Density (Ped/m2) - Threshold density at which emergencies could occur.
Pedestrian Flow Rate
(Ped/s) - The average number of pedestrians passing by in a time unit

Safe Pedestrian Flow Rate
(Ped/s) SPFR Maximal pedestrian flow rate to avoid exceeding the critical

pedestrian density
Velocity of Pedestrian Flow
(m/s) VPF Average speed of all the pedestrians at one time, to determine the

real-time pedestrian flow speed.
Average Velocity of
Pedestrian Flow (m/s) AVPF Average VPF from the beginning of the experiment to the end, which

is used to indicate the pedestrian flow efficiency in a specific scenario.
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Figure 3: Probabilities of the target cell being chosen by pedestrians when walking in different directions.

maximal pedestrian flow rate before the critical density as the
Safe Pedestrian Flow Rate (SPFR). In other words, if timely
measures are not taken when the pedestrian flow exceeds the
SPFR, it is more likely that an emergency could occur. To be
clear, the main pedestrian flow measures in this paper are as
shown in Table 2.

3. Simulation Model Framework

3.1. Initial Model Environment. This paper studies pedestrian
flows using Agent-Based Modeling and Simulation (ABMS).
Pedestrians enter the pedestrian tunnel from both ends and
walk in two opposite directions: left to right and right to left;
as shown in Figure 3, and as with most models, the tunnel is
divided into cells. In most existing microscopic models, the
evacuation venues are partitioned into square (diamond, or
hexagon) cellswith 0.4m sides, which are based on pedestrian
projections. In other words, these models cannot simulate
pedestrians density more than 1ped/(0.4m∗0.4m), which is
about 6ped/m2. What is more, when the pedestrian moves
from one cell to another, the distance is not in accordance
with the actual average pedestrian walking step length. When
the pedestrian moves more than one cell in each time step,
their decision-making processes become rather complex as
many factors need to be considered, such as decision-making
efficiency and the target cell’s availability.

Based on experimental data and statistical analyses, Zeng
determined that in a normal condition a pedestrian walks
with a step length of 0.7m and at a speed of 1.4m/s [40].
This paper, therefore, sets the side length of the cell at 0.7m
based on the average pedestrian step length, with pedestrians
making decisions every 0.5s. In other words, at each second
the pedestrian moves twice and moves no more than one
cell each time. The probability that a pedestrian chooses each
target cell is shown in Figure 3.

In Figure 3, PedestrianA and Pedestrian B are pedestrians
walking from left to right and from right to left, 𝑝1, 𝑝2, 𝑝3,
𝑝4, and 𝑝5 are the successive probabilities of the adjacent
cells being chosen by the pedestrian from their left side to
right side, and 𝑝0 is the probability that a pedestrian remains
stationary.

3.2. Utility Function. The utility that a pedestrian gains while
walking depends on their desire to achieve their destination
[35]. In this research, the utility is divided into movement
utility 𝜇𝑚𝑜V𝑒 and comfort utility 𝜇𝑐𝑜𝑚𝑓, as follows.

𝜇 = 𝜇𝑚𝑜V𝑒 (𝑠, 𝜃) + 𝜇𝑐𝑜𝑚𝑓 (𝑛) (1)

Themovement utility depends on the distance the pedes-
trian moves toward to the exit and is defined as

𝜇𝑚𝑜V𝑒 (𝑠, 𝜃) = 𝑠 × cos 𝜃 (2)
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Figure 4: Pedestrians in the game. (1) demonstrates the cell numbering rule. (2) illustrates how ambient pedestrians affect the decision-
maker’s expected comfort utility.

where 𝑠 is the distance the pedestrian moves each time
and 𝜃 is the angle between the movement direction and the
exit direction. For example, when a pedestrian walks straight
to the exit, 𝜃 equals 0 and when they walk in a vertical
direction to the exit, 𝜃 equals 90.

A relationship has been found between the pedestrian’s
speed and crowd density; however, few studies have devel-
oped a formula for this relationship. Zeng summarized
former studies and provided a function for pedestrian veloc-
ity: pedestrians are able to move freely if the density is
below 4ped/m2, have severely restrictedmovementswhen the
density exceeds 7ped/m2, and when the density is between
4ped/m2 and 7ped/m2, the pedestrian has restricted velocity,
which is related to the density [40]. Based on the function,
this paper defines 1.00 as the pedestrian comfort utility when
they can move freely, with the ratio of restricted speed to
free speed being their comfort utility value in other cases, as
follows.

𝜇𝑐𝑜𝑚𝑓 (𝑛) =
{{{{
{{{{
{

1.00, 𝑛 ≤ 2
0.52, 𝑛 = 3
0.28, 𝑛 ≥ 4

(3)

where 𝑛 denotes the number of pedestrians in the same
cell.

3.3. Expected Comfort Utility. Pedestrians in the model do
not know the other pedestrians’ decisions, which could affect
their own comfort utility, and therefore make independent
decisions when walking. That is, before moving, each pedes-
trian has to calculate the expected utility of every possible
decision based on the probability distribution of the other
pedestrians’ choices, after which they choose the cell with the
maximum utility as the target cell. In this paper, a pedestrian
is assumed to choose the target cell from six possible cells,

as shown in Figure 3, and each of the six alternative cells has
eight neighboring cells, which means that many pedestrians
may choose the same target cell, as shown in Figure 4.

Subgraph (1) in Figure 4 shows the cell numbering rule.
Specifically, cell (r, c) denotes the cell in Row r Column
c. Subgraph (2) illustrates the game interactions between
the decision-maker and their neighboring pedestrians. The
circles represent the pedestrians who may potentially choose
Cell (r, c). Further, blue circles indicate pedestrians walking
from left to right, and green ones denote pedestrians walking
from right to left. It can be seen in subgraph (2) that the ambi-
ent pedestrians impact the expected comfort utility of the
decision-maker in Cell (r, c-1) who chooses Cell (r, c) as their
target cell. This means the decision-maker must consider the
choices made by its surrounding pedestrians. Expressions in
each circle represent the possibilities of pedestrians moving
into the Cell (r, c) separately, according to Figure 3.

Take the decision-maker in Figure 4 as an example. As
in the simulation model, a pedestrian should take all the
situations into consideration before making a decision. Thus,
a pedestrian’s expected utility of the target cell can be divided
into four parts, which are utility of one pedestrian, of two
pedestrians, of three pedestrians, and of more than three
pedestrians. The expected comfort utility 𝜉𝑐𝑜𝑚𝑓 is

𝜉𝑐𝑜𝑚𝑓 = 𝜇𝑐𝑜𝑚𝑓 (1) 𝑝 (0) + 𝜇𝑐𝑜𝑚𝑓 (2) 𝑝 (1)

+ 𝜇𝑐𝑜𝑚𝑓 (3) 𝑝 (2)

+ 𝜇𝑐𝑜𝑚𝑓 (4) [1 − 𝑝 (0) − 𝑝 (1) − 𝑝 (2)]

(4)

where 𝑝(0), 𝑝(1), 𝑝(2) represent the possibility of no
pedestrians, one pedestrian, or two pedestrians in Cell (r, c),
respectively.

In this paper, 𝑛𝑟𝑟,𝑐 is used to denote the number of
pedestrians in Cell (r, c) walking from left to right, and
𝑛𝑙𝑟,𝑐 is used to denote the number of pedestrians in Cell
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(r, c) walking from right to left. According to Figure 4,
ambient pedestrians can be divided into six groups based
on the possibility of moving into Cell (r, c); the numbers
of pedestrians in each group are 𝑛𝑙𝑟,𝑐 + 𝑛𝑟𝑟,𝑐, 𝑛𝑙𝑟−1,𝑐 + 𝑛𝑟𝑟+1,𝑐,
𝑛𝑙𝑟−1,𝑐+1 + 𝑛𝑟𝑟+1,𝑐−1, 𝑛𝑙𝑟,𝑐+1 + 𝑛𝑟𝑟,𝑐−1 − 1, 𝑛𝑙𝑟+1,𝑐+1 + 𝑛𝑟𝑟−1,𝑐−1, and
𝑛𝑙𝑟+1,𝑐+𝑛𝑟𝑟−1,𝑐, which are replaced with 𝑔0, 𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5 for
convenience. The corresponding possibilities for pedestrians
in each group moving into Cell (r, c) are 𝑝0, 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5.

The probability that no pedestrians choose Cell (r, c) is

𝑝 (0) =
5

∏
𝑖=0

(1 − 𝑝𝑖)
𝑔𝑖

(5)

and the probability that only one pedestrian chooses Cell
(r, c) is

𝑝 (1) =
5

∑
𝑖=0

𝑔𝑖𝑝𝑖𝑝 (0)
1 − 𝑝𝑖

(6)

When two pedestrians choose the target cell, they may
come from the same group or two different groups, in which
case, it could be calculated separately.

𝑝 (2) = 𝑝󸀠 (2) + 𝑝󸀠󸀠 (2) (7)

If the two pedestrians come from the same group,

𝑝󸀠 (2) =
5

∑
𝑖=0

𝑔𝑖 (𝑔𝑖 − 1)
2
𝑝2𝑖 𝑝 (0)
(1 − 𝑝𝑖)2

(8)

and if they come from two different groups,

𝑝󸀠󸀠 (2) =
5

∑
𝑖=1

𝑔0𝑔𝑖𝑝0𝑝𝑖𝑝 (0)
(1 − 𝑝0) (1 − 𝑝𝑖)

+
5

∑
𝑖=2

𝑔1𝑔𝑖𝑝1𝑝𝑖𝑝 (0)
(1 − 𝑝1) (1 − 𝑝𝑖)

+
5

∑
𝑖=3

𝑔2𝑔𝑖𝑝2𝑝𝑖𝑝 (0)
(1 − 𝑝2) (1 − 𝑝𝑖)

+
5

∑
𝑖=4

𝑔3𝑔𝑖𝑝3𝑝𝑖𝑝 (0)
(1 − 𝑝3) (1 − 𝑝𝑖)

+
5

∑
𝑖=5

𝑔4𝑔𝑖𝑝4𝑝𝑖𝑝 (0)
(1 − 𝑝4) (1 − 𝑝𝑖)

(9)

When a pedestrian chooses other cells or is at other
positions, the method used to calculate their expected com-
fort utility is the same. Further, to keep pedestrians in the
tunnel, the expected comfort utility is defined as negative
infinity when the target cell is beyond the upper or the lower
boundaries.

3.4. CollisionAvoidanceAction. Inmostmicroscopicmodels,
conflicts occur when pedestrians make decisions or move at
the same time, as each cell can contain only one pedestrian. If
conflicts are not properly dealt with in the model, pedestrians
will go directly through other pedestrians or some other
uncontrollable phenomena will occur, which inevitably leads
to a false conclusion. This paper allows two or more pedes-
trians to share a cell and as a result avoids conflicts caused by
pedestrians making simultaneous decisions; however, when

Pedestrians walking from left to right

Pedestrians walking from right to left

Figure 5: Collisions when pedestrians move simultaneously.

two or more pedestrians move at the same time, once their
routes intersected, these collisions are still unavoidable in the
model, as shown in Figure 5.

As we all know, collisions seldom happen even in
extremely dense crowds because pedestrians can generally
perceive possible collisions before happening and immedi-
ately change their routes. This paper, therefore, makes a rule
that if a collision is likely to happen, each of the involved
pedestrians changes their decisions to an adjacent alternative
cell with a chance of 𝑝𝑎V𝑜𝑖. Based on the above collision
definition, it can be concluded that collisions can only occur
between pedestrians moving in opposite directions, as shown
in Figure 5. For instance, a pedestrian in Cell (r, c-1) walking
from left to right predicts a collision only when they choose
Cell (r-1, c) or Cell (r+1, c) and if there are pedestrians in Cell
(r, c) walking from right to left. It is important to note that
even if the pedestrian in Cell (r, c-1) does not change their
decision, there is still a chance that a collision does not occur
as pedestrians in Cell (r, c) may not choose the same cell.
From this point of view, the chance that a pedestrian changes
theirminds to avoid a collision should be approximated to the
possibility that a collision may occur. In this research, 𝑝𝑎V𝑜𝑖 is
defined as follows:

𝑝𝑎V𝑜𝑖

=
{
{
{

1 − (1 − 𝑝4)𝑛
𝑙
𝑟,𝑐 , when chossing Cell (r − 1, c)

1 − (1 − 𝑝2)𝑛
𝑙
𝑟,𝑐 , when chossing Cell (r + 1, c)

(10)

where 𝑛𝑙𝑟,𝑐, 𝑝2, and 𝑝4 are in accordance with previous
sections.

3.5. Decision-Making Process. The detailed process for the
pedestrians’ decision-making is shown in Figure 6. In each
time step, a pedestrian calculates its utilities of all available
choices. After that, it chooses the cell with maximal expected
utility as its target cell.Then it takes an action to avoid possible
collisions. Finally, it moves into the chosen cell and begins
the next decision-making round until passing through the
tunnel.
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Figure 6: Pedestrian decision-making flow chart.

Before simulation, the length and the width of the tunnel,
the pedestrian flow rate, and the probabilities from𝑝0 to 𝑝5
are put into the model to initialize the experimental envi-
ronment. During simulation, each pedestrian agent makes
decisions according to the flow chart. After simulation,
experimental data, such as the real-time velocity and real-
time pedestrian distribution, are collected and analyzed.

4. Running the Simulation

4.1. Parameters Initialization. Thesimulation is based on data
collected from a real tunnel about 300m long and 10m wide
with a 12ped/s peak pedestrian flow. The peak of pedestrian
flow lasts about 15 minutes. Over 10 gigabytes of videos
on pedestrian movements is collected from the monitoring
system.Through statistical analyzing, the possibilities of each
alternative cell being chosen by the pedestrians are found
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Figure 7: Transformation of the Velocity of Pedestrian Flow over
time (The dashed line represents measured data in the real situation
and the fitting curve shows experimental data in the simulation).

to be 𝑝0 = 𝑝4 = 0.1, 𝑝1 = 𝑝3 = 0.2, 𝑝2 = 0.35,
𝑝5 = 0.05 on average. After the simulation begins, the
pedestrians walk into the tunnel from either of the two
ends, and experimental data are collected and analyzed after
1200 seconds (20 minutes) to identify characteristics of the
pedestrian flow in the tunnel. The detailed input parameter is
listed in Table 3.

4.2. Model Calibration and Validation. An important pedes-
trian flow indicator, the Velocity of Pedestrian Flow (VPF),
is defined as the average speed of all pedestrians in the
tunnel at the same time. In Figure 7, the red dashed line
stands for the actual average speed of pedestrians passing
through tunnel, which is about 1.125m/s, while the blue
fitting curve represents the VPF transformed over time in
simulation. Though the model assigned an initial speed of
1.4m/s to each pedestrian (0.7m each step and two steps each
second), it can be found from the experimental data that
overall the pedestrians pass through the tunnel at a speed of
around 1.11m/s. Considering the measurement error, it can be
concluded that the VPF in the simulation experiment agrees
with the real situation.

Figure 8 demonstrates the number of pedestrians getting
out of tunnel over time, with circles representing data of real
situation and the blue curve representing data of simulation.
Each circle stands for the average number of pedestrians in a
minute. It can be found that the peak number of pedestrians
getting out of tunnel highly accords with the real situation.
From Figures 7 and 8, it can be concluded that the proposed
model can effectively mimic the bidirectional pedestrian
flow.
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Table 3: Parameters of the simulation.

Name Value
Tunnel length 300m
Tunnel width 10m
The peak rate of pedestrian flow 12 ped/s
The time that pedestrian flow peak last 15 minutes
Simulation time 20 minutes
The possibilities of each alternative cell being chosen by the pedestrians {𝑝0, 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5} {0.05, 0.10, 0.20, 0.35, 0.20, 0.10}
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Figure 8: Number of pedestrians getting out of tunnel varies over
time (circles show data collected from tunnel and the blue curve
shows data collected from simulation).

4.3. Simulation Experiments inDifferent Scenarios. After cali-
brating and validating the model, experiments are conducted
in several different scenarios to explore different circum-
stances. The Average Velocity of Pedestrian Flow (AVPF)
is the average VPF from the beginning of the experiment
to the end and reflects the efficiency of the pedestrian flow
in the tunnel. To ensure the result’s correctness, simulation
experiments terminate after 3600 seconds (an hour) when
researching the Safe Pedestrian Flow Rate.

To study the factors that influence the AVPF, experiments
in scenarios with different tunnel lengths, different tunnel
widths, and different pedestrian flow rates are conducted, and
the results are shown in Figure 9.There are nine subgraphs in
Figure 9, each with a layout of three rows and three columns.
The left to right subgraphs in the three columns are the results
for tunnel widths of 3m, 5m, and 10m, while the top to
bottom subgraphs in the three rows show the experimental
results for tunnel lengths of 100m, 200m, and 300m (this
research has conducted experiments in various scenarios,
such as different tunnel lengths (under 100m, exceeding
300m), different tunnel widths (under 3m, exceeding 10m),

different rates of pedestrian flow (under 3ped/s, exceeding
12ped/s), and has gotten similar results. This paper chooses
data collected in some typical scenarios to display). The line
in each subgraph indicates the AVPF changing with the
pedestrian flow increasing from 3ped/s to 12ped/s in each
scenario.

It can be seen from Figure 9 that subgraphs in the same
columnhave fewdifferences, indicating that the tunnel length
has limited effect on the AVPF; however, as lines varied
across the same row, the tunnel width is found to have a
significant influence on the AVPF; that is, the AVPF increases
as the width broadened. Curves in each subgraph decrease
as the pedestrian flow rate increases; therefore, it can be
surmised that thewider the tunnel is, theweaker the influence
of pedestrian flow rate has on the AVPF. In summary, the
simulations indicate that the tunnel width and the pedestrian
flow rate significantly affect theAVPF, while tunnel length has
limited influence.

It is a common sense that the greater the pedestrian
density is, the more dangerous the space will be. As the
model allows more than one pedestrian to stand in a cell,
potential risk will increase with the number of pedestrians
in a cell growing. This research collects real-time data of
pedestrian distribution in the tunnel throughout experi-
ments and the average data for the pedestrian distributions
in different scenarios during experiments are displayed in
Figure 10.

In accordance with Figure 9, subgraphs in Figure 10
show average pedestrian distributions with different tunnel
lengths, different tunnel widths, and different pedestrian
rates. In each subgraph, there are five differently colored
bars, which represent the percentages of cells containing zero
pedestrians, one pedestrian, two pedestrians, three pedestri-
ans, and over three pedestrians. From a comparative analysis,
it is concluded that tunnel length has a limited impact on
pedestrian distribution, but tunnel width has a significant
influence. Concretely, the proportion of multipedestrian cells
increases while the tunnel width narrows down, and in cer-
tain tunnels, the ratio of cells containing multiple pedestrians
increases with the pedestrian rate. Besides, it can be found
that, except for the extreme conditions (3m wide tunnel with
12ped/s), the percentage of cells containing more than three
pedestrians is below 5%, which indicates that pedestrians
in the simulation are under tolerable situations (pedestrian
density under 9ped/m2) [2].

As tunnel length is found to have limited impact on
pedestrian flow movements, experiments are conducted



Complexity 9

Width:3m Width:5m Width:10m

Length:100m
Length:200m

Length:300m
Av

er
ag

e V
elo

ci
ty

 o
f P

ed
es

tr
ia

n 
Fl

ow
 (m

/s
)

Rate of Pedestrian Flow (Ped/s)

3 6 9 12 3 6 9 12 3 6 9 12

0.90

0.95

1.00

1.05

1.10

0.90

0.95

1.00

1.05

1.10

0.90

0.95

1.00

1.05

1.10

Figure 9: Average pedestrian flow velocities in different scenarios.

using a fixed tunnel length of 100m. Experimental data
are collected in scenarios with different tunnel widths and
different pedestrian flow rates. Figure 11 shows the average
pedestrian density from the start to the completion of
each experiment. The three lines in the figure, respectively,
illustrate the average density transferring with the pedestrian
rate when the tunnel widths are, respectively, 3m, 5m, and
10m. From the experimental data, it is found that tunnel
width and pedestrian flow rate have significant influences
on average density. Therefore, based on the critical density
definition (4ped/m2), the SPFR is a function of tunnel width;
that is, under certain circumstances, the SPFR is only related
to tunnel width.

Through the many simulation experiments, SPFRs are
collected under different scenarios, the fitting curve for which
is shown in Figure 12, and the function is as follows:

𝑦 = 2.9643𝑥 − 1.0333 (11)

where y is the SPFR and x is the tunnel width. We
thus conclude that the SPFR has a linear relationship with
tunnel width. Specifically, the SPFR increases by 2.96ped/s
as the tunnel width is expanded by 1m, which can be useful
information for managing pedestrian flows and designing
public places.
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Figure 10: Pedestrian flow distributions in different scenarios.

5. Simulation Experiments with
Walking Preferences

5.1. Improved Simulation Model. In the former experiments,
pedestrians use the Bayesian-Nash Equilibrium to estimate
their expected utility for each choice. After that they take
collision avoidance actions before moving into their chosen
cells. However, pedestrians usually have preferences when
making their own decisions; for example, pedestrians in
China usually walk in the right while in Japan, they walk in
the left. Further, adults tend to move forward, while children
are more likely to move around. Therefore, even in the same
situations, different pedestrians will make different decisions
based on their preferences. As walking preferences affect
pedestrian decisions, which may affect the pedestrian flow,

the model is improved to study in depth the influence of
microscopic walking preferences on macroscopic pedestrian
flows.

A weight coefficient set 𝜔 is employed to illustrate
pedestrian walking preferences; when a pedestrian makes
their preferred choice, their comfort utility is 𝜔 times the
previous. In the improved model, the total utility that a
pedestrian expects to gain is defined as

𝜇󸀠𝑖 = 𝜇𝑚𝑖 + 𝜔𝑖𝜉𝑐𝑖 (12)

where 𝑖 is the serial number of the six choices, in which
the numbering rule is in accordance with the possibility 𝑝 in
Figure 3, 𝜇󸀠𝑖 denotes the total expected utility of choice 𝑖, 𝜇𝑚𝑖
and 𝜉𝑐𝑖, respectively, are the expected movement utility and
the comfort utility, and 𝜔𝑖 denotes the pedestrian preference



Complexity 11

Table 4: Weight coefficient set in each scenario.

Scenario The weight coefficient set
Comparison Scenario (NoWalking Preference) 𝜔0 = 𝜔1 = 𝜔5 = 1.0, 𝜔2 = 𝜔3 = 𝜔4 = 1.0;
Experimental Scenarios (Forward walking Preferences) 𝜔0 = 𝜔1 = 𝜔5 = 1.0, 𝜔2 = 𝜔3 = 𝜔4 ∼ 𝑁(𝜔𝑓, 0.12);
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Figure 11: Pedestrians’ density transformation over the pedestrian
flow rate in the different scenarios.
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Figure 12: Safe pedestrian flow rate varying over tunnel width.

degree for choice 𝑖. The two subgraphs in Figure 13 show
the expected comfort utilities with and without walking
preferences for pedestrians walking from left to right. By
adjusting the weight coefficients, the walking preferences that
affect pedestrian flow are examined in this research.

5.2. Simulation with Walking Preference. Based on the
improved model, experiments are conducted with forward
walking preferences and right walking preferences; the tunnel
in each experiment is 100m, the width is 10m, and the rate of
pedestrian flow entering the tunnel from both ends is 12ped/s
in total.

(1) Forward Walking Preference. When a pedestrian is eager
to move out of a tunnel, they tend to prefer cells in front.
Therefore, to examine effects of forward walking preferences
on pedestrian flow, comparative experiments in different
scenarios are conducted. The weight coefficient set 𝜔 com-
binations for each scenario are shown in Table 4.

As different pedestrians may have different forward walk-
ing preferences, in the experimental scenarios the pedestrian
preference degrees for cells in front are expected to obey a
normal distribution with a mean value 𝜔𝑓 and a standard
deviation 0.1. It can be found that the pedestrian preference
degree for the cells in front increases with𝜔𝑓 , and the number
of pedestrians choosing the front cells increases as well.
Figure 14 demonstrates the relationship between the AVPF
and 𝜔𝑓.

From Figure 14, it can be observed that the AVPF is about
1.1m/s when pedestrians have no forward walking prefer-
ences; however, when 𝜔𝑓 ≤ 1.2, the AVPF increases with 𝜔𝑓
and decreases when 1.2 ≤ 𝜔𝑓 ≤ 1.6. This is mainly because
the pedestrian’s desire to exit the tunnel increases, resulting
in the pedestrians’ distribution becoming uneven, and more
pedestrians have to take collision avoidance actions, which in
turn slow down the AVPF.When𝜔𝑓 ≥ 1.6, the AVPF is stable
at around 1.0m/s, which indicates that excessive forward
walking preferences decrease the AVPF. The experiment
indicates that a slight forwardwalking tendency promotes the
pedestrian flow’s movement, which can be used to improve
pedestrian flow’s efficiency in tunnels.

(2) Right Walking Preference. Note that the right in the
walking direction of “from left to right” is relative to the
tunnel, while in the “right-moving preference” it is relative
to the pedestrians themselves. As mentioned, pedestrians in
some areas prefer walking in the right, while in other areas
they prefer walking in the left.The right walking pedestrian is
taken as an example to examine the effect of side preferences
on pedestrian flow. Note that naturally a pedestrian’s right
walking preference is no more than a forward walking
preference; that is, pedestrians choose vacant cells in front
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Figure 13: Expected comfort utilities for pedestrian choices with/without walking preferences.
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Figure 14: Average Velocity of Pedestrian Flow varying over 𝜔𝑓.

first. Therefore, the weight coefficient set 𝜔 combinations
in each right walking preference experiment are shown in
Table 5.

Similarly, the pedestrian’s right moving preference degree
is defined to obey a normal distribution with a mean value
𝜔𝑟 and a standard deviation 0.1. It can be found that the
pedestrian preference degree to right hand cells increases
with 𝜔𝑟. Because of the right walking preference, which
keeps bidirectional pedestrians in good order, pedestrians in
two directions are divided into two lanes immediately. As a
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Figure 15: Average Velocity of Pedestrian Flow varying over 𝜔𝑟.

result, the right walking preference increases AVPF overall,
which is different from forward walking preferences. Further,
when 𝜔𝑟 ≥ 1.4, the AVPF fluctuated around 1.26m/s, which
indicates that a right walking preference has a limited effect
on the AVPF. This is mainly because, with 𝜔𝑟 increasing, the
right hand side becomes crowded, and the speed is restrained.
Figure 15 shows the AVPF changes over 𝜔𝑟.

We thus conclude that it is beneficial for pedestrians to
walk on the right (or left) as this separates the bidirectional
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Table 5: Weight coefficient set in each scenario.

Scenario The weight coefficient set
Comparison Scenario (NoWalking Preferences) 𝜔0 = 𝜔1 = 𝜔2 = 1.0, 𝜔3 = 𝜔4 = 𝜔5 = 1.0;
Experimental Scenarios (Right walking Preferences) 𝜔0 = 𝜔1 = 𝜔2 = 1.0, 𝜔3 = 𝜔4 = 𝜔5 ∼ 𝑁(𝜔𝑟, 0.12);
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Figure 16: Safe rate of pedestrian flow with variances in tunnel
width and walking preference.

pedestrians and improves walking speeds. Therefore, by
comparing Figures 14 and 15, it can be seen that side walking
preferences better improve pedestrian flow efficiency than
forward walking preferences.

5.3. Safe Rate of Pedestrian Flow considering Walking Prefer-
ences. Therefore, it has been proven that both forward walk-
ing and sidewalking preferences influence average pedestrian
flow velocity, which can affect the SPFR. To examine this
further, simulation experiments over seven scenarios are
conducted to explore this effect. The seven scenarios are a
comparison scenario (no walking preferences), three forward
walking preference scenarios (𝜔𝑓 = 1.2, 1.4, 1.6), and three
side walking scenarios (𝜔𝑟 = 1.2, 1.4, 1.6). In each scenario,
many experiments are conducted to assess the SPFR effect, as
shown in Figure 16.

As can be seen in Figure 16, both forward walking
and side walking preferences increase the SPFR to some
degree. The side walking preference (right) always increased
the SPFR; however, the increase is not very obvious when
𝜔𝑟 ≥ 1.4. In the forward walking preference, the SPFR first
increases and then decreases, with the conclusion being that,
in consideration of public safety, the SPFR should not exceed
that in the comparison scenario; that is,

𝑦 = 2.9643𝑥 − 1.0333 (13)
where y is the SPFR and x is the tunnel width. In other

words, the total flow rate of pedestrians entering a tunnel
from both ends should satisfy this relationship for security
reasons; that is, the SPFR can increase by 2.96ped/s as the
tunnel width expands by 1m.

6. Conclusion

This paper studies crowd management by combining a mul-
tiagent system with the Bayesian-Nash Equilibrium. In the
model, pedestrians make decisions based on their expected
utility, which is calculated through the Bayesian-Nash Equi-
librium and their own preferences, and then take collision
avoidance actions before moving. The proposed model is
calibrated and validated using data collected from a real
tunnel. Simulation experiments over multiple scenarios are
then conducted. From the experimental data, we find that
the Safe Pedestrian Flow Rate increased by 2.96ped/s as
the tunnel width expanded by 1m. We also find that both
forward walking preferences and side (left or right) walking
preferences are able to improve average pedestrian flow
velocity, which can be beneficial for the crowd management.

Different from other researches, this paper focuses on
mitigating the harmful effects caused by crowd accidents
through managing safe pedestrian flows in advance. That is,
according to the conclusion, crowdmanagers can decide how
many pedestrians are allowed to go through a tunnel at the
same time. Since the emergency management for crowds is a
social science, which ismainly based on experience, our work
can give references for the mangers and be beneficial for the
public safety.

However, even at a low pedestrian flow rate, pedes-
trians may panic in an emergency; therefore, in future
research, pedestrian psychology, social relationships, infor-
mation transmission, and obstacles should be considered for
results that are more accurate.
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available from the corresponding author upon request.



14 Complexity

Conflicts of Interest

On behalf of all authors, the corresponding author states that
there are no conflicts of interest.

Acknowledgments

This research is supported by the National Natural Science
Foundation of China (No. 71473232, No. 71573237, 71874165),
New Century Excellent Talents in University of China
(No. NCET-13-1012), Research Foundation of Humanities
and Social Sciences of Ministry of Education of China
(No.15YJA630019), China Institute of Geo-Environment
Monitoring (No. 0001212016CC60013), and Natural Science
Foundation of Hubei Province of China (No. 2016CFB503).

References

[1] G. N. Rutty, Essentials of Autopsy Practice, Springer Interna-
tional Publishing, Cham, 2017.

[2] R. L. Hughes, “A continuum theory for the flow of pedestrians,”
Transportation Research Part B: Methodological, vol. 36, no. 6,
pp. 507–535, 2002.

[3] L. Huang, S. C. Wong, M. Zhang, C.-W. Shu, andW. H. K. Lam,
“Revisiting Hughes’ dynamic continuum model for pedestrian
flow and the development of an efficient solution algorithm,”
Transportation Research Part B: Methodological, vol. 43, no. 1,
pp. 127–141, 2009.

[4] Lu. Chunxia, “Analysis on the Wave of Pedestrians,” China Saf.
Sci. J, vol. 16, no. 2, p. 30, 2006.

[5] D. Helbing, M. Isobe, T. Nagatani, and K. Takimoto, “Lattice
gas simulation of experimentally studied evacuationdynamics,”
Physical Review E: Statistical, Nonlinear, and So�Matter Physics,
vol. 67, no. 6, 2003.

[6] Y. Han and H. Liu, “Modified social force model based on
information transmission toward crowd evacuation simula-
tion,” Physica A: Statistical Mechanics and its Applications, vol.
469, pp. 499–509, 2017.

[7] C. Ningbo, W. Wei, Q. Zhaowei, Z. Liying, and B. Qiaowen,
“Simulation of Pedestrian Crossing Behaviors at Unmarked
Roadways Based on Social Force Model,” Discrete Dynamics in
Nature and Society, vol. 2017, 2017.

[8] L. A. Pereira, D. Burgarelli, L. H. Duczmal, and F. R. B. Cruz,
“Emergency evacuationmodels based on cellular automatawith
route changes and group fields,” Physica A: Statistical Mechanics
and its Applications, vol. 473, pp. 97–110, 2017.

[9] H. Yue, H. Guan, J. Zhang, and C. Shao, “Study on bi-direction
pedestrian flow using cellular automata simulation,” Physica A:
StatisticalMechanics and its Applications, vol. 389, no. 3, pp. 527–
539, 2010.

[10] B. Basak and S. Gupta, “Developing an agent-based model
for pilgrim evacuation using visual intelligence: A case study
of Ratha Yatra at Puri,” Computers, Environment and Urban
Systems, vol. 64, pp. 118–131, 2017.

[11] N. Wagner and V. Agrawal, “An agent-based simulation system
for concert venue crowd evacuation modeling in the presence
of a fire disaster,” Expert Systems with Applications, vol. 41, no.
6, pp. 2807–2815, 2014.

[12] N. Wijermans, C. Conrado, M. van Steen, C. Martella, and J.
Li, “A landscape of crowd-management support: An integrative
approach,” Safety Science, vol. 86, pp. 142–164, 2016.
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mann, “Bidirectional coupling of macroscopic andmicroscopic
pedestrian evacuationmodels,” Safety Science, vol. 50, no. 8, pp.
1695–1703, 2012.

[18] M. Zhou, H. Dong, F.-Y. Wang, Q. Wang, and X. Yang,
“Modeling and simulation of pedestrian dynamical behavior
based on a fuzzy logic approach,” Information Sciences, vol. 360,
pp. 112–130, 2016.

[19] M. Kaji and T. Inohara, “Cellular automaton simulation of
unidirectional pedestrians flow in a corridor to reproduce the
unique velocity profile of Hagen–Poiseuille flow,” Physica A:
Statistical Mechanics and its Applications, vol. 467, pp. 85–95,
2017.

[20] G. H. Goldsztein, “Crowd of individuals walking in opposite
directions. A toy model to study the segregation of the group
into lanes of individuals moving in the same direction,” Physica
A: Statistical Mechanics and its Applications, vol. 479, pp. 162–
173, 2017.

[21] Lili Lu, Gang Ren, Wei Wang, Chen Yu, and Chenzi Ding,
“Exploring the Effects of Different Walking Strategies on Bi-
Directional Pedestrian Flow,” Discrete Dynamics in Nature and
Society, vol. 2013, Article ID 150513, 9 pages, 2013.

[22] S. Ye, L. Wang, K. H. Cheong, and N. Xie, “Pedestrian Group-
Crossing BehaviorModeling and Simulation Based onMultidi-
mensional Dirty Faces Game,” Complexity, vol. 2017, Article ID
1723728, 12 pages, 2017.

[23] A. Abdelghany, K. Abdelghany, H. Mahmassani, and W. Alhal-
abi, “Modeling framework for optimal evacuation of large-scale
crowded pedestrian facilities,” European Journal of Operational
Research, vol. 237, no. 3, pp. 1105–1118, 2014.

[24] J. Guan, K. Wang, and F. Chen, “A cellular automaton model
for evacuation flow using game theory,” Physica A: Statistical
Mechanics and its Applications, vol. 461, pp. 655–661, 2016.

[25] M. Tang, H. Jia, B. Ran, and J. Li, “Analysis of the pedestrian
arching at bottleneck based on a bypassing behavior model,”
Physica A: Statistical Mechanics and its Applications, vol. 453, pp.
242–258, 2016.

[26] B. L. Mesmer and C. L. Bloebaum, “Modeling decision and
game theory based pedestrian velocity vector decisions with
interacting individuals,” Safety Science, vol. 87, pp. 116–130, 2016.

[27] N. Guo, Q.-Y. Hao, R. Jiang, M.-B. Hu, and B. Jia, “Uni- and
bi-directional pedestrian flow in the view-limited condition:
Experiments and modeling,” Transportation Research Part C:
Emerging Technologies, vol. 71, pp. 63–85, 2016.

[28] R. A. Kady, “The development of a movement-density relation-
ship for people going on four in evacuation,” Safety Science, vol.
50, no. 2, pp. 253–258, 2012.



Complexity 15

[29] M. Haghani and M. Sarvi, “Stated and revealed exit choices
of pedestrian crowd evacuees,” Transportation Research Part B:
Methodological, vol. 95, pp. 238–259, 2017.

[30] L. Lu, C.-Y. Chan, J.Wang, andW.Wang, “A study of pedestrian
group behaviors in crowd evacuation based on an extended
floor field cellular automaton model,” Transportation Research
Part C: Emerging Technologies, vol. 81, pp. 317–329, 2017.

[31] G. Zhang, D. Huang, G. Zhu, andG. Yuan, “Probabilistic model
for safe evacuation under the effect of uncertain factors in fire,”
Safety Science, vol. 93, pp. 222–229, 2017.

[32] K. Huang and X. Zheng, “A weighted evolving network model
for pedestrian evacuation,”Applied Mathematics and Computa-
tion, vol. 298, pp. 57–64, 2017.

[33] L. Fu, W. Song, and S. Lo, “A fuzzy-theory-based method for
studying the effect of information transmission on nonlinear
crowd dispersion dynamics,” Communications in Nonlinear
Science and Numerical Simulation, vol. 42, pp. 682–698, 2017.

[34] Y. Li, H. Liu, G.-P. Liu, L. Li, P. Moore, and B. Hu, “A grouping
method based on grid density and relationship for crowd
evacuation simulation,” Physica A: Statistical Mechanics and its
Applications, vol. 473, pp. 319–336, 2017.

[35] F. Guo, X. Li, H. Kuang, Y. Bai, and H. Zhou, “An extended cost
potential field cellular automata model considering behavior
variation of pedestrian flow,” Physica A: Statistical Mechanics
and its Applications, vol. 462, pp. 630–640, 2016.

[36] S. Li, J. Zhuang, S. Shen, and J. Wang, “Driving-forces model
on individual behavior in scenarios considering moving threat
agents,”Physica A: Statistical Mechanics and its Applications, vol.
481, pp. 127–140, 2017.

[37] X. Li, F. Guo, H. Kuang, and H. Zhou, “Effect of psychological
tension on pedestrian counter flow via an extended cost
potential field cellular automaton model,” Physica A: Statistical
Mechanics and its Applications, vol. 487, pp. 47–57, 2017.
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