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This paper investigates the control and synchronization of a class of 3-D uncertain fractional-order chaotic systems with external
disturbances.The adding one power integrator control scheme, which is the generalization of the traditional backsteppingmethod,
is used to investigate the global stability of the control and synchronization manifold. As a result, several criteria for chaos control
and synchronization are obtained. Compared with the previous results, the presented strategies can not only be applied to a class
of strict-feedback systems but also be applied to more general class of fractional-order chaotic systems. In addition, the proposed
controllers are robust against uncertain parameters and external disturbances. To validate the effectiveness of the proposed criteria,
two illustrative examples are given.

1. Introduction

Chaotic systems, which are characterized by possessing at
least one positive Lyapunov exponent, are a special case of
nonlinear deterministic systems with unpredictable behav-
iors. In general, chaotic systems can be classified into two
categories: integer-order and fractional-order. Due to its
potential applications in secure communications, biological
systems [1] and so on, the control and synchronization of
integer-order chaotic systems have been extensively studied
for more than twenty years. Recently, chaos control and
synchronization of fractional-order chaotic systems have
attracted extensive attention of researchers and many results
have been proposed by employing different control methods
such as backstepping control method [2], sliding mode
control method [3, 4], PID control approach [5], periodically
intermittent control strategy [6], adaptive fuzzy backstep-
ping control [7], and adaptive fuzzy prescribed performance
control [8]. The backstepping method is a systematic design
approach. By designing virtual controllers and partial Lya-
punov functions step by step one can finally derive a common
Lyapunov function for the overall system. The main advan-
tage of this method is that it can guarantee the global stability,

tracking, and transient performance of nonlinear systems [9].
Various excellent backstepping strategies for the control and
synchronization of fractional-order chaotic system have been
investigated and proposed in recent studies. For example,
the control fractional-order ferroresonance system, which
can show chaotic phenomenon, was considered in paper
[10] by using the adaptive backstepping control. Papers [11,
12] investigated the stabilization and synchronization of a
class of fractional-order chaotic systems via backstepping
approach. Paper [13] proposed a new chaotic system with
no equilibrium point and discussed its fractional-order
backstepping control. The stabilization problem of a class of
fractional-order chaotic systems with unknown parameters
by using adaptive backstepping strategy was considered in
[14]. However, this schemes presented in papers [10–14]
can only be used for nonlinear systems with strict-feedback
structure. In addition, the external perturbations have not
been taken into account here. Since in practical situations the
external disturbance unavoidably exists and it may destroy
the stabilization of chaotic systems, it is necessary to consider
the effect of external disturbances in designing an adaptive
controller.
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In 2000, paper [15] presented a new control method:
adding a power integrator control. Similar to the traditional
backstepping method, this new control method is also a
systematic design approach and recursive Lyapunov-based
scheme. In order to obtain a common Lyapunov function
for the overall system, one needs to design power integrators
and partial Lyapunov functions step by step. Since the power
integrator is the generalization of the virtual controller,
thus adding a power integrator control can be viewed as
the generalization of the traditional backstepping method.
The remarkable superiorities of adding a power integrator
control are its robustness to parameter uncertainties and
good transient response of nonlinear systems. Therefore, the
adding a power integrator control method is applicable for
the control and synchronization problem of chaotic system.

Motivated by the above discussions this paper considers
the control and synchronization of a class of 3-D fractional-
order chaotic systems. This chaotic system with uncertain
parameters is assumed to be affected by external disturbances.
By using the adding one power integrator control scheme,
several criteria for chaos control and synchronization are pre-
sented.The theoretical results are validated by two numerical
simulations.

Compared with the mentioned prior papers [10–14],
there are two advantages which make our control scheme
attractive and meaningful. (a) The schemes presented
in papers [10–14] are only valid for a class of strict-
feedback chaotic systems. However, the technique pro-
posed in this paper can be applied for any 3-D fractional-
order chaotic systems. (b) The controllers constructed in
papers [10–14] are under the same assumption that sys-
tems are free from external perturbations. However, the
external perturbations are taken into consideration in our
paper.

The subsequent sections of this paper are organized as
follows: the system description and related preliminaries are
introduced in Section 2. The control and synchronization
schemes are presented in Sections 3 and 4, respectively. Some
illustrative examples to verify the effectiveness of the obtained
theoretical result are given in Section 5. Finally, conclusions
are drawn in Section 6.

2. Preliminaries and System Description

Definition 1 (see [16]). The Caputo’s fractional derivative of
order 𝛼 of function 𝑓(𝑡) is

𝐷𝛼𝑡0𝑓 (𝑡) = 1Γ (𝑛 − 𝛼) ∫
𝑡

𝑡0

𝑓(𝑛) (𝜏)(𝑡 − 𝜏)𝛼−𝑛+1𝑑𝜏, (1)

where 𝑡 ≥ 𝑡0, 𝑛 ∈ 𝑁+, 𝑛 − 1 < 𝛼 ≤ 𝑛 and
𝑓(𝑛) (𝜏) = 𝑑𝑛 (𝑓 (𝜏))𝑑𝜏𝑛 . (2)

When 0 < 𝛼 ≤ 1, then the Caputo fractional derivative of
order 𝛼 of function 𝑓(𝑡) reduces to

𝐷𝛼𝑡0𝑓 (𝑡) = 1Γ (1 − 𝛼) ∫
𝑡

𝑡0

𝑓 (𝜏)(𝑡 − 𝜏)𝛼 𝑑𝜏. (3)

Lemma 2 (see [17]). Suppose 𝑥(𝑡) ∈ 𝑅 is a derivable function,
then 12𝐷𝛼𝑡0𝑥2 (𝑡) ≤ 𝑥 (𝑡) 𝐷𝛼𝑡0𝑥 (𝑡) , ∀𝛼 ∈ (0, 1) , 𝑡0 ≥ 0. (4)

In the sequel, for the sake of simplicity, we use𝐷𝛼𝑥 to denote𝐷𝛼0𝑥.
�e fractional-order chaotic system which is considered in

this paper is

𝐷𝛼𝑥1 = 𝑓11 (𝑥) + 𝑎1𝑔11 (𝑥) + 𝑑11,
𝐷𝛼𝑥2 = 𝑓12 (𝑥) + 𝑏1𝑔12 (𝑥) + 𝑑12,
𝐷𝛼𝑥3 = 𝑓13 (𝑥) + 𝑐1𝑔13 (𝑥) + 𝑑13,

(5)

where 0 < 𝛼 ≤ 1, 𝑥 = (𝑥1, 𝑥2, 𝑥3)𝑇 ∈ 𝑅3×1 is the state
vector of the system (5),𝑓1𝑖(𝑥), 𝑔1𝑖(𝑥) are all known continuous
functions, 𝑖 = 1, 2, 3. 𝑎1, 𝑏1, 𝑐1 are unknown parameters,𝑑11, 𝑑12, 𝑑13 are bounded external disturbances.
Assumption 3. Suppose there exist known constants 𝑑1𝑖 > 0
such that |𝑑1𝑖| ≤ 𝑑1𝑖, 𝑖 = 1, 2, 3.
3. The Control Scheme

The control scheme of system (5) is presented in this section.
Based on system (5), the controlled system is rewritten as

𝐷𝛼𝑥1 = 𝑓11 (𝑥) + 𝑎1𝑔11 (𝑥) + 𝑑11 + 𝑢1,
𝐷𝛼𝑥2 = 𝑓12 (𝑥) + 𝑏1𝑔12 (𝑥) + 𝑑12 + 𝑢2,
𝐷𝛼𝑥3 = 𝑓13 (𝑥) + 𝑐1𝑔13 (𝑥) + 𝑑13 + 𝑢3,

(6)

where 𝑢1, 𝑢2, 𝑢3 are controllers.
The purpose of this section is to find suitable controllers𝑢1, 𝑢2, 𝑢3, such that the equilibrium point (0, 0, 0) of system

(6) is asymptotically stable.
Let us introduce some new variables: 𝜉1 = 𝑥1, 𝑥∗2 =−𝛼1𝑥1, 𝜉2 = 𝑥2 − 𝑥∗2 , 𝑥∗3 = −𝛼2𝜉2, 𝜉3 = 𝑥3 − 𝑥∗3 , where𝛼1 > 0, 𝛼2 > 0.
By using these new variables, the controllers 𝑢1, 𝑢2, 𝑢3 in

system (6) are designed as

𝑢1 = 𝑥2 − 𝑓11 (𝑥) − 𝑎1𝑔11 (𝑥) + 𝛽1,
𝑢2 = 𝑥3 − 𝑓12 (𝑥) − 𝑏1𝑔12 (𝑥) + 𝛽2,
𝑢3 = −𝛼6𝜉3 − 𝑓13 (𝑥) − 𝑐1𝑔13 (𝑥) + 𝛽3,

(7)

where 𝑎1, 𝑏1, 𝑐1 are the estimated values of 𝑎1, 𝑏1, 𝑐1, respec-
tively, 𝛽1 = −𝑑11sign(𝑥1 + 𝛼2𝜉2 + 𝛼1𝛼2𝜉3), 𝛽2 = −𝑑12sign(𝜉2 +𝛼2𝜉3), 𝛽3 = −𝑑13sign(𝜉3), 𝛼6 > 0 is a constant.

After plugging controllers (7) into system (6), one derives

𝐷𝛼𝑥1 = 𝑥2 + (𝑎1 − 𝑎1) 𝑔11 (𝑥) + 𝑑11 + 𝛽1,
𝐷𝛼𝑥2 = 𝑥3 + (𝑏1 − 𝑏1) 𝑔12 (𝑥) + 𝑑12 + 𝛽2,
𝐷𝛼𝑥3 = −𝛼6𝜉3 + (𝑐1 − 𝑐1) 𝑔13 (𝑥) + 𝑑13 + 𝛽3,

(8)
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Obviously, the control of system (6) is transformed into
the stability problem of equilibrium point (0, 0, 0) of system
(8). To solve the stability problem of system (8), we propose
the following Theorem 4.

Theorem 4. Suppose the update laws of 𝑎1, 𝑏1, 𝑐1 are designed
as

𝐷𝛼𝑎1 = (𝜉1 + 𝛼2𝜉2 + 𝛼1𝛼2𝜉3) 𝑔11 (𝑥) ,
𝐷𝛼𝑏1 = (𝜉2 + 𝛼2𝜉3) 𝑔12 (𝑥) ,
𝐷𝛼𝑐1 = 𝜉3𝑔13 (𝑥) .

(9)

If there exist constants 𝛼𝑖 > 0 (𝑖 = 1, 2, 3, 4, 5, 6), such that the
following inequalities are satisfied:

−𝛼1 + 𝛼3 + 𝛼5 < 0,
𝛼1 − 𝛼2 + (−𝛼21 + 1)

2

4𝛼3 + 𝛼4 < 0,
−𝛼6 + 𝛼2 + (𝛼1𝛼2 − 𝛼21 + 1)

2

4𝛼4 + 𝛼41𝛼224𝛼5 < 0,
(10)

then the equilibriumpoint of system (8) is asymptotically stable.

Proof. We use the adding one power integrator control
scheme to proveTheorem 4. Suppose the first power integra-
tor is

𝑉1 = ∫𝑥1
0

(𝑠 − 0) 𝑑𝑠 = 12𝑥21. (11)

Clearly, 𝑉1 can be viewed as a Lyapunov function.
Now, by using Lemma 2 we can calculate the derivative of𝑉1 and derive that

𝐷𝛼𝑉1 ≤ 𝑥1𝐷𝛼𝑥1
= 𝑥1 (𝑥2 + (𝑎 − 𝑎1) 𝑔11 (𝑥) + 𝛽1 + 𝑑11)
= 𝑥1 (𝑥2 − 𝑥∗2 ) + 𝑥1𝑥∗2 + (𝑎 − 𝑎1) 𝑥1𝑔11 (𝑥)
+ 𝑥1 (𝛽1 + 𝑑11) .

(12)

Note that 𝜉1 = 𝑥1, 𝑥∗2 = −𝛼1𝑥1 = −𝛼1𝜉1, 𝜉2 = 𝑥2 − 𝑥∗2 ,
then we get

𝐷𝛼𝑉1 ≤ 𝜉1𝜉2 − 𝛼1𝜉21 + (𝑎 − 𝑎1) 𝑥1𝑔11 (𝑥)
+ 𝑥1 (𝛽1 + 𝑑11) . (13)

The second power integrator is constructed as

𝑊1 = ∫𝑥2
𝑥∗
2

(𝑠 − 𝑥∗2 ) 𝑑𝑠 = 12 (𝑥2 − 𝑥∗2 )2 , (14)

we have

�̇�1 ≤ (𝑥2 − 𝑥∗2 )𝐷𝛼𝑥2 − (𝑥2 − 𝑥∗2 )𝐷𝛼𝑥∗2
≤ 𝜉2 (𝑥3 + (𝑏 − 𝑏1) 𝑔12 (𝑥) + 𝛽2 + 𝑑12)
− 𝜉2𝐷𝛼 (−𝛼1𝑥1)

= 𝜉2𝑥3 + 𝜉2 (𝑏 − 𝑏1) 𝑔12 (𝑥) + 𝜉2 (𝛽2 + 𝑑12)
+ 𝛼1𝜉2 (𝑥2 + (𝑎 − 𝑎1) 𝑔11 (𝑥) + 𝛽1 + 𝑑11)

= 𝜉2𝑥3 + 𝜉2 (𝑏 − 𝑏1) 𝑔12 (𝑥) + 𝛼1𝜉2 (𝑥2 − 𝑥∗2 )
+ 𝛼1𝜉2𝑥∗2 + (𝑎 − 𝑎1) 𝛼1𝜉2𝑔11 (𝑥) + 𝜉2 (𝛽2 + 𝑑12)
+ 𝛼1𝜉2 (𝛽1 + 𝑑11)

= 𝜉2𝑥3 + 𝛼1𝜉22 − 𝛼22𝜉1𝜉2 + 𝜉2 (𝑏 − 𝑏1) 𝑔12 (𝑥)
+ (𝑎 − 𝑎1) 𝛼1𝜉2𝑔11 (𝑥) + 𝜉2 (𝛽2 + 𝑑12)
+ 𝛼1𝜉2 (𝛽1 + 𝑑11) .

(15)

Choosing 𝑉2 = 𝑉1 +𝑊1, we obtain
𝐷𝛼𝑉2 = 𝐷𝛼𝑉1 + 𝐷𝛼𝑊1

≤ −𝛼1𝜉21 + 𝜉1𝜉2 + (𝑎 − 𝑎1) 𝑥1𝑔11 (𝑥)
+ 𝑥1 (𝛽1 + 𝑑11) + 𝜉2𝑥3 + 𝛼1𝜉22 − 𝛼21𝜉1𝜉2
+ 𝜉2 (𝑏 − 𝑏1) 𝑔12 (𝑥) + (𝑎 − 𝑎1) 𝛼1𝜉2𝑔11 (𝑥)
+ 𝜉2 (𝛽2 + 𝑑12) + 𝛼1𝜉2 (𝛽1 + 𝑑11)

= −𝛼1𝜉21 + 𝛼1𝜉22 + (1 − 𝛼21) 𝜉1𝜉2 + 𝜉2𝑥3
+ (𝑎 − 𝑎1) (𝑥1𝑔11 (𝑥) + 𝛼1𝜉2𝑔11 (𝑥))
+ (𝑏 − 𝑏1) 𝜉2𝑔12 (𝑥) + (𝑥1 + 𝛼1𝜉2) (𝛽1 + 𝑑11)
+ 𝜉2 (𝛽2 + 𝑑12)

= −𝛼1𝜉21 + 𝛼1𝜉22 + (1 − 𝛼21) 𝜉1𝜉2 + 𝜉2 (𝑥3 − 𝑥∗3 )
+ 𝜉2𝑥∗3 + (𝑎 − 𝑎1) (𝑥1𝑔11 (𝑥) + 𝛼1𝜉2𝑔11 (𝑥))
+ (𝑏 − 𝑏1) 𝜉2𝑔12 (𝑥) + (𝑥1 + 𝛼1𝜉2) (𝛽1 + 𝑑11)
+ 𝜉2 (𝛽2 + 𝑑12) .

(16)

Since 𝑥∗3 = −𝛼2𝜉2, 𝜉3 = 𝑥3 − 𝑥∗3 , we get
𝐷𝛼𝑉2 ≤ −𝛼1𝜉21 + 𝛼1𝜉22 − 𝛼2𝜉22 + (1 − 𝛼21) 𝜉1𝜉2 + 𝜉2𝜉3

+ (𝑎 − 𝑎1) (𝑥1𝑔11 (𝑥) + 𝛼1𝜉2𝑔11 (𝑥))
+ (𝑏 − 𝑏1) 𝜉2𝑔12 (𝑥) + (𝑥1 + 𝛼1𝜉2) (𝛽1 + 𝑑11)
+ 𝜉2 (𝛽2 + 𝑑12) .

(17)
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The third power integrator is similarly defined as

𝑊2 = ∫𝑥3
𝑥∗
3

(𝑠 − 𝑥∗3 ) 𝑑𝑠 = 12 (𝑥3 − 𝑥∗3 )2 , (18)

then we derive𝐷𝛼𝑊2 = (𝑥3 − 𝑥∗3 )𝐷𝛼𝑥3 − (𝑥3 − 𝑥∗3 )𝐷𝛼𝑥∗3
≤ 𝜉3 (−𝛼6𝜉3 + (𝑐 − 𝑐1) 𝑔13 (𝑥) + 𝛽3 + 𝑑13)
− 𝜉3𝐷𝛼 (−𝛼2𝜉2)

= 𝜉3 (−𝛼6𝜉3 + (𝑐 − 𝑐1) 𝑔13 (𝑥) + 𝛽3 + 𝑑13)
+ 𝛼2𝜉3𝐷𝛼 (𝑥2 − 𝑥∗2 )

= 𝜉3 (−𝛼6𝜉3 + (𝑐 − 𝑐1) 𝑔13 (𝑥) + 𝛽3 + 𝑑13)
+ 𝛼2𝜉3 (𝑥2 + 𝛼1𝑥1)

= 𝜉3 (−𝛼6𝜉3 + (𝑐 − 𝑐1) 𝑔13 (𝑥) + 𝛽3 + 𝑑13)
+ 𝛼2𝜉3 (𝑥3 + (𝑏 − 𝑏1) 𝑔12 (𝑥) + 𝛽2 + 𝑑12)
+ 𝛼1𝛼2𝜉3 (𝑥2 + (𝑎 − 𝑎1) 𝑔11 (𝑥) + 𝛽1 + 𝑑11)

= 𝜉3 (−𝛼6𝜉3) + (𝑐 − 𝑐1) 𝜉3𝑔13 (𝑥) + 𝛼2𝜉3𝑥3
+ 𝛼1𝛼2𝜉3𝑥2 + (𝑏 − 𝑏1) 𝛼2𝜉3𝑔12 (𝑥)
+ 𝛼1𝛼2𝜉3 (𝑎 − 𝑎1) 𝑔11 (𝑥) + 𝜉3 (𝛽3 + 𝑑13)
+ 𝛼2𝜉3 (𝛽2 + 𝑑12) + 𝛼1𝛼2𝜉3 (𝛽1 + 𝑑11)

= 𝜉3 (−𝛼6𝜉3) + 𝛼2𝜉3 (𝑥3 − 𝑥∗3 ) + 𝛼2𝜉3𝑥∗3
+ 𝛼1𝛼2𝜉3 (𝑥2 − 𝑥∗2 ) + 𝛼1𝛼2𝜉3𝑥∗2
+ (𝑐 − 𝑐1) 𝜉3𝑔13 (𝑥) + (𝑏 − 𝑏1) 𝛼2𝜉3𝑔12 (𝑥)
+ (𝑎 − 𝑎1) 𝛼1𝛼2𝜉3𝑔11 (𝑥) + 𝜉3 (𝛽3 + 𝑑13)
+ 𝛼2𝜉3 (𝛽2 + 𝑑12) + 𝛼1𝛼2𝜉3 (𝛽1 + 𝑑11)

= 𝜉3 (−𝛼6𝜉3) + 𝛼2𝜉23 + 𝛼2𝜉3 (−𝛼2𝜉2) + 𝛼1𝛼2𝜉3𝜉2
+ 𝛼1𝛼2𝜉3 (−𝛼1𝜉1) + (𝑐 − 𝑐1) 𝜉3𝑔13 (𝑥)
+ (𝑏 − 𝑏1) 𝛼2𝜉3𝑔12 (𝑥)
+ (𝑎 − 𝑎1) 𝛼1𝛼2𝜉3𝑔11 (𝑥) + 𝜉3 (𝛽3 + 𝑑13)
+ 𝛼2𝜉3 (𝛽2 + 𝑑12) + 𝛼1𝛼2𝜉3 (𝛽1 + 𝑑11)

= 𝜉3 (−𝛼6𝜉3) + 𝛼2𝜉23 + (𝛼1𝛼2 − 𝛼22) 𝜉2𝜉3
− 𝛼21𝛼2𝜉1𝜉3 + (𝑐 − 𝑐1) 𝜉3𝑔13 (𝑥)
+ (𝑏 − 𝑏1) 𝛼2𝜉3𝑔12 (𝑥)
+ (𝑎 − 𝑎1) 𝛼1𝛼2𝜉3𝑔11 (𝑥) + 𝜉3 (𝛽3 + 𝑑13)
+ 𝛼2𝜉3 (𝛽2 + 𝑑12) + 𝛼1𝛼2𝜉3 (𝛽1 + 𝑑11) .

(19)

Now, the final Lyapunov function is chosen as

𝑉3 = 𝑉2 +𝑊2 + 12 (𝑎1 − 𝑎1)2 + 12 (𝑏1 − 𝑏1)2
+ 12 (𝑐1 − 𝑐1)2 .

(20)

The derivative of 𝑉3 is𝐷𝛼𝑉3 ≤ 𝐷𝛼𝑉2 + 𝐷𝛼𝑊2 − (𝑎1 − 𝑎1)𝐷𝛼𝑎1
− (𝑏1 − 𝑏1)𝐷𝛼𝑏1 − (𝑐1 − 𝑐1)𝐷𝛼𝑐1

≤ −𝛼1𝜉21 + 𝛼1𝜉22 − 𝛼2𝜉22 + (1 − 𝛼21) 𝜉1𝜉2 + 𝜉2𝜉3
+ (𝑎 − 𝑎1) (𝑥1𝑔11 (𝑥) + 𝛼1𝜉2𝑔11 (𝑥))
+ (𝑏 − 𝑏1) 𝜉2𝑔12 (𝑥) + 𝜉3 (−𝛼6𝜉3) + 𝛼2𝜉23
+ (𝛼1𝛼2 − 𝛼22) 𝜉2𝜉3 − 𝛼21𝛼2𝜉1𝜉3
+ (𝑎 − 𝑎1) 𝛼1𝛼2𝜉3𝑔11 (𝑥)
+ (𝑏 − 𝑏1) 𝛼2𝜉3𝑔12 (𝑥) + (𝑐 − 𝑐1) 𝜉3𝑔13 (𝑥)
+ (𝑥1 + 𝛼1𝜉2 + 𝛼1𝛼2𝜉3) (𝛽1 + 𝑑11)
+ (𝜉2 + 𝛼2𝜉3) (𝛽2 + 𝑑12) + 𝜉3 (𝛽3 + 𝑑13)
− (𝑎1 − 𝑎1)𝐷𝛼𝑎1 − (𝑏1 − 𝑏1)𝐷𝛼𝑏1
− (𝑐1 − 𝑐1)𝐷𝛼𝑐1.

(21)

Note that(𝑥1 + 𝛼1𝜉2 + 𝛼1𝛼2𝜉3) (𝛽1 + 𝑑11) ≤ 0,
(𝜉2 + 𝛼2𝜉3) (𝛽2 + 𝑑12) ≤ 0,

𝜉3 (𝛽3 + 𝑑13) ≤ 0.
(22)

We get

𝐷𝛼𝑉3 ≤ −𝛼1𝜉21 + 𝛼1𝜉22 − 𝛼2𝜉22 + (1 − 𝛼21) 𝜉1𝜉2 + 𝜉2𝜉3
+ 𝜉3 (−𝛼6𝜉3) + 𝛼2𝜉23 + (𝛼1𝛼2 − 𝛼22) 𝜉2𝜉3
− 𝛼21𝛼2𝜉1𝜉3
+ (𝑎 − 𝑎1) (𝑥1 + 𝛼1𝜉2 + 𝛼1𝛼2𝜉3) 𝑔11 (𝑥)
+ (𝑏 − 𝑏1) (𝜉2 + 𝛼2𝜉3) 𝑔12 (𝑥)
+ (𝑐 − 𝑐1) 𝜉3𝑔13 (𝑥) − (𝑎1 − 𝑎1)𝐷𝛼𝑎1
− (𝑏1 − 𝑏1)𝐷𝛼𝑏1 − (𝑐1 − 𝑐1)𝐷𝛼𝑐1.

(23)

Substituting 𝐷𝛼𝑎1, 𝐷𝛼𝑏1, 𝐷𝛼𝑐1 into 𝐷𝛼𝑉3 yields𝐷𝛼𝑉3 ≤ −𝛼1𝜉21 + (𝛼1 − 𝛼2) 𝜉22 + (1 − 𝛼21) 𝜉1𝜉2 + 𝛼2𝜉23
+ (𝛼1𝛼2 − 𝛼22 + 1) 𝜉2𝜉3 − 𝛼21𝛼2𝜉1𝜉3
+ 𝜉3 (−𝛼6𝜉3) .

(24)
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By using the inequality: 𝑎𝑏 ≤ 𝜖𝑎2 + 𝑏2/4𝜖 (𝜖 > 0), we have
𝐷𝛼𝑉3
≤ −𝛼1𝜉21 + (𝛼1 − 𝛼2) 𝜉22 + 𝛼2𝜉23 + 𝛼3𝜉21
+ (1 − 𝛼21)24𝛼3 𝜉22 + 𝛼4𝜉22 + (1 + 𝛼1𝛼2 − 𝛼21)

2

4𝛼4 𝜉23
+ 𝛼5𝜉21 + 𝛼41𝛼224𝛼5 𝜉23 + 𝜉3 (−𝛼6𝜉3)

= (−𝛼1 + 𝛼3 + 𝛼5) 𝜉21
+ (𝛼1 − 𝛼2 + (1 − 𝛼21)

2

4𝛼3 + 𝛼4)𝜉22
+ (−𝛼6 + 𝛼2 + (1 + 𝛼1𝛼2 − 𝛼21)

2

4𝛼4 + 𝛼41𝛼224𝛼5 )𝜉23.

(25)

In view of that

−𝛼1 + 𝛼3 + 𝛼5 < 0,
𝛼1 − 𝛼2 + (−𝛼21 + 1)

2

4𝛼3 + 𝛼4 < 0,
−𝛼6 + 𝛼2 + (𝛼1𝛼2 − 𝛼21 + 1)

2

4𝛼4 + 𝛼41𝛼224𝛼5 < 0,
(26)

we obtain 𝐷𝛼𝑉3 < 0, which implies that lim𝑡→∞𝜉1 =
lim𝑡→∞𝜉2 = lim𝑡→∞𝜉3 = 0. According to the definition
of 𝜉1, 𝜉2, 𝜉3 we conclude that lim𝑡→∞𝑥1 = lim𝑡→∞𝑥2 =
lim𝑡→∞𝑥3 = 0. The proof of Theorem 4 is completed.

Remark 5. From the first inequality of (10), it is easy to see that
for any given values 𝛼3 and 𝛼5 we can choose proper 𝛼1 such
that −𝛼1 +𝛼3 +𝛼5 < 0. Based on the second inequality of (10)
one can know that for any given value 𝛼1 and 𝛼4 we can take
suitable𝛼2 such that𝛼1−𝛼2+(−𝛼21+1)2/4𝛼3+𝛼4 < 0. Similarly,
according to the third inequality of (10) one canderive that for
any given values 𝛼1, 𝛼2, 𝛼4 and 𝛼5 one can select appropriate𝛼6 such that −𝛼6 + 𝛼2 + (𝛼1𝛼2 − 𝛼21 + 1)2/4𝛼4 + 𝛼41𝛼22/4𝛼5 < 0.
Therefore, there are many feasible solutions of equation (10).
For example, 𝛼1 = 2, 𝛼2 = 8, 𝛼3 = 𝛼4 = 𝛼5 = 1/2, 𝛼6 = 586
is one of the feasible solutions. In addition, from (25) it is not
difficult to know that the smaller the values of −𝛼1 + 𝛼3 +𝛼5, 𝛼1 − 𝛼2 + (−𝛼21 + 1)2/4𝛼3 + 𝛼4 and −𝛼6 + 𝛼2 + (𝛼1𝛼2 − 𝛼21 +1)2/4𝛼4 + 𝛼41𝛼22/4𝛼5, the faster the convergence speed of 𝑉3.
Remark 6. In Theorem 4 we assume that each equation in
system (6) has one uncertain parameter.However, in practical
application each equation may have more than one uncertain
parameter. In fact, Theorem 4 can be easily modified to deal
with the case which has more than one uncertain parameter.

For example, if the first equation of system (6) has two
uncertain parameters:

𝐷𝛼𝑥1 = 𝑓11 (𝑥) + 𝑎𝑔1 (𝑥) + 𝑏𝑔2 (𝑥) + 𝑑11 + 𝑢1, (27)

where 𝑎 and 𝑏 are two uncertain parameters, then based on
Theorem 4 we can take

𝑢1 = 𝑥2 − 𝑓11 (𝑥) − 𝑎𝑔1 (𝑥) − 𝑏𝑔2 (𝑥) + 𝛽1, (28)

and the update laws of 𝑎, 𝑏 are designed as

𝐷𝛼𝑎 = (𝜉1 + 𝛼2𝜉2 + 𝛼1𝛼2𝜉3) 𝑔1 (𝑥) ,
𝐷𝛼𝑏 = (𝜉1 + 𝛼2𝜉2 + 𝛼1𝛼2𝜉3) 𝑔2 (𝑥) , (29)

where 𝑎 and 𝑏 are the estimated values of 𝑎 and 𝑏, respectively.
Remark 7. In system (5), 𝑓1𝑖(𝑥) and 𝑔1𝑖(𝑥) can be any contin-
uous functions which means that the technique proposed in
this paper can be applied for any 3-D fractional-order chaotic
systems. However, the schemes presented in papers [10–14]
are only valid for a class of strict-feedback chaotic systems.
In addition, the bounded external disturbances 𝑑11, 𝑑12, 𝑑13
are taken into consideration in system (5). However, the
controllers presented in papers [10–14] are under the same
assumption that systems are free fromexternal perturbations.

4. The Synchronization Scheme

Based on the results obtained in Section 3, in this section the
drive-response synchronization scheme is investigated.

Suppose system (5) is the drive system, then the response
system is given as

𝐷𝛼𝑦1 = 𝑓21 (𝑦) + 𝑎2𝑔21 (𝑦) + 𝑑21 + 𝑢1,
𝐷𝛼𝑦2 = 𝑓22 (𝑦) + 𝑏2𝑔22 (𝑦) + 𝑑22 + 𝑢2,
𝐷𝛼𝑦3 = 𝑓23 (𝑦) + 𝑐2𝑔23 (𝑦) + 𝑑23 + 𝑢3,

(30)

where 0 < 𝛼 ≤ 1, 𝑦 = (𝑦1, 𝑦2, 𝑦3)𝑇 ∈ 𝑅3×1 is the state vector of
system (30), 𝑓2𝑖(𝑦), 𝑔2𝑖(𝑦) are all known functions, 𝑖 = 1, 2, 3.𝑎2, 𝑏2, 𝑐2 are unknown parameters, 𝑑21, 𝑑22, 𝑑23 are bounded
external disturbances, 𝑢1, 𝑢2, 𝑢3 are controllers.
Assumption 8. Suppose there exist known constants 𝑑2𝑖 > 0
such that |𝑑2𝑖| ≤ 𝑑2𝑖, 𝑖 = 1, 2, 3.

The synchronization error is defined as 𝑒𝑖 = 𝑦𝑖 −𝑥𝑖, 𝑖 = 1,,
2, 3. Then the error dynamic system is given as

𝐷𝛼𝑒1 = 𝑓21 (𝑦) + 𝑎2𝑔21 (𝑦) + 𝑑21
− (𝑓11 (𝑥) + 𝑎1𝑔11 (𝑥) + 𝑑11) + 𝑢1,

𝐷𝛼𝑒2 = 𝑓22 (𝑦) + 𝑏2𝑔22 (𝑦) + 𝑑22
− (𝑓12 (𝑥) + 𝑏1𝑔12 (𝑥) + 𝑑12) + 𝑢2,

𝐷𝛼𝑒3 = 𝑓23 (𝑦) + 𝑐2𝑔23 (𝑦) + 𝑑23
− (𝑓13 (𝑥) + 𝑐1𝑔13 (𝑥) + 𝑑13) + 𝑢3,

(31)
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Now we introduce some new variables: 𝜂1 = 𝑒1, 𝑒∗2 =−𝛼1𝑒1, 𝜂2 = 𝑒2 − 𝑒∗2 , 𝑒∗3 = −𝛼2𝜂2, 𝜂3 = 𝑒3 − 𝑒∗3 , where𝛼1 > 0, 𝛼2 > 0.
By using these new variables, the controllers 𝑢1, 𝑢2, 𝑢3 in

system (31) are designed as

𝑢1 = 𝑒2 + 𝑔11 (𝑥) − 𝑓21 (𝑦) + 𝑎1𝑔11 (𝑥) − 𝑎2𝑔21 (𝑦)
+ 𝛾1,

𝑢2 = 𝑒3 − 𝑓22 (𝑦) + 𝑔12 (𝑥) + 𝑏1𝑔12 (𝑥) − 𝑏2𝑔22 (𝑦)
+ 𝛾2,

𝑢3 = −𝛼6𝜂3 − 𝑓23 (𝑦) + 𝑔13 (𝑥) + 𝑐1𝑔13 (𝑥)
− 𝑐2𝑔23 (𝑦) + 𝛾3,

(32)

where 𝑎1, 𝑏1, 𝑐1, 𝑎2, 𝑏2, 𝑐2 are the estimated values of𝑎1, 𝑏1, 𝑐1, 𝑎2, 𝑏2, 𝑐2, respectively, 𝛾1 = −(𝑑11 + 𝑑21)sign(𝑒1 +𝛼2𝜂2 + 𝛼1𝛼2𝜂3), 𝛾2 = −(𝑑12 + 𝑑22)sign(𝜂2 + 𝛼2𝜂3),𝛾3 = −(𝑑13 + 𝑑23)sign(𝜂3), 𝛼6 > 0 is a constant.
After plugging controllers (32) into system (31), one

derives

𝐷𝛼𝑒1 = 𝑒2 − (𝑎1 − 𝑎1) 𝑔11 (𝑥) + (𝑎2 − 𝑎2) 𝑔21 (𝑦)
− 𝑑11 + 𝑑21 + 𝛾1,

𝐷𝛼𝑒2 = 𝑒3 − (𝑏1 − 𝑏1) 𝑔12 (𝑥) + (𝑏2 − 𝑏2) 𝑔22 (𝑦)
− 𝑑12 + 𝑑22 + 𝛾2,

𝐷𝛼𝑒3 = −𝛼6𝜂3 − (𝑐1 − 𝑐1) 𝑔13 (𝑥) + (𝑐2 − 𝑐2) 𝑔23 (𝑦)
− 𝑑13 + 𝑑23 + 𝛾3,

(33)

Obviously, the synchronization problem between systems
(5) and (30) is transformed into the stability problem of the
equilibrium point (0, 0, 0) of system (33). To solve the stability
problem of system (33), we propose Theorem 9 whose proof
is omitted.

Theorem9. Suppose the update laws of 𝑎1, 𝑏1, 𝑐1, 𝑎2, 𝑏2, 𝑐2 are
designed as

𝐷𝛼𝑎1 = − (𝜂1 + 𝛼2𝜂2 + 𝛼1𝛼2𝜂3) 𝑔11 (𝑥) ,
𝐷𝛼𝑏1 = − (𝜂2 + 𝛼2𝜂3) 𝑔12 (𝑥) ,
𝐷𝛼𝑐1 = −𝜂3𝑔13 (𝑥) ,
𝐷𝛼𝑎2 = (𝜂1 + 𝛼2𝜂2 + 𝛼1𝛼2𝜂3) 𝑔21 (𝑦) ,
𝐷𝛼𝑏2 = (𝜂2 + 𝛼2𝜂3) 𝑔22 (𝑦) ,
𝐷𝛼𝑐2 = 𝜂3𝑔23 (𝑦) .

(34)

If there exist constants 𝛼𝑖 > 0 (𝑖 = 1, 2, 3, 4, 5, 6), such that
the inequalities (10) are satisfied, then the equilibrium point
of system (33) is asymptotically stable which means that the
synchronization between systems (5) and (30) is achieved.

5. Simulation Results

There are many new chaotic systems in the literature [18–20].
In this section the new fractional-order chaotic system which
has been introduced in [20] is considered since it has many
interesting properties.

Example 10 (the control of a new fractional-order chaotic sys-
tem). The new fractional-order chaotic system is described
by the following set of equations:

𝐷𝛼𝑥1 = 𝑥2 − 𝑎𝑥1 + 𝑏𝑥2𝑥3,
𝐷𝛼𝑥2 = 𝑐𝑥2 − 𝑥1𝑥3 + 𝑥3,
𝐷𝛼𝑥3 = 𝑑𝑥1𝑥2 − ℎ𝑥3,

(35)

where 𝛼 is the fractional-order. 𝑥 = (𝑥1, 𝑥2, 𝑥3)𝑇 ∈ 𝑅3
is the state variable, parameters 𝑎, 𝑏, 𝑐, 𝑑 and ℎ are positive
real constants. This system shows chaotic behaviors for the
parameters 𝑎 = 3, 𝑏 = 2.7, 𝑐 ∈ (4.45, 4, 60) ∪ (4.86, 4.94) ∪[5.17, 7), 𝑑 = 2 and ℎ = 9. The chaotic attractor of system
(35) with 𝛼 = 0.995, 𝑎 = 3, 𝑏 = 2.7, 𝑐 = 5, 𝑑 = 2, ℎ = 9 with
initial conditions 𝑥1(0) = −3, 𝑥2(0) = 1.5, 𝑥3(0) = 2 is shown
in Figure 1.

For the control purpose, system (35) can be rewritten as

𝐷𝛼𝑥1 = 𝑥2 − 𝑎𝑥1 + 𝑏𝑥2𝑥3 + sin 𝑡 + 𝑢1,
𝐷𝛼𝑥2 = 𝑐𝑥2 − 𝑥1𝑥3 + 𝑥3 + 2 cos 𝑡 + 𝑢2,
𝐷𝛼𝑥3 = 𝑑𝑥1𝑥2 − ℎ𝑥3 + 2 sin 𝑡 cos 𝑡 + 𝑢3,

(36)

where sin 𝑡, 2 cos 𝑡, 2 sin 𝑡 cos 𝑡 are the external disturbances,𝑢1, 𝑢2, 𝑢3 are controllers.
Suppose 𝑎, 𝑏, 𝑐, 𝑑, ℎ are unknown parameters, then𝑓11(𝑥) = 𝑥2, 𝑓12(𝑥) = −𝑥1𝑥3 + 𝑥3. Based on Theorem 4 the

controllers 𝑢1, 𝑢2, 𝑢3 are chosen as

𝑢1 = 𝑎1𝑥1 − 𝑏1𝑥2𝑥3 + 𝛽1,
𝑢2 = 𝑥1𝑥3 − 𝑐1𝑥2 + 𝛽2,
𝑢3 = −𝛼6𝜉3 − 𝑑𝑥1𝑥2 + ℎ𝑥3 + 𝛽3,

(37)

where 𝑎, 𝑏, 𝑐, 𝑑, ℎ are the estimated values of 𝑎, 𝑏, 𝑐, 𝑑, ℎ,
respectively, 𝛽1 = −sign(𝑥1+𝛼2𝜉2+𝛼1𝛼2𝜉3), 𝛽2 = −2sign(𝜉2+𝛼2𝜉3), 𝛽3 = −2sign(𝜉3).

The update laws of 𝑎, 𝑏, 𝑐, 𝑑, ℎ are designed as

𝐷𝛼𝑎 = − (𝜉1 + 𝛼2𝜉2 + 𝛼1𝛼2𝜉3) 𝑥1,
𝐷𝛼𝑏 = (𝜉1 + 𝛼2𝜉2 + 𝛼1𝛼2𝜉3) 𝑥2𝑥3,
𝐷𝛼𝑐 = (𝜉2 + 𝛼2𝜉3) 𝑥2,
𝐷𝛼𝑑 = 𝜉3𝑥1𝑥2,
𝐷𝛼ℎ = −𝜉3𝑥3.

(38)

If we take 𝛼1 = 2, 𝛼2 = 8, 𝛼3 = 𝛼4 = 𝛼5 =1/2, 𝛼6 = 586, then the conditions of Theorem 4 are satisfied.
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Figure 1: The chaos attractor of system (35) with (𝑥1(0), 𝑥2(0), 𝑥3(0)) = (−3, 1.5, 2).
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Figure 2: The time response of state 𝑥1 of system (36) with controller (37).

According toTheorem 4 the equilibrium point of system (36)
is asymptotically stable. The simulation results with 𝑥1(0) =−3, 𝑥2(0) = 1.5, 𝑥3(0) = 2 and 𝑎(0) = �̂�(0) = 𝑐(0) = 𝑑(0) =ℎ̂(0) = 1 are shown in Figures 2–5. Figures 2–4 are the time
response of states 𝑥1, 𝑥2, 𝑥3 of system (36) with controller
(37). Figure 5 displays the time response of states 𝑎, �̂�, 𝑐, 𝑑, ℎ̂
of system (36) with controller (37).

Example 11 (the synchronization between two new frac-
tional-order chaotic systems). Another new chaotic system
considered in this section is the fractional-order modified
unified chaotic system [21] which is given as

𝐷𝛼𝑦1 = (35 − 25𝜃) (𝑦2 − 𝑦1) ,
𝐷𝛼𝑦2 = (−7 + 35𝜃) 𝑦1 − 𝑦1𝑦3 + (28 − 29𝜃) 𝑦2,
𝐷𝛼𝑦3 = 𝑦1𝑦2 − 13 (9 − 𝜃) 𝑦3,

(39)

where 𝛼 is the fractional-order. 𝑦 = (𝑦1, 𝑦2, 𝑦3)𝑇 ∈ 𝑅3 is
the state variable, parameter 𝜃 ∈ [0, 1]. The chaotic attractor
of system (39) with 𝜃 = 1 with initial conditions 𝑦1(0) =2, 𝑦2(0) = −1.5, 𝑦3(0) = 5 is shown in Figure 6.

Suppose system (35) is the drive system and system
(39) is the response system. The drive system with external
disturbances is described as

𝐷𝛼𝑥1 = 𝑥2 − 𝑎𝑥1 + 𝑏𝑥2𝑥3 + sin 𝑡,
𝐷𝛼𝑥2 = 𝑐𝑥2 − 𝑥1𝑥3 + 𝑥3 + 2 cos 𝑡,
𝐷𝛼𝑥3 = 𝑑𝑥1𝑥2 − ℎ𝑥3 + 2 sin 𝑡 cos 𝑡.

(40)

The controlled response system with external disturbances is
given as

𝐷𝛼𝑦1 = (35 − 25𝜃) (𝑦2 − 𝑦1) + 2 cos 𝑡 + 𝑢1,
𝐷𝛼𝑦2 = (−7 + 35𝜃) 𝑦1 − 𝑦1𝑦3 + (28 − 29𝜃) 𝑦2 + sin 𝑡

+ 𝑢2,
𝐷𝛼𝑦3 = 𝑦1𝑦2 − 𝜇𝑦3 + cos 𝑡 + 𝑢3,

(41)

where 𝑢1, 𝑢2, 𝑢3 are controllers and 𝜇 = (1/3)(9 − 𝜃).
Now for simplicity, we assume parameters 𝑎 and 𝑐 in

system (40) and parameter 𝜇 in system (41) are unknown.
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Figure 3: The time response of state 𝑥2 of system (36) with controller (37).
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Figure 4: The time response of state 𝑥3 of system (36) with controller (37).
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Figure 5: The time response of states 𝑎, 𝑏, 𝑐, 𝑑, ℎ of system (36) with controller (37).
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Figure 6: The chaos attractor of fractional-order modified unified chaotic system with (𝑦1(0), 𝑦2(0), 𝑦3(0)) = (2, −1.5, 5).
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Figure 7: The time response of the error state 𝑒1.
According to Theorem 9, the controllers 𝑢1, 𝑢2, 𝑢3 in

system (41) are designed as

𝑢1 = 𝑒2 + 𝑥2 + 𝑏𝑥2𝑥3 − (35 − 25𝜃) (𝑦2 − 𝑦1) − 𝑎1𝑥1
+ 𝛾1,

𝑢2 = 𝑒3 − 𝑥1𝑥3 + 𝑥3
− ((−7 + 35𝜃) 𝑦1 − 𝑦1𝑦3 + (28 − 29𝜃) 𝑦2)
+ 𝑐1𝑥2 + 𝛾2,

𝑢3 = −𝛼6𝜂3 + 𝑑𝑥1𝑥2 − ℎ𝑥3 − 𝑦1𝑦2 + 𝜇𝑦3 + 𝛾3,

(42)

where 𝑎1, 𝑐1, 𝜇 are the estimated values of 𝑎1, 𝑐1, 𝜇, respec-
tively, 𝛾1 = −3sign(𝑒1+𝛼2𝜂2+𝛼1𝛼2𝜂3), 𝛾2 = −3sign(𝜂2+𝛼2𝜂3),𝛾3 = −3sign(𝜂3), 𝛼6 > 0 is a constant.

The update laws of 𝑎1, 𝑐1, 𝜇 are designed as

𝐷𝛼𝑎 = (𝜂1 + 𝛼2𝜂2 + 𝛼1𝛼2𝜂3) 𝑥1,
𝐷𝛼𝑐 = − (𝜂2 + 𝛼2𝜂3) 𝑥2,
𝐷𝛼𝜇 = −𝜂3𝑦3.

(43)

Similarly, we take 𝛼1 = 2, 𝛼2 = 8, 𝛼3 = 𝛼4 =𝛼5 = 1/2, 𝛼6 = 586. Then the conditions of Theorem 9
are satisfied. According to Theorem 9 the synchronization
between systems (40) and (41) will be achieved. The sim-
ulation results with 𝑥1(0) = −3, 𝑥2(0) = 1.5, 𝑥3(0) =2, (𝑦1(0), 𝑦2(0), 𝑦3(0)) = (2, −1.5, 5) and 𝑎(0) = 𝑐(0) = 𝜇(0) =1 are shown inFigures 7–10. Figures 7–9 are the time response
of states 𝑒1, 𝑒2, 𝑒3 of the error system. Figure 10 shows the time
response of states 𝑎, 𝑐, 𝜇 of the error system.

Remark 12. Although the chaotic systems investigated in
our numerical simulations are not in strict-feedback form
and subject to external disturbances, from Figures 2–5 and
7–10 one can find that the numerical results are completely
consistent with the theoretical analysis presented in this
paper which in turn demonstrates the validity, effectiveness,
and good performance of the proposed schemes.

6. Conclusions

This paper deals with the control and synchronization of
a class of 3-D uncertain fractional-order chaotic systems
with external disturbances by using the adding one power
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Figure 8: The time response of the error state 𝑒2.
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Figure 9: The time response of the error state 𝑒3.

0 0.5 1 1.5 2 2.5 3
−100

0

100

t (sec)

\b
ar

(a
)

0 0.5 1 1.5 2 2.5 3
−10

0

10

t (sec)

\b
ar

(c
)

0 0.5 1 1.5 2 2.5 3
−10

0

10

t (sec)

\b
ar

(\
m

u)

Figure 10: The time response of states 𝑎, 𝑐, 𝜇.
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integrator control method. Based on the systematic step
by step control design procedure, some novel criteria are
presented. These proposed control strategies can not only
be applied to a class of strict-feedback systems, but also
be applied to more general class of fractional-order chaotic
systems. In addition, the presented controllers are robust
against uncertain parameters and external disturbances. In
the end, some illustrative examples and numerical simulation
results are given to demonstrate the effectiveness of the
proposed method.
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