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Planetary gear is the key part of the transmission system for large complex electromechanical equipment, and in general, a
series of degradation states are undergone and evolved into a local fatal fault in its full life cycle. So it is of great significance to
recognize the degradation state of planetary gear for the purpose ofmaintenance repair, predicting development trend, and avoiding
sudden fault. This paper proposed a degradation state recognition method of planetary gear based on multiscale information
dimension of singular spectrum decomposition (SSD) and convolutional neural network (CNN). SSD can automatically realize
the embedding dimension selection and component grouping segmentation, and the original vibration signal being nonlinear
and nonstationary can be decomposed into a series of singular spectrum decomposition components (SSDCs), adaptively. Then,
the multiscale information dimension which combines multiscale analysis and fractal information dimension is proposed for
quantifying and extracting the feature information contained in each SSDC. Finally, CNN is used to achieve the effective recognition
of the degradation state of planetary gear. The experimental results show that the proposed method can accurately recognize the
degradation state of planetary gear, and the overall recognition rate is up to 97.2%, of which the recognition rate of normal planetary
gear reaches 100%.

1. Introduction

Planetary gear is the key part of the transmission system for
large complex electromechanical equipment, and it usually
operates under extreme harsh conditions on the long term.
The local fault of planetary gear is easy to produce, and it
undergoes a series of degradation states to fatal fault, which
directly affects the operational reliability of the electrome-
chanical equipment [1]. Therefore, it is of great significance
to accurately recognize the current degradation state of plan-
etary gear for the purpose of maintenance repair, predicting
development trend, and avoiding sudden fault.

The degradation state recognition of planetary gear is
still the problems of pattern classification and fault diagnosis,
but it is more difficult than the general fault diagnosis
problem [2]. The main reasons are as follows: (1) In actual
engineering, the operation condition of planetary gear is
relatively harsh. Meanwhile, due to the particularity and
complexity of planetary gear structure, its vibration signals

have the characteristics of being nonlinear and nonstationary
compared with the other transmission mechanisms. (2) The
different degradation states of planetary gear still belong to
the same fault type, and their degrees are different which
results in the fault feature differences being smaller.

The effective extraction of the fault feature for planetary
gear is the key to realize the degradation state recognition [3].
The traditional fault feature includes time domain features
and frequency domain features, but they only have global
statistical significance, and they are not suitable to analyze
nonlinear and nonstationary signals [4]. With the develop-
ment of signal processing technology, the method of signal
decomposition combining with feature quantification has
become the mainstream. The widely used signal decomposi-
tion method includes empirical mode decomposition (EMD)
[5] and wavelet transform and their improved methods
such as ensemble empirical mode decomposition (EEMD)
[6], complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN) [7], and dual-tree complex
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wavelet transform (DTCWT) [8] are also applied to fault
feature extraction. But there are still some shortcomings
in those methods; the methods developed from EMD can
easily fall into modal aliasing when it is used to process
the intermittent vibration signal; meanwhile, the obtained
decomposition result is as follows: intrinsic mode functions
(IMFs) lack the physical meaning. Some methods developed
from wavelet transform are restricted to the selection of the
wavelet basis functions and decomposition layer. Singular
spectrum analysis (SSA) is a kind of nonparametric spectral
estimation method based on principal component analysis,
and it can capture the high harmonic oscillation shapes based
on data adaptive driven, which is suitable for dealing with
the vibration signal with nonlinear and nonstationary signals
[9, 10]. Traditional SSA is generally divided into four steps:
trajectory matrix construction, singular value decomposi-
tion (SVD), component grouping, and diagonal averaging.
Although some scholars have done some research on SSA,
but to determine the appropriate embedding dimension and
component grouping criteria is still the key to the effect
of SSA. The existing methods need to manually select the
window length and embedding dimension, which cannot
automatically realize the frequency band division of the
decomposed signal, which makes the decomposition result
has the shortcomings of physical meaning deficiency and
modal aliasing. Therefore, Bonizzi [11] proposed a new adap-
tive signal processing method: singular spectrum decom-
position. This method is a fully adaptive decomposition
method, and it can determine the embedding dimension and
component grouping criterion based on data driven, and
the singular spectrum decomposition components (SSDC)
can be reconstructed adaptively from high frequency to low
frequency.

The original vibration signal with nonlinear and nonsta-
tionary characteristics is decomposed into a series of SSDCs
by SSD and SSDCs including more feature information that
can reflect the degradation state of planetary gear. Therefore,
the quantitative extraction of fault features is of vital impor-
tance. Analyzing the vibration signal from different time
scales can obtain the multidimension expressing of signal
information, so multiscale analysis is often applied to signal
processing [12]. It can highlight the signal feature in different
scales more comprehensively and sufficiently, and it not only
reflects the global information but also gives attention to
the detail information of vibration signal. The commonly
used feature quantization methods include feature frequency,
time domain feature, frequency domain feature, entropy [13],
and fractal dimension [14]. Fractal dimension can extract
the detail signal features, and it reflects the self-similarity of
fine structure and statistical significance; it mainly includes
Hausdorff dimension, similarity dimension, box dimension,
and information dimension [15, 16].The information dimen-
sion can describe the complexity and sparsity of the signal
geometric from probabilistic perspective, and it can be used
to quantify the fault feature contained in the vibration signal
with nonlinear and nonstationary characteristics. Therefore,
combining multiscale analysis and information dimension
can realize the quantitative extraction of the complexity and
sparsity of the vibration signal from different scales.

The multiscale information dimension extracted from
SSDCs is regarded as fault feature, and the key of the next step
is to recognize the degradation state of planetary gear. Tradi-
tional pattern recognition methods, such as support vector
machine (SVM), back-propagation (BP) neural network, and
fuzzy clustering [17, 18], have been applied to the state
recognition ofmechanical equipment. But thosemethods still
have some shortcomings, which are mainly reflected in the
inability to process multidimension data, poor recognition
effect with small training samples, and being easy to fall
into the local optimum and overfitting. CNN is a multilayer
perceptron that applies to recognize two-dimensional feature
maps, it is a deep learning network model with multiple
hidden layers, and it is beneficial to maintain the relationship
among multidimensional data [19]. CNN not only has the
advantages of strong fault tolerance, strong self-adaptive
ability, and self-learning ability of traditional neural network
but also can transfer features layer by layer, and the feature
pattern in the training samples can be learned and expressed
implicitly. Compared with BP neural network and SVM,
CNN can avoid the training falling into the local extreme
value, and it has the stronger learning and expression ability
to complex features, and it has faster computing speed.

The structure of this paper is as follows: In the sec-
ond section, the mathematical model of degradation state
recognition of planetary gear based on multiscale infor-
mation dimension of SSD and CNN is established. In the
third section, the experimental device used in this paper is
introduced. In the fourth section, the vibration signals of
different degradation states of planetary gear collected by the
experimental device are dealt with by the proposed method,
which proves the effectiveness of the proposed method for
recognizing the degradation state of planetary gear. In the last
section, this paper ends with some conclusions.

2. Model Building

2.1. Singular Spectrum Analysis. SSA is a nonparametric
spectrum estimation method to analyze the time domain
signal, and it is generally divided into four steps: trajectory
matrix construction, SVD, component grouping, and diago-
nal averaging [20, 21].

2.1.1. Trajectory Matrix Construction. For a nonzero time
series {𝑥1, 𝑥2, ..., 𝑥𝑁} with length 𝑁, the embedding dimen-
sion is 𝑚 (1 < 𝑚 < 𝑁), the one-dimensional time
series can be converted into multidimensional signal space{𝑋𝑇1 , 𝑋𝑇2 , ..., 𝑋𝑇𝐾}, and the obtained lag vector can be expressed
as 𝑋𝑖 = (𝑥𝑖, 𝑥𝑖+1, ..., 𝑥𝑖+𝑚−1). The obtained trajectory matrix
can be expressed as follows:

𝑋 = [𝑋𝑇1 , 𝑋𝑇2 , . . . , 𝑋𝑇𝐾] = (𝑥1 𝑥2 ⋅ ⋅ ⋅ 𝑥𝐾𝑥2 𝑥3 ⋅ ⋅ ⋅ 𝑥𝐾+1... ... ⋅ ⋅ ⋅ ...𝑥𝑚 𝑥𝑚+1 ⋅ ⋅ ⋅ 𝑥𝑁), (1)

where the obtained trajectory matrix 𝑋 is a Hankel matrix,
and it contains the information with trend, oscillation, and
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noise. It can be seen that the choice of embedding dimension
is an important parameter for the trajectory matrix construc-
tion, which affects the effect of SVD.

2.1.2. Singular Value Decomposition (SVD). For the obtained
trajectory matrix 𝑋(𝑚×𝑘), SVD is carried out. The SVD of
trajectory matrix 𝑋 can be expressed as follows: 𝑋 = 𝑈𝐷𝑉𝑇,
where 𝑈 and 𝑉 are normalization matrix, and 𝐷 is the
diagonal matrix constructed by the obtained singular value𝜎𝑖. According to the theory of SVD, the singular value 𝜎𝑖 can
be obtained by eigenvalue decomposition of the covariance
matrix of trajectory matrix 𝑋. The covariance matrix of
trajectory matrix 𝑋 can be expressed as 𝐶 = (1/𝐾)𝑋𝑋𝑇,
where𝐾 is the dimension. The eigenvalues of the covariance
matrix 𝐶 can be obtained and sorted from large to small, and
they are 𝜆 = {𝜆1, 𝜆2, ..., 𝜆𝐾}; further, the obtained singular
values can be expressed as 𝜎𝑖 = √𝐾𝜆𝑖. The matrix 𝑋 can
be decomposed into a sum of submatrix with order 1, and𝑋 = ∑𝑀𝑖=1𝑋𝑖 = ∑𝑀𝑖=1 𝜎𝑖𝑢𝑖V𝑖, where 𝑋𝑖 represents the i-th
matrix obtained by SVD.

2.1.3. Component Grouping. The component grouping pro-
cess is to divide matrix set {𝑋1, 𝑋2, ..., 𝑋𝑀} into 𝑆 group
disjoint matrix subset {𝑋𝐼1 , 𝑋𝐼2 , ..., 𝑋𝐼𝑆}, and the sum of each
group of matrix 𝑋𝐼𝑠 can be calculated, if 𝐼𝑠 = {𝑖1, 𝑖2, ..., 𝑖𝑝};
then, 𝑋𝐼𝑠 = 𝑋𝑖1 + 𝑋𝑖2 + ... + 𝑋𝑖𝑝 . The above process is also
called as eigentriple grouping, it is the key step of SSA, and the
components containing different signals (trend, oscillation,
noise, etc.) are decomposed into different groups. But the
determination of component grouping criterion is generally
based on artificial setting.

2.1.4. Diagonal Averaging. This process is the last step of
SSA, diagonal averaging is carried out for the new grouping
matrix 𝑋𝐼𝑆 , and the final reconstruction components that
are the same as the data points of the original signal can
be obtained. This process is called diagonal averaging or
Hankelization. The corresponding relationship between the
final reconstruction components 𝑌(𝑖) by diagonal averaging
and the each data points of new grouping matrix 𝑋𝐼𝑆 is as
follows:

𝑦𝑛 =
{{{{{{{{{{{{{{{{{{{{{

1𝑛 𝑛∑𝑗=1𝑎𝑗,𝑛 − 𝑗 + 1, 1 ≤ 𝑛 ≤ 𝑚,1𝐿 𝐿∑𝑗=1𝑎𝑗,𝑛 − 𝑗 + 1, 𝑚 ≤ 𝑛 ≤ 𝐾,1𝑁 − 𝑛 + 1 𝐿∑
𝑗=𝑛−𝐾+1

𝑎𝑗,𝑛 − 𝑗 + 1, 𝐾 ≤ 𝑛 ≤ 𝑁, (2)

where 𝑦𝑛 represents the 𝑖-th SSDC, 𝑎𝑗,𝑛 represents the data
point of new grouping matrix 𝑋𝐼𝑠 obtained by SVD and
component grouping, and 𝐾 = 𝑁 − 𝑚 + 1.

The above equation is the main process of SSA; it can
be seen that the critical parameters that determine the
decomposition components quality of SSA are the selection of
embedding dimensionm and component grouping criterion.

2.2. Singular Spectrum Decomposition. In order to overcome
the difficulty of SSA in selecting the embedding dimension
and how to carry out the component grouping, a new adap-
tive signal processing method named SSD is proposed. It can
automatically select the embedding dimension in the iterative
process, and the frequency band of the obtained SSDCs
can be segmented actively by automatic component group-
ing. It is a completely data driven decomposition method
[11, 22].

2.2.1. Improved Construction of Trajectory Matrix. Unlike (1),
a new improved method is used to construct the trajectory
matrix. The improved construction process of trajectory
matrix is as follows: For a nonzero time series {𝑥1, 𝑥2, ..., 𝑥𝑁}
with length 𝑁, the embedding dimension is 𝑚 (1 < 𝑚 <𝑁), and the one-dimensional time series can be converted
into multidimensional signal space 𝑋 = {𝑋1; 𝑋2; ...; 𝑋𝑚},
where 𝑋𝑖 = {𝑥𝑖, 𝑥𝑖+1, ..., 𝑥𝑁, 𝑥1, 𝑥2, ..., 𝑥𝑖−1}, 𝑖 = 1, 2, ..., 𝑚.
Assuming time series is {1, 2, 3, 4, 5, 6}, and the embedding
dimension 𝑚 is set as 4, then, the obtained trajectory matrix
is as follows:

𝑋 = (1 2 3 4 5 62 3 4 5 6 13 4 5 6 1 24 5 6 1 2 3) . (3)

It can be seen that the left four columns of (3) corresponds
to the trajectory matrix of the standard SSA. The trajectory
matrix of SSD is improved by comparing SSA, the main
purpose is to enhance the oscillation component in original
signal, and the energy of residual signal can be reduced to
display the properties of useful signal.

2.2.2. Adaptive Selection of Embedding Dimension. The selec-
tion of embedding dimension is important for constructing
the trajectory matrix of SSD, and the adaptive selection
criterion of embedding dimension is formulated. It can
select the embedding dimension adaptively in each iteration
process to calculate the final SSDDs based on data driven.
The adaptive selection criterion of embedding dimension is
expressed as follows:

(1) According to SSD theory [22], a SSDC can be obtained
through one iteration calculation. Assuming the residual
component in 𝑗-th iteration is V𝑗(𝑛) = 𝑥(𝑛) − ∑𝑗−1

𝑘=1
V𝑘(𝑛),

V0(𝑛) = 𝑥(𝑛), and its power spectrum density (PSD) is
calculated. The frequency 𝑓max corresponding to maximum
peak in PSD can be obtained.

(2) In the first iteration, namely, 𝑗 = 1, if the value of𝑓max is smaller (this is measured by whether 𝑓max/𝑓𝑠 is less
than 0.01, where 𝑓𝑠 is the sampling frequency), it is shown
that the residual signal is considered as a trend signal, and
the embedding dimension 𝑚 is set as𝑁/3.

(3) In other cases, if it is not the first iteration, namely,𝑗 > 1, then 𝑚 is set as 𝑙 ∙ (𝐹𝑠/𝑓max), where 𝑙 is the ratio factor
for adjusting the average period of the desired signal and the
window length; in general, 𝑙 is set as 1.2.
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2.2.3. Grouping and Reconstruction of the 𝑗-th SSDC. SSDCs
are reconstructed from high frequency to low frequency by
a series of iterations in SSD process. In the first iteration
(𝑗 = 1), if the detected component is a trend signal, the
first left and right eigenvectors are only used to reconstruct
the SSDC 𝑔(1)(𝑛), and 𝑔(1)(𝑛) = 𝑑𝑖𝑎(𝑋1) = 𝑑𝑖𝑎(𝜎1𝑢1V𝑇1 ),
where 𝑑𝑖𝑎( ) represents the calculation process of diagonal
averaging. In addition, for the 𝑗-th iteration, the SSDC 𝑔(𝑗)(𝑛)
must be able to describe a time scale with clear physical
meaning. In this sense, the following rules are defined:
The main frequency components of the analyzed signal are
concentrated in the frequency band [𝑓max − Δ𝑓, 𝑓max + Δ𝑓],
where Δ𝑓 represents the half band width of the main peak
in the PSD of the residual signal. Therefore, a subset 𝐼𝑗 =(𝐼𝑗 = {𝑖1, 𝑖2, ..., 𝑖𝑝}) is created from all eigenvalues set, and
the determining principle of subset 𝐼𝑗 is as follows: All
eigenvalues which correspond to the left eigenvectors have
the prominent dominant frequency in frequency band [𝑓max−Δ𝑓, 𝑓max +Δ𝑓] and eigenvalues with the greatest contribution
to the main peak energy of the analyzed signal are selected
as a group; then, the SSDC corresponding to subset 𝐼𝑗 can
be reconstructed according to the diagonal averaging of the
matrix𝑋𝐼𝑗 = 𝑋𝑖1 +𝑋𝑖2 + ⋅ ⋅ ⋅ +𝑋𝑖𝑝. The half band width of the
main peakΔ𝑓 in PSD is related to the average time span of the
oscillating signal of the SSDC. In order to better estimate Δ𝑓,
a spectrum model with the superposed Gaussian function is
constructed to describe the distribution of PSD. This model
is defined as the sum of three Gaussian functions, and each
function represents a spectrum peak:𝑟 (𝑓, 𝜃) = 3∑

𝑖=1

𝐴 𝑖e−(𝑓−𝑢𝑖)2/2𝜎2𝑖 , (4)

where 𝐴 𝑖 is the amplitude of the 𝑖 -th Gaussian function, 𝑢𝑖
is its location, and 𝜎𝑖 is its width; 𝜃 = [𝐴𝜎]𝑇 is a parameter
vector, and it satisfies 𝐴 = [𝐴1, 𝐴2, 𝐴3] and 𝜎 = [𝜎1, 𝜎2, 𝜎3].
The first Gaussian function closes to the frequency 𝑓max
corresponding to the main spectrum peak, and the second
Gaussian function closes to the frequency 𝑓2 corresponding
to the subspectrum peak, and the third Gaussian function
closes to the frequency corresponding to any peak between
main spectrum peak and subspectrum peak. Therefore, the
following can be obtained:𝑢1 = 𝑓max,𝑢2 = 𝑓2,𝑢3 = 𝑓3 = 𝑓max + 𝑓22 . (5)

Themodel parameter𝐴 𝑖 can be obtained by the weighted
least square method, and the initial parameter values of the
model can be set as follows:𝐴(0)1 = 12PSD (𝑓max) ,𝜎(0)1 = 𝑓 : PSD (𝑓) = 23PSD (𝑓max)

𝐴(0)2 = 12PSD (𝑓2) ,𝜎(0)2 = 𝑓 : PSD (𝑓) = 23PSD (𝑓2)𝐴(0)3 = 14PSD (𝑓3) ,𝜎(0)3 = 4 󵄨󵄨󵄨󵄨𝑓max − 𝑓2󵄨󵄨󵄨󵄨 .
(6)

The optimal value of model parameter 𝐴 𝑖 is determined
by Levenberg-Marquardt method. The estimated value of 𝜎1
is given, and the bandwidth Δ𝑓 = 2.5𝜎1 of the main spectrum
peak can be obtained. Choosing 𝑋𝐼𝑗 by the above method
can determine the main eigenvalues with respect to the noise
effects. In the 𝑗-th iteration, the signal components with
different scales mismatching to the frequency band [𝑓max −Δ𝑓, 𝑓max + Δ𝑓] in this iteration are automatically discarded,
and they can be decomposed in subsequent iteration. In
further, in order to reconstruct the 𝑗-th SSDC, the j-th
iteration begins. The scale factor 𝑎 is used to adjust the
difference between 𝑔(1)(𝑛) and residual signal V(𝑗)(𝑛), and it
is as follows:𝑎 = min

𝑎

󵄩󵄩󵄩󵄩󵄩V(𝑗) (𝑛) − 𝑎𝑔(1) (𝑛)󵄩󵄩󵄩󵄩󵄩22 ,
where 𝑎 = 𝑔𝑇V𝑔𝑇𝑔 and 𝑔(𝑗) (𝑛) = 𝑎𝑔(𝑗) (𝑛) . (7)

2.2.4. Stopping Criterion for Iteration. The SSDCs 𝑔(𝑗)(𝑛)
obtained by iterations are separated from original vibration
signal, and the residual signal is V(𝑗+1)(𝑛) = V(𝑗)(𝑛) − 𝑔(𝑗)(𝑛).
The normalized mean square error (NMSE) is calculated
between the residual signal and original vibration signal, and
it is as follows:

𝑁𝑀𝑆𝐸(𝑗) = ∑𝑁𝑖=1 (V(𝑗+1) (𝑖)2)∑𝑁𝑖=1 (𝑥 (𝑖))2 . (8)

NMSE is less than a certain threshold value set as the
stopping criterion for iteration, and this threshold value can
be set as 1%. If NSME is less than the threshold value, then
the iteration decomposition is terminated. If NSME is greater
than the threshold value, the residual signal is regarded as the
original signal to repeat the above iteration decomposition
process until the stopping criterion for iteration is satisfied.
After satisfying the stopping criterion for iteration, the final
decomposed SSDCs are as follows:

𝑥 (𝑛) = 𝑀∑
𝑘=1

𝑔(𝑘) (𝑛) + V(𝑀+1) (𝑛) , (9)

where 𝑀 is the number of the decomposed SSDCs and
V(𝑀+1)(𝑛) is the residual component when iteration decom-
position is terminated.
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Figure 1: Multiscale analysis.

2.3. Multiscale Fractal Information Dimension. The original
vibration signal with nonlinear and nonstationary charac-
teristics is decomposed into a series of SSDCs by SSD,
and combining multiscale analysis and fractal information
dimension can realize the quantitative extraction of the
complexity and sparsity of the vibration signal from different
scales [12].

2.3.1. Multiscale Analysis. Multiscale analysis is that a new
data point can be obtained by average processing of the
adjacent 𝜏 data points, and the new data points can form a
new timedomain signal with 𝜏 scale. For a timedomain signal{𝑥1, 𝑥2, ..., 𝑥𝑁}, the value of scale factor 𝜏 is set, and a new
time domain signal {𝑦(𝜏)𝑗 } can be obtained in 𝜏 scale, and the
specific process is shown as (10) and Figure 1. By changing the
scale factor 𝜏, the expression of the original signal in different
scales can be obtained:

{𝑦(𝜏)𝑗 } = 1𝜏 𝑗𝜏∑
ℎ=(𝑗−1)𝜏+1

𝑥ℎ 1 ≤ 𝑗 ≤ 𝐻𝜏 . (10)

2.3.2. Fractal Information Dimension. Fractal information
dimension describes the complexity and sparsity of the
signal geometric from probabilistic perspective. The specific
calculation process of information dimension is as follows:
For the signal sequence {𝑦} = {𝑦1, 𝑦2, . . . , 𝑦𝑁}, in order to
reduce the influence of noise on the signal, the difference of
adjacent data points in the effective signal length is used as
the reconstruction signal, that is, 𝑠0 = 𝑠(𝑖 + 1) − 𝑠(𝑖), 𝑖 =1, 2, . . . , 𝑁−1. Assuming that the space of the reconstruction
signal is filled by a series of boxes with a length of 𝛿, and
all boxes are numbered in the calculation process. If the
probability that the data points of the reconstruction signal
fall into the 𝑖-th box is 𝑃𝑖, then, the information entropy can
be expressed as

𝑆 = 𝑁−1∑
𝑖=1

𝑠0 (𝑖)
𝑝 (𝑖) = 𝑠0 (𝑖)𝑆𝐻𝐼 = −𝑁−1∑

𝑖=1

𝑝 (𝑖) lg [(𝑝 (𝑖))] .
(11)

If the information dimension satisfies 𝐻𝐼 ∼ lg 𝛿𝐷𝐼 , the
information dimension of 𝑋 can be defined as follows:𝐷𝐼 = − lim

𝛿󳨀→0

𝐻𝐼 (𝛿)
lg 𝛿 . (12)

2.4. Convolutional Neural Network. CNN is generally com-
posed of input layer, convolution layer, pooling layer, full
connection layer, and classifier layer, and its basic structure
is shown as Figure 2 [23–25].

2.4.1. Convolution Layer. The convolution layer contains a
set of convolution kernels with equal size learned by data
driven. For different feature density, the convolution kernels
with the fixed size convolution step are convoluted with the
input feature matrix, and the convolution feature map can
be formed by nonlinear activation function and bias, which
represents the response to input feature, and the calculation
process of the convolution feature map can be expressed as
follows: 𝑎𝑙𝑛 = 𝑓(∑

∀𝑚

𝑎𝑙−1𝑚 ∗ 𝑘𝑙𝑚,𝑛 + 𝑏𝑙𝑛) , (13)

where 𝑎𝑙𝑛 and 𝑎𝑙−1𝑚 are the 𝑛-th feature map and 𝑚-th feature
map of the 𝑙-th layer and 𝑙 + 1-th layer, respectively. 𝑘𝑙𝑚,𝑛 is a
convolution kernel between two feature maps, 𝑏𝑙𝑛 is the bias,
and 𝑓( ) is the nonlinear activation function, and in here,
Sigmoid function is used and shown as follows:𝑓 (𝑥) = 11 + e−𝑥

. (14)

2.4.2. Pooling Layer. The pooling layer is usually cascaded
with convolution layer, and its function is to reduce the
dimension of convolution feature map. The pooling feature
map is formed by the downsampling of convolution feature
map, and the calculation process of pooling feature map can
be expressed as follows:𝑎𝑙𝑛 = 𝑓(𝑘𝑙𝑛 × 1𝑠2∑𝑠×𝑠𝑎𝑙−1𝑛 + 𝑏𝑙𝑛) , (15)

where 𝑠 is the template size of downsampling and 𝑘𝑙𝑚 is the
template weight. According to different sampling method,
the pooling computing methods include maximum pooling,
average pooling, and random pooling. Pooling is the aggre-
gation statistics of the feature in a continuous region, and the
regional feature is represented by the maximum value and
average value and so on. In this paper, the maximum pooling
is used.

2.4.3. Full Connection Layer. Thefull connection layer adopts
the full connection mode, and the vector transformation
of pooling feature map is processed. The two-dimensional
feature matrix of this layer is stretched into one-dimension
feature vector, which is convenient for the subsequent output
layer calculation. The full connection layer is still equivalent
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Figure 2: The basic structure of CNN.

(a) (c)(b) (d) (e) (f)

Figure 3: Simulation experiment of degradation states for planetary
gear. (a) Controllable motor, (b) planetary gearbox, (c) vibration
sensors, (d) spur gearbox, (e) load system, and (f) data acquisition
instrument.

to the convolution layer, and the difference is that the arrange-
ment of the output is different, or the elements of pooling
feature map are arranged directly into one-dimension vector.

2.4.4. Classifier Layer. The classifier layer mainly implements
two functions: (1) In training stage of CNN, it provides
the labels of the training data, and the training error is
calculated. The weights are adjusted by gradient descent and
reverse propagation, and the training error is reduced to
minimum which completes the training process of CNN. (2)
In testing stage of CNN, the output probability of testing
samples is calculated, and the state of testing samples is deter-
mined according to the criterion of maximum probability.
At present, the most commonly used classification method
in classifier layer is logistic method and Softmax method.
Because the degradation state recognition of planetary gear
is a multipattern classification problem, in this paper, the
Softmax method is used.

3. Experiment Introduction

The simulation experiment of the degradation state of plan-
etary gear is carried out on the comprehensive simulation
test bench for mechanical fault, and the basic structure of the
comprehensive simulation test bench for mechanical fault is
shown as Figure 3.

In this experiment, the degradation states of two types of
planetary gear faults are simulated, and they are degradation

Table 1: Parameters setting of the experiment process.

Motor speed Sampling frequency Load Sample length
2700 r/min 6400Hz 13.5Nm 6400

states of broken planetary gear and the degradation states
of pitting planetary gear, respectively. Normal planetary gear
and different degradation states are shown in Figure 4. Based
on the basic parameters of the planetary gearbox of test bench
and the preliminary analysis of its vibration signal in the early
stage, the feature frequency and its side frequency of plane-
tary gearbox are in the frequency band with 20Hz-640Hz,
and the highest and most prominent natural frequencies of
planetary gearbox are in the frequency band with 2800Hz-
3200Hz. According to the Nyquist sampling principle, the
fault information contained in the frequency band of feature
frequency should be focused, and the natural frequency of
planetary gearbox also needs to be taken into account. In
addition, considering that too high sampling frequency will
increase the calculation amount and affect the calculation
efficiency, and the sampling frequency of the experiment
process is set as 6400Hz. The basic parameters setting in the
experiment are shown in Table 1.

4. Experiment Analysis

The simulation experiment of degradation state of planetary
gear is carried out, and the obtained vibration signals of
normal planetary gear and different degradation states are
shown in Figure 5. Due to the nonlinear and nonstationary
characteristics of the vibration signal of planetary gear and
the tiny difference among the vibration signals of various
degradation states, there is no obvious feature difference
among vibration signals in time domain, and it is not possible
to recognize the planetary gear state according to Figure 5.

Next, the Figure 5 obtained vibration signals of planetary
gear are processed to verify the validity of the proposed degra-
dation state recognition method. First of all, the vibration
signals are processed by SSD, in order to save the paper
space, the SSD of the vibration signal of the degradation
state of breakage level 2 is taken as an example. In the
decomposition process, SSD can automatically realize the
embedding dimension selection, and the frequency band
of the decomposition result can be segmented actively by
automatic component grouping, and the obtained SSDCs of
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Normal Breakage level 1 Breakage level 2 Breakage level 3 Breakage level 4

Pitting level 1 Pitting level 2 Pitting level 3 Pitting level 4

Figure 4: Normal planetary gear and different degradation states.
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Figure 5: Vibration signals of normal planetary gear and different degradation states.

the vibration signal of degradation state of breakage level 2
are shown in Figure 6.

It can be seen from Figure 6 that the vibration signal with
nonlinear and nonstationary characteristics of the degrada-
tion state of breakage level 2 is decomposed into 9 SSDCs
by a series of iterations (in order to expression convenience,

the final residual component is expressed as SSDC9), and
SSDC1-SSDC9 are segmented from low frequency to high
frequency. It is obvious that SSDC1-SSDC4 have a distinct
periodicity, indicating that SSD can separate the periodic
component hidden in the original vibration signal, and
the high frequency information contained in the original
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Figure 6: The obtained SSDCs of the vibration signal of degradation state of breakage level 2.

vibration signal is separated into SSDC5-SSDC9. By SSD,
each SSDC contains a large number of feature information
that is benefit for recognizing degradation state of planetary
gear. Next, the multiscale information dimension is used to
extract and quantify the feature information from different
time scales for each SSDC.

In the calculation process of multiscale information
dimension, the scale factor 𝜏 is set to 50. For each SSDC, the
new time series under 50 time scales can be obtained, and
then the information dimension features can be extracted for
each new time series. It can realize the multidimensional fea-
ture expression fromglobal signal information to detail signal
information. The multiscale information dimensions of the
SSDCs of normal planetary gear and different degradation
states are shown as Figure 7.

As shown in Figure 7, for same SSDCs, the information
dimensions extracted fromdifferent time scales have a certain
difference, the values of information dimension show an
upward trend from SSDC1-SSDC9, and, moreover, the values
of information dimension also show a downward trend as
the increasing of time scale. Because the vibration signal
of normal planetary gear is relatively regular and simple,
and when the fault occurs, the stiffness of planetary gear
has a local nonlinear variation that results in vibration

signal being nonlinear and nonstationary. The multiscale
information dimension of normal planetary gear is smaller
compared with that of the other malfunction degradation
states. In addition, it can be seen from Figure 7 that the
multiscale information dimensions of each SSDC are also
different for different degradation states of planetary gear
faults. The main difference is the information degradation
state of planetary gear. For example, for breakage level 1,
the information dimensions of SSDC7-SSDC9 are obviously
smaller than those of other degradation states when the
time scale is relatively large (time scale is greater 35). For
breakage level 3, the information dimensions of SSDC1,
SSDC4, and SSDC6 increase significantly when the time scale
is near 17. For pitting level 1, the information dimensions
of SSDC7 in time scale 5-10 are obviously different from
that of other degradation states. Next, on the basis of the
multiscale information dimension of each SSDC, CNNwhich
can fully consider the internal relationship of the information
dimension of adjacent SSDCs and adjacent scales are used
to realize the effective recognition of the degradation state of
planetary gear.

The structure of CNN is built below, and the feature
matrix constructed by the multiscale information dimension
of each SSDC is defined as the input of CNN, so the feature
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Figure 7: Continued.
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Figure 7: The multiscale information dimension of normal planetary gear and different degradation states. (a) Normal planetary gear, (b)
breakage level 1, (c) breakage level 2, (d) breakage level 3, (e) breakage level 4, (f) pitting level 1, (g) pitting level 2, (h) pitting level 3, and (i)
pitting level 4.

Table 2: Basic parameters of CNN.

Layers Input layer Convolution
layer 1

Polling layer
2

Convolution
layer 3

Polling layer
4

Full connection
layer

Classifier
layer

Feature matrix
number 1 6 6 12 12 1 1

Feature matrix size 9 × 50 7 × 48 7 × 8 5 × 6 5 × 2 1 × 120 1 × 9
Kernel size 3 × 3 1 × 6 3 × 3 1 × 3

matrix size of the input layer of CNN is 9 × 50. The hidden
layer of CNN is composed of two convolution layers and two
polling layers alternately. In convolution layer 1, the number
of the convolution kernel is 6, and the size of convolution
kernel is 3 × 3, the slip step is 1, and the activation function
is selected as Sigmoid function. In polling layer 1, the size of
polling area is 1 × 6, and the polling area is not overlapped.
In convolution layer 2, the number of convolution kernel is
12, and the other parameters are the same as the first layer. In
polling layer 2, the size of polling area is 1 × 3, and the polling
area is not overlapped. In addition, the feature dimension
of full connection layer is set as 120. Because 9 types of
degradation states of planetary gear need to be recognized by
CNN in this experiment, the various number of the output
layer of CNN is set to 9, and the Softmax classifier is used.
The basic parameters of CNN are shown in Table 2.

The training of CNN is carried out, 200 training samples
are selected for each kind of planetary gear state randomly,
and there are 1800 training samples in all. The training
samples are processed by SSD and multiscale information
dimension, and the obtained feature matrixes are defined as
the input of CNN for training. There are 9 neurons in the
output layer of CNN, and the output vectors correspond to
9 types of degradation states of planetary gear. The training
rate is set to 1, and the number of iterations is set to 100.
The training process of CNN is shown in Figure 8. It can be
seen from Figure 8 that the mean square error of training
samples tends to be stable after 65 iterations, and the training
process of CNN is completed. Next, the recognition ability
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Figure 8: The training process of CNN.

of CNN for degradation state of planetary gear is verified,
and 100 testing samples are randomly selected for each type
of planetary gear state, a total of 900 testing samples, and
those are recognized by the trained CNN. The recognition
result is shown in Figure 9. Meanwhile, in order to illustrate
the advantage of CNN, other recognition methods, BP neural
network [26] and SVM [27], are used to perform comparative
analysis. And the training samples and testing samples which
are the same as that applied to CNN method are used to
train and test BP neural network and SVM, respectively. The
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Table 3: The recognition results of CNN, BP neural network and SVM.

Normal Breakage
level 1

Breakage
level 2

Breakage
level 3

Breakage
level 4

Pitting
level 1

Pitting
level 2

Pitting
level 3

Pitting
level 4

Overall
recognition

CNN 100% 98% 97% 99% 94% 97% 95% 98% 97% 97.2%
BP 90% 88% 91% 87% 83% 90% 86% 91% 89% 88.3%
SVM 96% 93% 90% 97% 93% 94% 90% 94% 94% 93.4%
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Figure 9: The recognition result of CNN for testing samples.

recognition results of CNN, BP neural network, and SVM for
testing samples are shown in Table 3.

It can be seen from Figure 9 and Table 3 that the pro-
posed degradation state recognition method of planetary
gear combining multiscale information dimensions of SSD
and CNN can obtain better recognition results. The overall
recognition rate of CNN is 97.2%, and for normal planetary
gear, the recognition rate of CNN is 100%. The planetary
gear state with the lowest recognition rate of CNN is the
planetary gear with pitting level 1, and it can also reach
94%. However, when BP neural network and SVM are used
to recognize the degradation state of planetary gear, it can
be found that their recognition rates are significantly lower
than that of CNN. The overall recognition rate of BP neural
network is only 88.3%, and the planetary gear states with the
highest recognition rate of BP neural network are breakage
level 2 and Pitting level 3 and only reach 91%. With the
application of SVM, the recognition rates of various planetary
gear states have been improved to a certain extent, the
overall recognition rate reaches 93.4%, but comparedwith the
application of CNN, its recognition effect still has a certain
gap.The experimental results show that the proposedmethod
in this paper is a reliable, accurate, and effective method for
the degradation state recognition of planetary gear.

5. Conclusions

A new degradation state recognition method of planetary
gear based on multiscale information dimension of SSD

and CNN is proposed in this paper. The SSD developed
from SSA is suitable for processing the vibration signal with
nonlinear and nonstationary characteristics generated by
planetary gear, and the embedding dimension and compo-
nent grouping segmentation can be determined. The original
vibration signal can be converted into a series of SSDCs
which are easy to be analyzed, and the feature information of
planetary gear is contained in each SSDC. Aiming at a series
of SSDCs, multiscale information dimension combining
multiscale analysis and fractal information dimension which
is a quantitative extraction method of feature information
is studied, and the multidimensional feature expression for
each SSDC from global signal information to detail signal
information can be realized. The feature matrix composed of
multiscale information dimension of each SSDC is defined
as the input of CNN, and the training samples including
different planetary gear states are used to train CNN, so that
the trained CNN has the ability to recognize the degradation
state of planetary gear effectively. The experimental results
show that the proposed method is suitable for processing
and analyzing the vibration signal of planetary gear, and the
overall recognition rate of various planetary gear states is
up to 97.2%. This method is an effective method for feature
extraction and degradation state recognition of planetary
gear.
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