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In this paper, a nutrient-phytoplankton model, which is described by a system of ordinary di�erential equations incorporating the
e�ect of cell size, and its corresponding stochastic di�erential equation version are studied analytically and numerically. A key
advantage of considering cell size e�ect is that it can more accurately reveal the intrinsic law of interaction between nutrient and
phytoplankton.�emain purpose of this paper is to research how cell size a�ects the nutrient-phytoplankton dynamics within the
deterministic and stochastic environments. Mathematically, we show that the existence and stability of the equilibria in the
deterministic model can be determined by cell size: the smaller or larger cell size can lead to the disappearance of the positive
equilibrium, but the boundary equilibrium always exists and is globally asymptotically stable; the intermediate cell size is capable
to drive the positive equilibrium to appear and be globally asymptotically stable, whereas the boundary equilibrium becomes
unstable. In the case of the stochastic model, the stochastic dynamics including the stochastic extinction, persistence in the mean,
and the existence of ergodic stationary distribution is found to be largely dependent on cell size and noise intensity. Ecologically,
via numerical simulations, it is found that the smaller cell size or larger cell size can result in the extinction of phytoplankton,
which is similar to the e�ect of larger random environmental �uctuations on the phytoplankton. More interestingly, it is
discovered that the intermediate cell size is the optimal size for promoting the growth of phytoplankton, but increasing ap-
propriately the cell size can rapidly reduce phytoplankton density and nutrient concentrations at the same time, which provides a
possible strategy for biological control of algal blooms.

1. Introduction

Phytoplankton blooms, which can negatively a�ect the
aquatic ecosystems, human health, marine �sheries, and
local economy, are growing in frequency, magnitude, and
duration globally in recent years [1, 2]. For example, in 2007,
serious harmful algal blooms broke out in Lake Taihu,
resulting in about 2 million people in Wuxi city short of
drinking water for more than a week [3]. In 2011, Lake Erie
experienced a record-breaking harmful algal bloom, with a
peak intensity more than three times the previously observed
algal blooms [4].�ese have stimulated a number of scholars
to study the dynamics of phytoplankton growth by many

di�erent ways, in order to explore the possible mechanisms
underlying the occurrence or termination of these blooms.
Nevertheless, such a mechanism in response to the phe-
nomena of blooms is still under investigation due to the
diversity and complexity of in�uencing factors that can
a�ect the growth of phytoplankton in the real aquatic
ecological environments. Hence, the research in seeking for
some key factors a�ecting the growth mechanisms of
phytoplankton is currently of great interest.

However, in the real aquatic environments, the growth of
phytoplankton is generally in�uenced by many biotic and
abiotic factors, such as light [5], cell size [6], climate [7],
grazer [8], carbon dioxide [9], nutrient [10], and
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temperature [11], which make it difficult to determine a clear
mechanism of phytoplankton blooms only through exper-
imental studies. Actually, many ecologists, biologists, and
biomathematicians increasingly realize that a mathematical
model is a powerful tool for exploring biological and
physical processes on the dynamic mechanisms of phyto-
plankton growth in relation to different factors qualitatively
and quantitatively [12, 13], as the research results can help us
to find out the key factors that may induce the blooms of
phytoplankton but are difficult to predict in the experi-
mental analysis, to answer that what the growth mechanism
of phytoplankton is, to predict possibly when the phyto-
plankton blooms will occur, and to determine the optimal
strategy for possible control of phytoplankton blooms
[14–25]. +e application of mathematical models in other
research fields, such as investigating other predator-prey
dynamics or infectious disease dynamics, can be found in
[26–37].

In 1949, Riley et al. [38] first used the mathematical
model to study the nutrient-plankton dynamics, which
leads to the formulation of a growing number of math-
ematical models to describe the nutrient-phytoplankton
dynamics or nutrient-plankton dynamics, and many dy-
namic mechanisms of phytoplankton growth response to
various factors have been revealed [14, 15, 22, 39–47]. For
example, Chen et al. [43] showed that the proper control
of the ratio for nitrogen and phosphorus can more ef-
fectively control and eliminateblue-green algae blooms.
Pal et al. [44] indicated that the toxin produced by
phytoplankton plays a crucial role in the termination of
planktonic blooms when the nutrient concentration is
very high. Dai et al. [39] signified that time delay not only
induces instability of a positive equilibrium but also
promotes the formation of patchiness. Chatterjee et al.
[41] observed that the nutrient input rate specially caused
by artificial eutrophication has a great influence on
controlling the planktonic blooms and maintaining sta-
bility around the coexistence equilibrium. +ese excellent
results have made a great contribution to the research
processes related to the possible mechanisms for the
formation or termination of phytoplankton blooms,
which in turn indicate that the modeling studies are an
alternative, effective, and feasible method to investigate
some important factors that may reveal the nature of the
blooms of phytoplankton occurring frequently in various
water bodies around the world.

Most of the existing mathematical modeling studies on
the nutrient-phytoplankton dynamics or nutrient-plank-
ton dynamics usually assume that the nutrient uptake rate,
phytoplankton sinking rate, phytoplankton growth rate,
and so on are independent of cell size [12, 14, 15, 22,
39–45], which have, in part, been considered to be un-
realistic because the factor of cell size is capable to sig-
nificantly affect the dynamic mechanisms of phytoplankton
growth [48]. In fact, cell size is a master functional trait that
virtually affects every aspect of phytoplankton biology at
the cellular, population, and community levels [49]. Hence,
the cell size of phytoplankton not only defines their
metabolic activity, growth rates, and numerical abundance

but also strongly affects their contributions to bio-
geochemical cycles via size-dependent sinking and in-
fluences community structure and dynamics via size-
dependent species interactions [50–53]. A recent re-
markable experimental work, in this research direction,
was carried out by Marañón et al. [6], where they further
determined experimentally that the growth rate, metabolic
rate, and nutrient uptake rate of phytoplankton are size-
dependent by using cultures of 22 species of marine
phytoplankton from five phyla, ranging from 0.1 to 106μm3

in cell volume. Furthermore, by performing an in situ test
of Raven’s prediction that there is a reversal of the re-
lationship between cell size and maximum achievable
growth rate in unicellular algae at the low end of size
classes, Bec et al. [54] found that the biomass specific
production and growth rates are similar in both small and
large cells but peak at intermediate cell sizes. Nevertheless,
despite these facts, there is little theoretical explanation on
how cell size affects the growth mechanism of phyto-
plankton. In recent years, a review of relevant literature
shows that several plankton models taking into account the
effect of cell size have been reported [55–57]. More spe-
cifically, Pu et al. [56] indicated that the coevolutionary
dynamics of plankton is closely related to cell size. Zhao et
al. [57] found that the cell size can significantly affect the
growth and reproduction of phytoplankton. +e cell size
plays an important role in the dynamics of interacting
phytoplankton, which has been clearly demonstrated by
these recent studies.

In spite of the importance of cell size, a comprehensive
understanding towards the dynamic mechanism for phy-
toplankton growth in relation to cell size is still lacking.
Hence, naturally, some questions arise. How cell size affects
the nutrient concentration and phytoplankton density?
Can the cell size affect the existence and stability of the
equilibria? In order to find out the answers to these
questions, motivated by these works [12, 55, 56, 58], in the
present study, we propose and investigate a nutrient-
phytoplankton model, incorporating the effect of cell size,
as follows:

dN

dt
� I −

μ(x)Q(x)NP

a + N
− mN,

dP

dt
�
μ(x)NP

a + N
− s(x)P − dP,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

subject to the initial conditions N(0) � N0 ≥ 0 and
P(0) � P0 ≥ 0, where N(t) and P(t) are the concentration of
nutrient and the density of phytoplankton at time t, re-
spectively. Here, we assume that I is the input rate of nutrient
from the environments, m is the removal rate of nutrient,
and d is maximum mortality rate of phytoplankton. Let x be
the cell size of phytoplankton; we suppose that
μ(x) � (x/(a1x

2 + a2x + a3)) [55] is the maximum specific
growth rate of phytoplankton as a function of cell size, and
Q(x) � βx3 [55] signifies the nutrient quota which is pro-
portional to the cube of cell size, where ai(i � 1, 2, 3) are
positive empirical constants and β denotes the phyto-
plankton nutrient quota coefficient. +e nutrient uptake rate
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of phytoplankton is assumed to depend on μ(x) and Q(x).
+at is, the term μ(x)Q(x)NP/(a + N) is taken as a
Michaelis–Menten function that may provide a more re-
alistic reflection of nutrient uptake dynamics [12], leading to
a decrease in nutrient concentration, where a is the half-
saturation constant of nutrient. Accordingly, the term
μ(x)NP/(a + N) is the conversion efficiency of nutrient
uptake by phytoplankton, which means that phytoplankton
absorbs nutrient to reproduce offspring and increase the
number of phytoplankton. Suppose that the sinking rate of
phytoplankton is proportional to the square of cell size, i.e.,
s(x) � αx2 [55], where α is a constant whose value is affected
by the density of the water and the algal cell as well as the
viscosity of the water. All the parameters mentioned above
are assumed to be positive. From a biological viewpoint, we
need to ensure that (dP/dt)> 0, so it is assumed that μ(x) −

s(x) − d> 0 be always established by default in the whole
paper.

On the other hand, in the natural world, the aquatic
environment in which phytoplankton lives is always un-
certain and random because of the environmental noise
disturbances [59], such as unpredictable radiation, light
availability, and water temperature variation. Hence, the
parameters contained in deterministic models are usually
assumed to be invariant constants, which have obvious
limitations in modeling the natural ecological systems.
Actually, most of the natural phenomena do not strictly
follow deterministic laws, but rather oscillate randomly
about some average behaviors. A fact further pointed out by
May [60] is that the birth rate, carrying capacity, and other
parameters involved the model should exhibit random
fluctuation to a greater or lesser extent because of the en-
vironmental noise effects. Consequently, using stochastic
differential equation models may reveal the dynamic
mechanisms of phytoplankton growth more accurately
compared to their deterministic counterparts. For these
reasons, some authors recently introduced environmental
noise fluctuations into the aquatic plankton models to study
noise influences on the interplay and growth of phyto-
plankton [61–64]. For example, Yu et al. [61] indicated that
environmental fluctuations play a key role in the termination
of algal blooms. Camara et al. [63] suggested that stochastic
environmental constraints have positive and negative effects
on the life of Daphnia and algae populations. Obviously, the
environmental fluctuations have a vital role in the dynamics
of phytoplankton growth. In other words, stochastic envi-
ronmental disturbance effects should be considered when
mathematical models are used to study and model the
ecological systems in nature.

Consequently, we introduce white noise perturbations
into the deterministic model (1). In the existing literature,
there are many different ways to incorporate the noise
fluctuations into the ecological systems. In this study, by
following the method in [65], we assume that stochastic
environmental fluctuations mainly affect the growth of
phytoplankton μ(x). In this way, μ(x) changes to a random
variable μ(x), and μ(x) � μ(x) + δ _B(t), where B(t) is a
standard Brownian motion defined on a complete proba-
bility space (Ω,F, (Ft)t≥0,P), _B(t) indicates the white

noise, and δ represents the intensity of the white noise.
+erefore, by replacing μ(x) in the deterministic model (1)
with μ(x) + δ _B(t), i.e.,

−
mu(x)Q(x)NP

a + N
⟶ −

μ(x)Q(x)NP

a + N
−
δμ(x)Q(x)NP

a + N
_B(t),

μ(x)NP

a + N
⟶

μ(x)NP

a + N
+
δμ(x)NP

a + N
_B(t),

(2)

and then, model (1) becomes

dN � I −
μ(x)Q(x)NP

a + N
− mN􏼠 􏼡dt − δ

μ(x)Q(x)NP

a + N
dB(t),

dP �
μ(x)NP

a + N
− s(x)P − dP􏼠 􏼡dt + δ

μ(x)NP

a + N
dB(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(3)

In the plankton ecology, the persistence and extinction
of phytoplankton, which determine whether the phyto-
plankton is survival or not in the future, are two important
topics. However, in the existing literature, the issues on how
cell size affects the stochastic extinction and persistence of
phytoplankton and how cell size affects the existence of
ergodic stationary distribution of phytoplankton that de-
notes the weak stability of phytoplankton in a stochastic
sense, and so on remain largely unanswered. In this paper,
we did some works in this research area by studying the
stochastic dynamics of model (3).

+e main purpose of this paper is to investigate how cell
size affects the nutrient-phytoplankton dynamics within the
deterministic and stochastic environments by trying to
answer the questions proposed in this paper.

In order to facilitate the mathematical analysis for model
(1) and model (3) in the following paper, we define

X(x) �
μ(x) − s(x) − d

d + s(x)
> 0, (4)

and we write X(x) as X for simplicity and convenience. +e
rest of this article is organized as follows: in Section 2, we
explore the dynamics of model (1). Section 3 is devoted to
studying the dynamics of model (3). In Section 4, we carry
out the numerical simulations to verify the analytical results.
Section 5 focuses on giving a brief discussion and the
summary of the main results.

2. Dynamics of the Deterministic Model (1)

In this section, we mainly focus on investigating the
positivity and boundedness of the solutions, as well as
studying the existence and stability of the possible equi-
libria in model (1).

2.1. PositivityandBoundedness of the Solutions. Now, we first
present the positivity of the solutions.

Lemma 1. For any initial value (N(0), P(0)) � (N0, P0)> 0,
all the solutions of model (1) are positive invariant.
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Proof. In model (1), we have N(t)> 0 and P(t)> 0 for any
t ∈ [0, B], where B is any positive real number. Suppose this
is not true, then there exists Bτ ∈ (0, B) such that, for any
t ∈ [0, Bτ], N(t)> 0, P(t)> 0, and either N(Bτ) � 0 or
P(Bτ) � 0. Based on the nutrient and phytoplankton
equations in model (1), we can obtain

N(t) � N(0)exp 􏽚
t

0

I

N(s)
−
μ(x)Q(x)P(s)

a + N(s)
− m􏼠 􏼡ds􏼢 􏼣,

P(t) � P(0)exp 􏽚
t

0

μ(x)N(s)

a + N(s)
− d − s(x)􏼠 􏼡ds􏼢 􏼣.

(5)

Since (N(t), P(t)) are defined and continuous in [0, Bτ],
there exists 9≥ 0 such that for all t ∈ [0, Bτ],

N(t) � N(0)exp 􏽚
t

0

I

N(s)
−
μ(x)Q(x)P(s)

a + N(s)
− m􏼠 􏼡ds􏼢 􏼣

≥N(0)exp − Bτ9( 􏼁,

P(t) � P(0)exp 􏽚
t

0

μ(x)N(s)

a + N(s)
− d − s(x)􏼠 􏼡ds􏼢 􏼣

≥P(0)exp − Bτ9( 􏼁.

(6)

Obviously, if (N(0), P(0)) � (N0, P0)> 0 and let
t⟶ Bτ , we have N(Bτ)≥N(0)exp(− Bτ9)> 0 and
P(Bτ)≥P(0)exp(− Bτ9)> 0, which contradict the fact that
either N(Bτ) � 0 or P(Bτ) � 0. Hence, for all t ∈ [0, Bτ],
N(t)> 0 and P(t)> 0. +is completes the proof.

Next, we study the boundedness of the solutions. Let
W(t) � N(t) + Q(x)P(t), then we have
dW

dt
�
dN

dt
+
dP

dt

� I −
μ(x)Q(x)NP

a + N
− mN +

μ(x)Q(x)NP

a + N
− dQ(x)P

− Q(x)s(x)P

� I − mN − (d + s(x))Q(x)P

≤ I − eW,

(7)

where e � min m, (d + s(x)){ }. +us, we have (dW/dt) +

eW≤ I. By using the theory of differential inequality [66], for
all t≥T≥ 0, we have

0≤W(t)≤
I

e
−

I

e
− W(T)􏼒 􏼓exp(− e(t − T)). (8)

Hence,

lim
t⟶∞

sup(N(t) + Q(x)P(t)) ≤
I

e
. (9)

So, we can obtain the theorem as follows. □

Theorem 1. All the solutions of model (1) that start in R2
+ are

uniformly bounded.

2.2. Existence and Stability of Equilibria. +is section is
devoted to investigating the existence and stability of the
possible equilibria in model (1). Now, we first consider the
existence of possible equilibria in model (1).

From the nutrient and phytoplankton equations in
model (1), by performing a simple computation, we have
that model (1) possesses two equilibria as follows:

(a) +e boundary equilibrium E1 � (I/m, 0) always
exists

(b) +e positive equilibrium E∗ � (a/X, (IX − ma)/
(Q(x)(μ(x) − s(x) − d))), provided X> (ma/I)

Next, we deal with the stability of the equilibria in model
(1). +rough direct calculations, the Jacobian matrix of
model (1) at equilibrium E(N, P) is

JE �

−
μ(x)Q(x)aP

(a + N)2
− m −

μ(x)Q(x)N

a + N

μ(x)aP

(a + N)2
Nμ(x) − (d + s(x))(a + N)

a + N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(10)

Obviously, the variational matrix of model (1) at the
boundary equilibrium E1 is

JE1
�

− m −
Iμ(x)Q(x)

I + ma

0
(IX − ma)(d + s(x))

ma + I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

and the two eigenvalues of JE1
are λ1 � − m< 0 and

λ2 � (IX − ma)(d + s(x))/(ma + I). Hence, the stability of
E1 depends on the sign of λ2. +at is, if X< (ma/I), E1 is
locally asymptotically stable and is unstable if X> (ma/I).

+e variational matrix of model (1) at the positive
equilibrium E∗ is given by

JE∗
�

J11 J12

J21 J22

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �

−
X(XI − ma)

a(X + 1)
− m −

μ(x)Q(x)

X + 1

X(XI − ma)

a(X + 1)Q(x)
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(12)

where J11 < 0, J12 < 0, and J21 > 0. +en, it is not difficult to
derive the characteristic equation of the positive equilibrium
E∗ which is λ2 − tr(JE∗

)λ + det(JE∗
) � 0, where tr(JE∗

) �

J11 < 0 and det(JE∗
) � − J21J12 > 0. Based on the Routh–

Hurwitz criterion, the positive equilibrium E∗ in model (1) is
locally asymptotically stable when it exists.

Hence, we have the following result.
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Theorem 2. For model (1), if X< (ma/I), there exists the
only boundary equilibrium E1, which is locally asymptotically
stable; if X> (ma/I), the positive equilibrium E∗ appears and
is locally asymptotically stable, but the boundary equilibrium
E1 becomes unstable.

In what follows, we provide some results concerning the
global stability of the equilibria.

Theorem 3. If X< (ma/I) holds, the boundary equilibrium
of model (1) is globally asymptotically stable.

Proof. Letting E1 � (I/M, 0) � (N1, P1) and defining
f(y) � μ(x)Q(x)y/(a + y) with y ∈ R, we consider the
following function:

V1(N, P) � 􏽚
N

N1

f(s) − f(N)

f(s)
ds + kP, (13)

where k is a positive constant that will be determined in the
paper later.

+e derivative of V1 with respect to the time t along the
solutions of model (1) is

dV1

dt
�

f(N) − f N1( 􏼁

f(N)

dN

dt
+ k

dP

dt

�
f(N) − f N1( 􏼁

f(N)
− m N − N1( 􏼁 − f(N)P( 􏼁

+
k

Q(x)
f(N)P − (s(x) + d)kP

�
− m f(N) − f N1( 􏼁( 􏼁 N − N1( 􏼁

f(N)
+

k

Q(x)
− 1􏼠 􏼡f(N)P

+ f N1( 􏼁 − (d + s(x))k( 􏼁P.

(14)

Now, we obtain k � Q(x)> 0, and then, the above
equation becomes

dV1

dt
�

− m f(N) − f N1( 􏼁( 􏼁 N − N1( 􏼁

f(N)

+ f N1( 􏼁 − (d + s(x))Q(x)( 􏼁P.

(15)

Notice that f(y)> 0 is an increasing function for any
y> 0, and in view of Lemma 1, if
f(N1) − (d + s(x))Q(x) < 0, that is, X< (ma/I), one can
get (dV1/dt)≤ 0 and (dV1/dt) � 0 if and only if
(N, P) � (N1, P1). Hence, Lyapunov–LaSalle’s invariance
principle implies the global asymptotic stability of E1. +is
completes the proof. □

Theorem 4. If X> (ma/I), the positive equilibrium E∗ in
model (1) is globally asymptotically stable.

Proof. We consider such a function:

V2(N, P) � 􏽚
N

N∗

f(s) − f N∗( 􏼁

f(s)
ds + Q(x) 􏽚

P

P∗

s − P∗
s

ds,

(16)

where the function f(y)(y ∈ R) is the same as the definition
above.

+e derivative of V2 with respect to the time t along the
solutions of model (1) is
dV2

dt
�

f(N) − f N1( 􏼁

f(N)

dN

dt
+ Q(x)

P − P∗
P

dP

dt

�
f(N) − f N∗( 􏼁

f(N)
− P∗ f(N) − f N∗( 􏼁( 􏼁 − f(N) P − P∗( 􏼁􏼂

− m N − N∗( 􏼁􏼃 + P − P∗( 􏼁 f(N) − f N∗( 􏼁( 􏼁

� −
P∗ f(N) − f N∗( 􏼁( 􏼁

2

f(N)
−

m N − N∗( 􏼁 f(N) − f N∗( 􏼁( 􏼁

f(N)
.

(17)

A discussion similar to the proof of +eorem 1 shows that
(dV2/dt)≤ 0 and (dV2/dt) � 0 if and only if (N, P) � (N∗,

P∗). Hence, the properties of Lyapunov functional are satisfied,
which indicates that the positive equilibrium E∗ is globally
asymptotically stable when it exists. Considering the local
asymptotical stability of the positive equilibrium, we obtain
+eorem 4. +is ends the proof. □

Remark 1. +eorems 2, 3, and 4 indicate that the local stability
and global stability of the E∗ (or E1) are equivalent, but the
existence and stability of positive equilibrium E∗ and the local
or global stability of boundary equilibrium E1 are opposite.

3. Dynamics of the Stochastic Model (3)

In this section, we study the existence and uniqueness of the
solution, stochastic extinction, persistence in the mean, and
a unique ergodic stationary distribution of model (3). First of
all, we define a bounded set Θ as follows:

Θ � (N, P) ∈ R
2
+ : N + Q(x)P≤

I

e
􏼚 􏼛, (18)

which will be used for the proofs of the following results.

3.1. Existence and Uniqueness of the Positive Solution. In
model (3), the coefficients do not satisfy the linear growth
condition, though they are locally Lipschitz continuous.
Hence, the solution of model (3) may explore at a finite time.
In this section, following the research [65], we prove that
model (3) has a unique global positive solution.

Theorem 5. For any initial value (N0, P0) ∈ Θ, there is a
unique positive solution (N(t), P(t)) of model (3) on t≥ 0,
and the solution will remain in R2

+ with probability one.

Proof. Let (N0, P0) ∈ Θ, based on the nutrient and phy-
toplankton equations in model (3) and by virtue of the
positivity of N and P, we can get
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d(N + Q(x)P)

dt
� I − mN − (s(x) + d)Q(x)P

≤ I − e(N + Q(x)P),

(19)

then limn⟶∞ sup(N + Q(x)P)≤ (I/e), that is,

lim
t⟶∞

supN(t)≤
I

e
,

lim
t⟶∞

supP(t)≤
I

eβx3.

(20)

So, for any c ∈ [0, t], we can obtain

N(c), P(c) ∈ 0,
I

e
􏼒 􏼓 a.s. (21)

Consequently, the setΘ is a positivity invariant tomodel (3).
Since the coefficients of model (3) are locally Lipschitz

continuous, for any given initial value (N0, P0), there is a
unique local solution (N(t), P(t)) on t ∈ [0, τe), where τe is
the explosion time [67]. To show the solution is global, we
need to show that τe �∞.

Let n0 > 0 be sufficiently large for initial values N0 and P0
lying within the interval [1/n0, n0]. For each integer n> n0,
considering the stopping times,

τn � inf t ∈ 0, τn􏼂 􏼁, N(t) ∉
1
n

, n􏼒 􏼓 orP(t) ∉
1
n

, n􏼒 􏼓􏼚 􏼛,

(22)
and we set infΦ �∞ (Φ denotes the empty set). Obviously,
τn is increasing as n⟶∞. Let τ∞ � limn⟶∞τn; hence,
τ∞ ≤ τe a.s.. Next, we only need to show τ∞ �∞. If this is
false, there is a pair of constants T> 0 and ε ∈ (0, 1) such that

P τn ≤T􏼈 􏼉> ε, n≥ n1. (23)

Define a C2− function V : R2
+⟶ R+ by

V(N, P) � − ln
eN

I
􏼒 􏼓 − ln

βx3eP

I
􏼠 􏼡. (24)

Using It􏽢o’s formula [68], we have

dV � −
I

N
+
μ(x)Q(x)P

a + N
+ m +

δ2μ(x)2Q(x)2P2

2(a + N)2
⎡⎣

−
μ(x)N

a + N
+ s(x) + d +

δ2μ(x)2N2

2(a + N)2
􏼣dt

+
δμ(x)(PQ(x) − N)

a + N
dB

≤
μ(x)Q(x)P

a
+ m +

δ2μ(x)2Q(x)2P2

2a2 + s(x) + d􏼢

+
δ2μ(x)2N2

2a2 􏼣dt +
δμ(x)(PQ(x) − N)

a + N
dB

≤
μ(x)I

ae
+ m + s(x) + d +

δ2μ(x)2I2

a2e2
􏼢 􏼣dt

+
δμ(x)(PQ(x) − N)

a + N
dB.

(25)

+erefore,

dV(N(t), P(t))≤φ dt +
δμ(x)(PQ(x) − N)

a + N
dB, (26)

where φ � (μ(x)I/ae) + m + s(x) + d + (δ2μ(x)2I2/a2e2).
+en,

􏽚
τn∧T

0
dV(N(t), P(t))≤ 􏽚

τn∧T

0
φ dt

+ 􏽚
τn∧T

0

δμ(x)(PQ(x) − N)

a + N
dB,

(27)

where τn ∧T � min τn, T􏼈 􏼉. Taking the expectation of the
above inequality, we get

EV N τn ∧T( 􏼁, P τn ∧T( 􏼁( 􏼁≤V N0, P0( 􏼁 + φE τn ∧T( 􏼁

≤V N0, P0( 􏼁 + φT.

(28)

LetΩn � τn ≤T for n≥ n1, by means of (23), then we have
P(Ωn)≥ ε. Note that, for every ϑ ∈ Ωn, there is at least one of
N(τn, ϑ) and P(τn, ϑ) that equals either 1/n or n. +erefore,
V(N(τn, ϑ), P(τn, ϑ)) is not less than

ϕ � min − ln
en

I
􏼒 􏼓 − ln

βex3n

I
􏼠 􏼡, − ln

en

I
􏼒 􏼓 − ln

βex3

In
􏼠 􏼡􏼢 ,

− ln
e

nI
􏼒 􏼓 − ln

βex3n

I
􏼠 􏼡, − ln

e

nI
􏼒 􏼓 − ln

βex3

nI
􏼠 􏼡􏼣.

(29)

It then follows from (28) that

V N0, P0( 􏼁 + φT≥E 1Ωn(ϑ)V(N(t), P(t))􏽨 􏽩≥ εϕ, (30)

where 1Ωn(ϑ) is the indicator function of Ωn. Letting
n⟶∞, we have

∞>V N0, P0( 􏼁 + φT �∞, (31)

which is a contradiction. Hence, we have τ∞ �∞. +at is,
the solution of model (3) will not explore at a finite time with
probability one. +is completes the proof. □

3.2. Stochastic Persistence and Extinction of Phytoplankton.
From the proof of+eorem 5, we know thatΘ is the positive
invariant set of model (3). In this section, we always assume
that the initial value (N0, P0) ∈ Θ and first provide the result
concerning the persistence of phytoplankton. For the sake of
simplicity, we define

Λ �
δ2μ2(x)I2

2(ea + I)2
+ s(x) + d. (32)

+en, we have the following result.

Theorem 6. For any given initial (N0, P0) ∈ Θ, if one of the
following conditions holds:
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(i) δ2 <
2e(I + ea)

Imμ(x)
,

X>
2m(I + ea)2(μ(x) − s(x) − d)

2eIμ(x)(I + ea) − I2δ2mμ2(x)
,

(ii) δ2 >
2e(I + ea)

Imμ(x)
,

X<
2m(I + ea)2(μ(x) − s(x) − d)

2eIμ(x)(I + ea) − I2δ2μ2(x)m
,

(33)

then the solution of model (3) obeys

lim
t⟶∞

inf
1
t

􏽚
t

0
P(s)ds≥

eIμ(x) − Λm(ea + I)

eQ(x)μ(x)(s(x) + d)
> 0 a.s.,

(34)

that is, the phytoplankton in model (3) is persistent in the
mean almost surely.

Proof. Based on the nutrient and phytoplankton equations
in model (3), we have

d(N + θP) � (I − mN − (s(x) + d)Q(x)P)dt. (35)

Integrating equation (35) from 0 to t on the both sides,
we get

(N(t) + Q(x)P(t)) − N0 + Q(x)P0( 􏼁 � tI − m 􏽚
t

0
N(s)ds

− (s(x) + d)Q(x)

· 􏽚
t

0
P(s)ds.

(36)

Note that N(t) + Q(x)P(t) � N0 + Q(x)P0 for all t> 0,
and therefore, we adopt

1
t

􏽚
t

0
N(s)ds �

I

m
−

(s(x) + d)Q(x)

m

1
t

􏽚
t

0
P(s)ds. (37)

By It 􏽢o’s formula, we have

d ln P(t) � −
δ2μ2(x)

2
N

a + N
􏼒 􏼓

2
+
μ(x)N

a + N
− s(x) − d􏼢 􏼣dt

+
δμ(x)N

a + N
dB.

(38)

Let f(N) � (N/(a + N)), then it is easy to get
(df(N)/dN) > 0. Hence, f(N) is a strictly increasing
function for any N ∈ R+. In light of N≤ (I/e), we can obtain

−
δ2μ2(x)

2
N

a + N
􏼒 􏼓

2
+
μ(x)N

a + N
− s(x) − d≥ −

δ2μ2(x)I2

2(ea + I)2

+
μ(x)eN

ea + I
− s(x) − d.

(39)

Integrating equation (38) from 0 to t on the both sides,
we have

ln P(t) − ln P(0)≥ −
δ2μ2(x)I2

2(ea + I)2
+ s(x) + d􏼢 􏼣t

+
μ(x)e

ea + I
􏽚

t

0
N(s)ds + κ(t),

(40)

where

κ(t) � 􏽚
t

0

δμ(x)N(s)

a + N(s)
dB(s). (41)

Dividing t on both sides of equation (40) and together
with equation (37), we get

ln P(t)

t
≥

eIμ(x)

(ea + I)m
− Λ􏼠 􏼡 −

eQ(x)μ(x)(s(x) + d)

(ea + I)m

1
t

􏽚
t

0
P(s)ds +

κ(t) + ln P(0)

t
.

(42)

Notice that κ(t) is a local continuous martingale with
κ(0) � 0 and

lim
t⟶∞

〈κ, κ〉t

t
≤

δμ(x)I

ae + I
􏼠 􏼡

2

<∞. (43)

By the strong law of large number [69], we can achieve

lim
t⟶∞

κ(t) + ln P(0)

t
� 0 a.s. (44)

Bymeans of Lemma 4 in [70], ifΛ< (eIμ(x)/(ea + I)m),
that is,

2m(I + ea)
2
(μ(x) − s(x) − d)<X 2eIμ(x)(I + ea)􏼂

− I
2δ2μ2(x)m􏽩,

(45)

which is equivalent to

X>
2m(I + ea)2(μ(x) − s(x) − d)

2eIμ(x)(I + ea) − I2δ2mμ2(x)
provided δ2

<
2e(I + ea)

Imμ(x)
,

orX<
2m(I + ea)2(μ(x) − s(x) − d)

2eIμ(x)(I + ea) − I2δ2μ2(x)m
provided δ2

>
2e(I + ea)

Imμ(x)
,

(46)

then it follows equation (42) that

lim
t⟶∞

inf
1
t

􏽚
t

0
P(s)ds≥

eIμ(x) − Λm(I + ea)

eQ(x)μ(x)(s(x) + d)
a.s. (47)

+is completes the proof.
Next, we study the stochastic extinction of phyto-

plankton in model (3). □
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Theorem 7. For any given initial (N0, P0) ∈ Θ, if one of the
following conditions holds:

(i) δ2 <
2(I + ea)

Iμ(x)
,

X<
2(I + ea)2(μ(x) − s(x) − d)

2Iμ(x)(I + ea) − δ2μ2(x)I2
,

(ii) δ2 >
2(I + ea)

Iμ(x)
,

X>
2(I + ea)2(μ(x) − s(x) − d)

2Iμ(x)(I + ea) − δ2I2μ2(x)
,

(48)

then the solution of model (3) obeys

lim
t⟶∞

sup
ln P(t)

t
≤

Iμ(x)

I + ea
− Λ< 0 a.s.,

or lim
t⟶∞

sup
ln P(t)

t
≤

1
2δ2

− s(x) − d< 0 a.s.,

(49)

provided δ2 >max (I + ea)/Iμ(x), 1/(2(s(x) + d))􏼈 􏼉, which
implies that the phytoplankton in model (3) is stochastic
extinction with probability one.

Proof. Define the following quadratic function

g(v) � −
δ2μ2(x)

2
v
2

+ μ(x)v − s(x) − d, (50)

if the symmetric axis 1/δ2μ(x) of the equation g(v) is larger
than I/(ae + I), that is, δ2 ≤ ((I + ea)/μ(x)I), we can find
that g(v) takes its maximum value gmax on the interval
[0, I/(ae + I)] at v � I/(ae + I), where

gmax �
Iμ(x)

I + ea
− Λ. (51)

Note that f(N) � N/(a + N) is a strictly increasing
function for N ∈ [0, I/e] when δ2 ≤ ((I + ea)/Iμ(x));
therefore, we have

−
δ2μ2(x)

2
N

a + N
􏼒 􏼓

2
+
μ(x)N

a + N
− s(x) − d≤gmax. (52)

Integrating equation (38) from 0 to t and dividing by t on
the both sides, we get

ln P(t)

t
≤

Iμ(x)

I + ea
− Λ􏼠 􏼡t +

κ(t) + ln P(0)

t
. (53)

Taking the limit of equation (53) and considering (44),
we have

lim
t⟶∞

sup
ln P(t)

t
≤

Iμ(x)

I + ea
− Λ< 0 a.s., (54)

provided Λ> (Iμ(x)/(I + ea)), i.e.,

2(I + ea)
2
(μ(x) − s(x) − d)>X 2Iμ(x)(I + ea)􏼂

− δ2I2μ2(x)􏽩,
(55)

which equals to

δ2 <
2(I + ea)

Iμ(x)
,

X<
2(I + ea)2(μ(x) − s(x) − d)

2Iμ(x)(I + ea) − δ2μ2(x)I2
,

or δ2 >
2(I + ea)

Iμ(x)
,

X>
2(I + ea)2(μ(x) − s(x) − d)

2Iμ(x)(I + ea) − δ2I2μ2(x)
.

(56)

On the other hand, if the symmetric axis 1/δ2μ(x) of the
equation g(v) is in the interval [0, I/(ea + I)], i.e.,
δ2 ≥ ((I + ea)/Iμ(x)), then the equation g(v) reaches its
maximum value (1/2δ2) − s(x) − d at v � 2/δ2μ(x). By
performing a similar proof processes as above, we have

lim
t⟶∞

sup
ln P(t)

t
≤

1
2δ2

− s(x) − d< 0 a.s., (57)

provided δ2 >max (I + ea)/Iμ(x), 1/(2(s(x) + d))􏼈 􏼉. +is
completes the proof. □

Remark 2. +eorem 7 indicates that the phytoplankton in
model (3) goes to extinction with probability one under
some parameter conditions. In this case, it is natural to ask
the question how will the nutrient concentration in model
(3) change when the phytoplankton is extinct? In fact, when
P limt⟶∞P(t) � 0􏼈 􏼉 � 1, then from the model (3), we can
obtain the following equation:

dN(t) � (I − mN(t))dt, (58)
by direct computation, we have limt⟶∞N(t) � I/m. Hence,
the nutrient concentration will be a positive constant. +at
is, in this situation, the noise intensity and cell size will have
no impacts on the variation of nutrient, and the dynamics of
N(t) in model (3) will be similar to the dynamics of E1 in the
deterministic model (1).

3.3. Existence of Ergodic Stationary Distribution. In this
section, we shall establish sufficient conditions for the ex-
istence and uniqueness of an ergodic stationary distribution
for model (3).

Let Z(t) be a regular time-homogeneous Markov pro-
cess in Rd described by the stochastic differential equation:

dZ(t) � f(Z(t))dt + 􏽘
k

l�1
gl(Z)dBl(t)dB(t). (59)

+e diffusion matrix of the process Z(t) is defined as
follows:

A(z) � aij(z)􏼐 􏼑,

aij(z) � 􏽘
k

l�1
g

i
l(z)g

j

l (z).
(60)

Lemma 2 (see [71]). Ke Markov process Z(t) has a unique
ergodic stationary distribution μ(·) if there exists a bounded
open domain D ⊂ Rd with regular boundary Γ, having the
following properties:
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(B.1): there is a positive number M such that
􏽐

d
i,j�1ai,j(z)ξiξj ≥M|ξ|2, z ∈ D and ξ ∈ Rd

(B.2): there exists a nonnegative C2− function V such
that LV is negative for any Rd\D

Theorem 8. If X< (e2(I + ea)2/(e2(I + ea)2I + δ2I4)),
then for any given initial (N0, P0) ∈ Θ, model (3) has a

unique stationary distribution μ(·) and it has the ergodic
property.

Proof. To prove +eorem 8, we only need to validate con-
dition (B.1) and (B.2) in Lemma 2. We first prove the
condition (B.1). +e diffusion matrix of model (3) is given by

􏽘

2

i,j�1
aij(N, P)ξiξj � −

δμ(x)Q(x)NPξ1
a + N

δμ(x)NPξ2
a + N

􏼠 􏼡

−
δμ(x)Q(x)NPξ1

a + N

δμ(x)NPξ2
a + N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�
δ2μ2(x)Q2(x)N2P2

(a + N)2
ξ21 +

δ2μ2(x)N2P2

(a + N)2
ξ22

≥M0‖ξ‖, for any (N, P) ∈ Dσ ⊂ Θ,

ξ � ξ1, ξ2( 􏼁 ∈ R
2
+,

(61)

where M0 � min(N,P)∈Dσ
δ2μ2(x)Q2(x)N2P2/(a + N)2, δ2μ2􏽮

(x)N2P2/(a + N)2}, and then the condition (B.1) in Lemma 2
is satisfied. Next, we prove the condition (B.2).

Let
M �

2
λ
max 2, H{ }, (62)

where H � sup(N,P)∈Θ − 2mN2 + 2IN − 2Q(x)(s􏼈 (x) + d)P2

+(2Q(x)I + e− 1δ2Iμ2(x)(Q(x) + 1))P − 2(s(x) + Q(x)m +

d)PN} and λ � (1/X) − (I + (δ2I4/e2(I + ea)2))> 0 pro-
vided X< (e2(I + ea)2/(e2(I + ea)2I + δ2I4)). Obviously,
(Mλ/4)≥ 1. +en, we define a C2− function V(N, P) :

Θ⟶ R as follows:

V(N, P) � M N + P +
N2

2μ2(x)
+

Q2(x)

μ2(x)

P2

2
􏼢

+
ln P

μ(x) − s(x) − 1
􏼣 +(N + Q(x)P)

2
,

(63)

and it is easy to see that

lim
n⟶+∞,(N,P)∈Θ∖Dn

V(N, P) � +∞, (64)

where Dn � (1/n, n) × (1/n, n). Furthermore, V(N, P) is
continuous function, and so,V(N, P)must have aminimum
point (N0, P0) in the interior of Θ. +en, we define non-
negative C2− function V(N, P) : Θ⟶ R in the following
form:

V(N, P) � M N + P +
N2

2μ2(x)
+

Q2(x)

μ2(x)

P2

2
􏼢

+
ln P

μ(x) − s(x) − 1
􏼣 +(N + Q(x)P)

2
− V N0, P0( 􏼁

:� M V1(N, P) + V2(N, P) + V3(N, P)􏼂 􏼃

+ V4(N, P),

(65)

where V1(N, P) � N + P, V2(N, P) � (N2/2μ2(x)) + (Q2

(x)/μ2(x))(P2/2), V3 � (ln P/(μ(x) − s(x) − 1)), and
V4(N, P) � (N + Q(x)P)2 − V(N0, P0).

Making using of It􏽢o’s formula, we have

LV1(N, P) � I −
μ(x)Q(x)NP

a + N
− mN +

μ(x)NP

a + N
− (s(x) + d)P

≤ I − mN − (s(x) + d)P +
eμ(x)NP

I + ea

≤ I +
eμ(x)NP

I + ea
,

(66)
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LV2(N, P) �
1

μ2(x)
IN −

μ(x)Q(x)PN2

a + N
− mN

2
+
δ2μ2(x)Q2(x)N2P2

2(a + N)2
􏼠 􏼡

+
Q(x)

μ(x)
􏼠 􏼡

2 μ(x)NP2

a + N
− (s(x) + d)P

2
+
δ2μ2(x)N2P2

2(a + N)2
􏼠 􏼡

≤
IN

μ2(x)
−

mN2

μ2(x)
+

Q(x)NP

μ(x)(I + ea)
−

(s(x) + d)Q2(x)P2

μ2(x)
+

δ2I4

e2(I + ea)2
,

(67)

LV3(N, P) �
1

μ(x) − s(x) − 1
μ(x)N

a + N
− (s(x) + d) −

δ2μ2(x)N2

2(a + N)2
􏼠 􏼡

≤
μ(x)N

a(μ(x) − s(x) − d)
−
1
X

−
δ2e2N2μ2(x)

2(ea + I)2(μ(x) − s(x) − d)
,

(68)

LV4(N, P) � 2 NI − mN
2

− (s(x) + d)NP + Q(x)IP − Q(x)(s(x) + d)P
2

􏼐 􏼑

+
δ2μ2(x)Q(x)(Q(x) + 1)N2P2

(a + N)2

≤ − 2mN
2

+ 2IN − 2Q(x)(s(x) + d)P
2

+ 2Q(x)I + e
− 1δ2Iμ2(x)(Q(x) + 1)􏼐 􏼑P

− 2(s(x) + Q(x)m + d)PN.

(69)

Hence, we get

LV(N, P) � M LV1(N, P) + LV2(N, P) + LV3(N, P)( 􏼁 + V4(N, P)

≤ − Mλ + M
I

μ2(x)
+

μ(x)

a(μ(x) − s(x) − d)
􏼠 􏼡N +

Q(x) + eμ2(x)( 􏼁NP

μ(x)(I + ea)
−

m

μ2(x)
􏼠􏼢

+
δ2e2μ2(x)

2(ea + I)2(μ(x) − s(x) − d)
􏼡N

2
−

(s(x) + d)Q2(x)

μ2(x)
P
2
􏼣

+ − 2mN
2

+ 2IN − 2Q(x)(s(x) + d)P
2

+ 2Q(x)I + e
− 1δ2Iμ2(x)(Q(x) + 1)􏼐 􏼑P􏽨

− 2(s(x) + Q(x)m + d)PN􏼃.

(70)

Define a bounded closed set

Dε � (N, P) ∈ Θ : ε≤N≤
1
ε
, ε≤P≤

1
ε

􏼚 􏼛, (71)

where 0< ε< 1 is a sufficiently small number. We choose ε
sufficiently small such that

0< ε<
λ

4 I/μ2(x)( 􏼁 +(μ(x)/a(μ(x) − s(x) − d)) + Q(x) + eμ2(x)( 􏼁/μ(x)(I + ea)( 􏼁( 􏼁
, (72)

0< ε<
Q2(x)(s(x) + d)(I + ea)

μ(x) Q(x) + eμ2(x)( 􏼁
, (73)
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0< ε<
λμ(x)(I + ea)

2 Q(x) + eμ2(x)( 􏼁
, (74)

0< ε<
2m(I + ea)2(μ(x) − s(x) − d) + δ2e2μ4(x)

2μ(x)(I + ea)(μ(x) − s(x) − d) Q(x) + e2μ(x)( 􏼁
, (75)

−
Mλ
2

+ H≤ − 1, (76)

− Mλ −
mM

μ2(x)
+

Mδ2e2μ2(x)

2(ea + I)2(μ(x) − s(x) − d)
􏼠 􏼡

1
ε2

+ H∗, (77)

− Mλ − M
(s(x) + d)Q2(x)

μ2(x)

1
ε2

+ H∗, (78)

where

H � sup
(N,P)∈Θ

− 2mN
2

+ 2IN − 2Q(x)(s(x) + d)P
2

􏽨

+ 2Q(x)I + e
− 1δ2Iμ2(x)(Q(x) + 1)􏼐 􏼑P − 2(s(x)

+ Q(x)m + d)PN + M
I

μ2(x)
􏼠

+
μ(x)

a(μ(x) − s(x) − d)
􏼡N􏼣,

H∗ � sup
(N,P)∈Θ

− 2mN
2

+ 2IN − 2Q(x)(s(x) + d)P
2

􏽨

+ 2Q(x)I + e
− 1δ2Iμ2(x)(Q(x) + 1)􏼐 􏼑P − 2(s(x)

+ Q(x)m + d)PN +
I

μ2(x)
+

μ(x)

a(μ(x) − s(x) − d)
􏼠 􏼡N

+
Q(x) + eμ2(x)( 􏼁NP

μ(x)(I + ea)
􏼣.

(79)

For convenience, we divide Θ\Dε into four domains:

D
1
ε � (N, P) ∈ Θ : 0<N< ε{ },

D
2
ε � (N, P) ∈ Θ : 0<P< ε{ },

D
3
ε � (N, P) ∈ Θ : N>

1
ε

􏼚 􏼛,

D
4
ε � (N, P) ∈ Θ : P>

1
ε

􏼚 􏼛.

(80)

Clearly, DC
ε � ∪4i Di

ε. Now, we prove that LV(N, P)≤ 1
on DC

ε , which is equivalent to prove it on D1
ε ,D

2
ε , D

3
ε , and D4

ε ,
respectively. □

Case 1. When (N, P) ∈ D1
ε , since NP≤ εP≤ ε(1 + P2), we

have

LV(N, P)≤ −
Mλ
4

+
MIε
μ2(x)

+
Mμ(x)ε

a(μ(x) − s(x) − d)
􏼠􏼢

+
Q(x) + eμ2(x)( 􏼁Mε
μ(x)(I + ea)

􏼡 −
Mλ
4

􏼣

−
mM

μ2(x)
+

Mδ2e2μ2(x)

2(ea + I)2(μ(x) − s(x) − d)
􏼠 􏼡N

2

+
Q(x) + eμ2(x)( 􏼁Mε
μ(x)(I + ea)

−
M(s(x) + d)Q2(x)

μ2(x)
􏼢 􏼣P

2

+ −
Mλ
2

+ H􏼢 􏼣,

(81)

which together with conditions (72) and (73), as well as the
definition of M in (62), yields

LV(N, P)≤ −
Mλ
4
≤ − 1. (82)

Case 2. When (N, P) ∈ D2
ε , since NP≤ εN≤ ε(1 + N2), we

get

LV(N, P)≤ −
Mλ
2

+
Q(x) + eμ2(x)( 􏼁Mε
μ(x)(I + ea)

􏼢 􏼣

−
MQ2(x)(s(x) + d)

μ2(x)
P
2

+
M Q(x) + eμ2(x)( 􏼁ε

μ(x)(I + ea)
− M

m

μ2(x)
􏼠􏼢

+
δ2e2μ2(x)

2(I + ea)2(μ(x) − s(x) − d)
􏼡􏼣N

2

+ −
Mλ
2

+ H􏼢 􏼣,

(83)

which leads to LV(N, P)≤ − (Mλ/2) + H≤ 1 in this domain,
in the view of (74)–(76).
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Case 3. When (N, P) ∈ D3
ε , we have

LV(N, P)≤ − Mλ + M −
m

μ2(x)
􏼠􏼢

+
δ2e2μ2(x)

2(ea + I)2(μ(x) − s(x) − d)
􏼡N

2

−
(s(x) + d)Q2(x)

μ2(x)
P
2
􏼣 + − 2mN

2
+ 2IN􏼢

− 2Q(x)(s(x) + d)P
2

+ 2Q(x)I + e
− 1δ2Iμ2􏼐

· (x)(Q(x) + 1))P − 2(s(x) + Q(x)m + d)PN

+
I

μ2(x)
+

μ(x)

a(μ(x) − s(x) − d)
􏼠 􏼡N

+
Q(x) + eμ2(x)( 􏼁NP

μ(x)(I + ea)
􏼣

≤ − Mλ −
mM

μ2(x)
􏼠

+
Mδ2e2μ2(x)

2(ea + I)2(μ(x) − s(x) − d)
􏼡N

2
+ H∗,

(84)

from (77), and we have LV(N, P)≤ − 1 on (N, P) ∈ D3
ε .

Case 4. When (N, P) ∈ D4
ε , we have

LV(N, P)≤ − Mλ + M −
m

μ2(x)
􏼠􏼢

+
δ2e2μ2(x)

2(ea + I)2(μ(x) − s(x) − d)
􏼡N

2

−
(s(x) + d)Q2(x)

μ2(x)
P
2
􏼣 + − 2mN

2
+ 2IN􏽨

− 2Q(x)(s(x) + d)P
2

+ 2Q(x)I + e
− 1δ2Iμ2􏼐

· (x)(Q(x) + 1))P − 2(s(x) + Q(x)m + d)PN

+
I

μ2(x)
+

μ(x)

a(μ(x) − s(x) − d)
􏼠 􏼡N

+
Q(x) + eμ2(x)( 􏼁NP

μ(x)(I + ea)
􏼣

≤ − Mλ − M
(s(x) + d)Q2(x)

μ2(x)
P
2

+ H∗,

(85)

in view of (78), and we get LV(N, P)≤ − 1. +is ends the
proof.

4. Numerical Results

In this section, we study numerically the impact of
the cell size effect on the nutrient-phytoplankton dy-
namics in the deterministic model (1) as well as the
stochastic model (3). +e parameter values are taken as
shown in Table 1. Unless stated otherwise, we will use
them for our simulations. Additionally, in the following
numerical simulation, we randomly select the initial
value satisfying Θ.

4.1. Impact of Cell Size Factor in the Nutrient-Phytoplankton
Dynamics of Model (1). In this section, we study the impact
of the cell size effect on the concentration of nutrient and the
density of phytoplankton, as well as the stability of the
equilibria in model (1).

On the basis of previous theoretical analysis, let
f(x) � X − (ma/I), and substituting (4) and the required
parameters into f(x), we get f(x)< 0, i.e., X< (ma/I) if

H1 :� x ∈ R ∣ 0< x< 0.07807216867 or 2.981219088< x{ },

(86)

and f(x)> 0, i.e., X> (ma/I) if

H2 :� x ∈ R ∣ 0.07807216867< x< 2.981219088{ }. (87)

Next, we first show the impact of cell size on the nutrient
concentration and phytoplankton density.

4.1.1. Impact of the Cell Size Effect on the Nutrient Con-
centration and Phytoplankton Density. Based on the ana-
lytical expressions for the positive equilibrium level of nutrient
and phytoplankton, one can know that the nutrient concen-
tration and phytoplankton density are closely related to cell size
x. However, let x ∈ H1; the increase of cell size x does not affect
the nutrient concentration, which is clearly demonstrated in
Figures 1(a) and 1(c). Furthermore, in this case, Figures 1(d)
and 1(f) show that the density of phytoplankton is negative or
zero. +at is, the phytoplankton in model (1) cannot survive
when the phytoplankton cell is smaller or larger (x ∈ H1),
which may be the main reason why the nutrient concentration
does not change with the increase of cell size.

However, as the cell size increases to the domain of H2,
the nutrient concentration is a nonmonotonic concave
function with respect to cell size x (see Figure 1(b)) and
phytoplankton density is a nonmonotonic convex function
of cell size x (see Figure 1(e)). Nevertheless, by further
analysis, we find that

(1) If x ∈ (0.07807216867, 0.1], the nutrient concen-
tration is a monotonic decreasing function with
respect to cell size x (see Figure 2(a)), but phyto-
plankton density is a convex-line increasing func-
tion of cell size x (see Figure 2(d)), which signifies
that phytoplankton can reproduce rapidly and
abundantly and absorb a large amount of nutrients
during its growth, resulting in a rapid increase in
phytoplankton density and a corresponding rapid
decrease in nutrient concentration. In fact, from
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Table 1: Parameter values in numerical simulations for model (1) and model (3).

Parameters Unit Values
I: the nutrient input rate μmol/Lay 10 [72]
α: the phytoplankton sinking rate coefficient 1/day/μm2 0.1 [55]
β: the phytoplankton nutrient quota coefficient μmol nutrient/cell/μm− b1 100 (estimate)
m: the removal rate of nutrient 1/day 0.85 (estimate)
d: the death rate of phytoplankton 1/day 0.1 [55]
a: the half-saturation constant μmol/L 100 (estimate)
a1: a positive empirical constant 1/μm2 0.02 [55]
a2: a positive empirical constant 1/μm 0.02 [55]
a3: a positive empirical constant Unitless 0.08 [55]
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Figure 1: Continued.
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Figure 1(e) or Figures 2(d) and 2(e), we can know
that the peak of phytoplankton density appears at
x � 0.1, and so, x � 0.1 is the optimal size for
promoting the rapid reproduction of the phyto-
plankton population.

(2) If x ∈ (0.1, 0.6], both the nutrient concentration and
phytoplankton density are concave-line decreasing
function of cell size x, which are shown in
Figures 2(b) and 2(e), respectively. As the density of
phytoplankton reaches its peak at x � 0.1, when the
cell size of phytoplankton exceeds its optimal size,
the phytoplankton density decreases with the in-
crease of cell size, but its density is still very high,
resulting in the decrease of nutrient concentration,
whereas the reduction rate of the nutrient concen-
tration is decreasing compared with that in
Figure 2(a).

(3) If x ∈ (0.6, 2.981219088), the nutrient concentration
is a concave-line increasing function with respect to
x (see Figure 2(c)), but phytoplankton density is a
concave-line decreasing function of cell size, as is
shown in Figure 2(f). Obviously, in this case, with the
increase of cell size, the density of phytoplankton
decreases dramatically with the rapid increase of
nutrient concentration.

4.1.2. Impact of Cell Size Effect on the Stability of the
Equilibria. +e analysis indicates that the plane is divided
into two regions (i) and (ii) by I − x parameters, as displayed

in Figure 3(a). However, when the phytoplankton cell x is
smaller or larger (x ∈ H1), there exists a unique boundary
equilibrium E1 in the area (i), which is globally asymptot-
ically stable (see +eorem 3). With the increase of cell size
(x ∈ H2), the positive equilibrium E∗ appears in (ii) and it is
globally asymptotically stable, but the E1 becomes unstable
(see +eorems 2 and 4). +en, we adopt x � 0.05 ∈ H1 and
x � 0.51 ∈ H2; the corresponding results concerning the
global stability of E1 � (11.76470588, 0) and
E∗ � (2.414081849, 4.754928396) are shown in (i) and (ii) of
Figure 3(b), respectively. It is worth noting that the only
difference between (i) and (ii) in Figure 3(b) is that the cell
size of phytoplankton is different. Actually, from the
Figure 3(a), it is clear that the increase of cell size can lead to
the stability changes at the boundary equilibrium E1: stable
(0<x< 0.07807216867)⟶ unstable (0.07807216867
< x< 2.981219088)⟶ stable (x> 2.981219088), and the
existence of positive equilibrium E∗ changes: nonexistence
(0<x< 0.07807216867)⟶ existence (0.07807216867
< x< 2.981219088)⟶ nonexistence (x> 2.981219088),
which indicates that the cell size plays an important role in
determining the existence and stability of the equilibria in
model (1).

4.2. Impact of Cell Size Factor in the Nutrient-Phytoplankton
Dynamics ofModel (3). Now, we turn to study the impact of
cell size effect on the stochastic dynamics of model (3) by
using the Milstein method mentioned in Higham [73]. In
this way, model (3) can be rewritten as the following dis-
cretization equation:
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Figure 1: (a–c) Bifurcation diagram of nutrient in model (1) with respect to x. (d–f) Bifurcation diagram of phytoplankton in model (1) with
respect to x. (a) and (d) for x ∈ (0.01, 0.07807216867). (b) and (e) for x ∈ (0.07807216867, 2.981219088). (c) and (f) for
x ∈ (2.981219088, 7).
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Nk+1 � Nk + I −
μ(x)Q(x)NkPk

a + Nk

− mNk􏼠 􏼡Δt

−
δμ(x)Q(x)NkPk

a + Nk

��
Δt

√
ξk +

δ2

2
μ(x)Q(x)NkPk

a + Nk

ξ2k − 1􏼐 􏼑Δt,

Pk+1 � Pk +
μ(x)NkPk

a + Nk

− s(x)Pk − dPk􏼠 􏼡Δt

+
δμ(x)NkPk

a + Nk

��
Δt

√
ξk +

δ2

2
μ(x)NkPk

a + Nk

ξ2k − 1􏼐 􏼑Δt,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(88)

where ξk(k � 1, 2, . . . , n) are independent Gaussian random
variables N(0, 1).

4.2.1. Impact of Cell Size and Environmental Noise Effects on
the Survival of Phytoplankton. First of all, we fix x � 0.51
and vary δ � 0.1, 1.8 to investigate how environmental noise
affects the persistence of model (3).

When we take δ � 0.1, by simple computations, it is not
difficult to get that the condition (i) in +eorem 6 and the
condition in +eorem 8 are satisfied. From +eorems 6 and
8, it can be obtained that model (3) is persistent in the mean
and exists a unique stationary distribution, as is shown in
Figure 4. +is result signifies that the small environmental
noise disturbance can make model (3) maintain some sta-
bility in the random sense and drive the solutions to be
perturbed near the positive equilibrium of the deterministic
model (1).

When we obtain the noise intensity δ � 1.8, then the
condition (ii) of +eorem 7 is satisfied. Based on +eorem
7, the phytoplankton goes to extinction with probability
one, which implies that the larger environmental noise
can result in the extinction of phytoplankton. Figure 5(b)
clearly confirms this result. Further, in this case, the
nutrient concentration is found to increase to N � N1 �

11.76470588>N∗ � 2.414081849 (see Figure 5(a)), which
agrees well with Remark 2.

Next, we fix δ � 0.1 and change x � 0.001, 0.15,

0.45, 0.95 to see the effect of cell size on the survival of
phytoplankton in model (3). It is clear from Figure 6 that
if x � 0.15 or 0.45 ⊂ H2, the phytoplankton is persistent
and becomes extinct when x � 0.001 or 0.98 ⊂ H1, which
indicates that the smaller or larger cell size can result in
the extinction of phytoplankton (see the black and pink
curves) and the intermediate cell size is advantage for the
persistence of phytoplankton (see the blue and green
curves). Moreover, by comparing the green curve with the
blue curve, it can be found that the increase of cell size can
reduce the random variation of phytoplankton caused by
environmental noise disturbance and decrease the density
of phytoplankton.

4.2.2. Impact of Cell Size Effect on the Existence of Ergodic
Stationary Distribution. In order to explore how cell size
affects the existence of stationary distribution of phyto-
plankton and nutrient in model (3), we fix the noise intensity
δ � 0.1 and vary the cell size

x � 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, (89)
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Figure 2: (a–c) Bifurcation diagram of nutrient in model (1) with respect to x ∈ H2. (b–f ) Bifurcation diagram of phytoplankton in
model (1) with respect to x ∈ H2. (a) and (d) for x ∈ (0.07807216867, 0.1]. (b) and (e) for x ∈ (0.1, 0.6]. (c) and (f ) for
x ∈ (0.6, 2.981219088).
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which satisfy the parameter condition in +eorem 8. Hence,
there exists a stationary distribution of model (3), as is
shown in Figure 7.

In Figure 7(a), one can find that, with the increase of
cell size, the height of probability density function of phy-
toplankton decreases, but that of the probability density
function of nutrition increases (see Figure 7(c)), which
suggests that the increase of cell size is not conducive to

stabilize the nutrient-phytoplankton dynamics in a sto-
chastic sense.

In Figure 7(b), it is shown that the maximum value of
the boxplot for phytoplankton increases, while the maxi-
mum value of the boxplot for nutrient remains unchanged
(see Figure 7(d)), as the cell size increases. +is implies that
the probability density function of phytoplankton is pos-
itively skewed (from left to right), but the probability
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Figure 4: (a) and (c) are the solutions of nutrient and phytoplankton in the stochastic model (3) and its corresponding deterministic model
(1) with initial value (N0, P0) � (8.5, 2.4), respectively. (b) and (d) are the probability density function of nutrient and phytoplankton in
model (3), respectively.
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density function of nutrition is not shifted as the cell size
increases.

5. Conclusion

In recent years, many field and laboratory evidences in-
dicated that the plankton body size, especially the cell size
of phytoplankton, plays a key role in the metabolism,
growth, and interaction of phytoplankton [6, 51, 54].
However, little theoretical work has been done in this field.
Based on these facts, in this paper, we study analytically and
numerically a deterministic nutrient-phytoplankton model
taking into account the effects of cell size and its corre-
sponding stochastic version. +e consideration of the cell
size effect into our proposed model, in this study, makes it
different from the traditional nutrient-phytoplankton
models [12, 14, 15, 22, 39–45, 61]. +e main purpose of this
paper is to study the cell size effects on the nutrient-
phytoplankton dynamics within the deterministic and
stochastic environments.

Mathematically, we show that the existence and stability
of the equilibria for the deterministic model (1) can be
determined by the value of X (i.e., the cell size). In other
words, if X< (ma/I), there exists the only boundary equi-
librium that is locally and globally asymptotically stable (see
+eorems 2 and 3); if X< (ma/I), the positive equilibrium
appears, which is locally and globally asymptotically stable,
whereas the boundary equilibrium becomes unstable (see
+eorems 2 and 4). For the stochastic model (3), we first
prove the existence and uniqueness of the positive solution,
and then, the stochastic extinction and persistence in the
mean, as well as the existence of ergodic stationary distri-
bution for model (3) are further explored. Ecologically, via

numerical simulations, we find that cell size has rich and
complex impacts on the nutrient-phytoplankton dynamics
in model (1) and model (3) as follow:

(i) If the cell size is smaller or larger (0< x<
0.07807216867 or x> 2.981219088), the phytoplankton
cannot survive (see Figures 1(d) and 1(f )). In these
cases, the increase of cell size has no impact on the
nutrient concentration (see Figures 1(a) and 1(c)). As
the cell size increases to the intermediate size, that is,
0.07807216867< x< 2.981219088, the phytoplankton
appears and its density as well as nutrient concentration
begin to change significantly with cell size.

(i1) When 0.07807216867< x≤ 0.1, the increase of
cell size can lead to a rapid increase in phytoplankton
density and result in a significant reduction in nu-
trient concentration (see Figures 2(a) and 2(d), re-
spectively). However, the nutrient concentration is
still high at this time and the phytoplankton density
reached its peak at x � 0.1 (see Figures 1(e) and 2(d)),
which denotes that the intermediate cell size is the
optimum size for the growth of phytoplankton. +is
result is consistent with the experimental results
obtained in [6, 54].
(i2) When 0.1<x≤ 0.6, the increase of cell size is
capable to decrease the density of phytoplankton and
the concentration of nutrient at the same time (see
Figures 2(b) and 2(e)). +is suggests that this range is
most advantageous for reducing the risk of phyto-
plankton blooms and the possibility of eutrophication
of water bodies. Consequently, if the eutrophication of
lakes, rivers, and other water bodies, leading to the
occurrence of algal blooms, we can invest a number of
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Figure 7: +e effect of cell size on the existence of stationary distribution for model (3) with different cell size x � 0.01, 0.02,

0.03, 0.04, 0.05, 0.06. (a) and (c) are the probability density function of phytoplankton and nutrient in model (3), respectively. (b) and (d) are
the boxplot of the solution for phytoplankton and nutrient in model (3) with the corresponding cell size, respectively.
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phytoplankton with cell size x ∈ (0.1, 0.6] to possibly
control these phenomena.
(i3) When 0.6<x< 2.981219088, the increase of cell
size can cause the significant decrease of phytoplankton
and the rapid increase of nutrient concentration (see
Figures 2(c) and 2(f), respectively). In this case, the
density of phytoplankton is very close to zero as the cell
size increases. Actually, based on +eorem 2, the
phytoplankton will be extinct and the nutrient con-
centration will eventually increase to a invariant
constant as the cell size continuously increases to
greater than 2.981219088. Consequently, the increasing
cell size of phytoplankton in this region can inhibit the
proliferation of phytoplankton (see Figure 2(f)).

(ii) When the cell size is smaller or larger, i.e.,
0<x< 0.07807216867 or x> 2.981219088, there exists
the only boundary equilibrium E1 in model (1), which
is globally asymptotically stable (see (i) of Figure 3(b)
and +eorem 3), but the positive equilibrium does
not exist in these cases (see +eorem 2); when
0.07807216867<x< 2.981219088, which lies in the
intermediate cell size, the positive equilibrium exists
and is globally asymptotically stable, while the
boundary becomes unstable (see (ii) of Figure 3(b) and
+eorem 4). Hence, if we can properly control the cell
size of phytoplankton to make phytoplankton and
nutrient coexist stably, the phytoplankton will not grow
rapidly in large quantities; thus, phytoplankton blooms
may not occur, which is consistent with the conclusion
in (i2) and (i3).
(iii) With a fixed value of cell size x, the smaller sto-
chastic environmental fluctuations are shown to be
unable to affect the persistence of model (3) (see
Figure 4 and +eorem 6), but the larger stochastic
environmental fluctuations can result in the extinction
of phytoplankton with probability one (see Figure 5 and
+eorem 7). With a fixed value of noise intensity, the
smaller or larger cell size is found to be capable of
causing the extinction of phytoplankton, while the
intermediate cell size is in favor of the persistence of
phytoplankton (see Figure 6). By comparison, the
smaller random environmental disturbances and the
intermediate cell size have similar positive effects on the
persistence of phytoplankton, but the larger cell size,
smaller cell size, and larger random environmental
disturbances have similar positive effects on the ex-
tinction of phytoplankton.

(iv) For the existence of the stationary distribution for
model (3), as the cell size increases, the probability
density function of phytoplankton has a positive shift
and its height is decreasing, but the probability density
function of nutrition has hardly moved and its height is
increasing (see Figure 7).+is indicates that the cell size
may be capable to significantly affect the distribution of
phytoplankton in water bodies.

In view of the above findings, the questions raised in
Section 1 have been partially well answered. Furthermore, in

comparison to the results with respect to cell size obtained in
[55–57], the results of this paper are richer and more
complex. +ough our study cannot directly confirm that cell
size is a factor inducing the phytoplankton blooms, we
believe that cell size has the potential to influence the for-
mation of this phenomena because it can affect the growth of
phytoplankton and the variation of nutrient concentration
in the aquatic ecosystems. Hence, the motive of this paper is
not to give a feasible theoretical explanation for the size-
dependent mechanisms of phytoplankton growth but to
provide a new insight into understanding the intrinsic law of
the nutrient-phytoplankton dynamics.
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