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Nonlinear feedback shift registers (NFSRs) are the main building blocks in many convolutional decoders, and a stable NFSR can
limit decoding error propagation. Due to lack of efficient algebraic tools, the stability of multi-valued NFSRs has been much less
studied.This paper studies the stability of multi-valuedNFSRs using a logic network approach. Amulti-valuedNFSR can be viewed
as a logic network. Based on its logic network representation, some sufficient and necessary conditions are provided for globally
(locally) stable multi-valued NFSRs, explicit forms are given for the set of basins, and the algorithm for obtaining the set of basins
is provided as well. Finally, a new method is presented for constructing stable 𝑛 + 1-stage NFSRs from stable 𝑛-stage NFSRs by the
properties of 𝐷-morphism.

1. Introduction

Nonlinear feedback shift registers (NFSRs) are the main
building blocks in many convolutional decoders. However,
in the process of decoding, a decoding error tends to induce
indefinitely long decoding errors. A stable NFSR is an
alternative to limit this error propagation. Some studies have
focused on the stability of NFSRs. In 1964, Massey and Liu [1]
proposed that using a stable nonlinear feedback shift register
(NFSR) as themain building block in a convolutional decoder
is able to limit such an error propagation. In their NFSR-
based decoder, the feedback function represents a decoding
algorithm.They gave an example to highlight the application
of the NFSR-based decoder. Mowle [2] proved that the
number of 𝑛-stage globally stable NFSRs is 22𝑛−𝑛−1 and also
showed that all these NFSRs are binomially distributed. In
[3, 4], the author gave the enumeration and classification of
stable FSRs and an algorithm to generate all of them. A direct
algorithm for the synthesis of stable NFSRs was proposed
[5]. It is notable to point out that only binary NFSRs were
concerned in the above work. In addition, Lempel [6] gave
some results on 𝑘-stable NFSRs. Since then, the stability of
NFSRs has not been further studied due to lack of efficient

mathematical tools, although numerous other efforts have
been made on NFSRs over the past decades.

In [7–9], the authors studied the stability for binary
NFSRs by viewing them as Boolean networks. A Boolean
network is a finite state automaton evolving through Boolean
functions. It was firstly introduced by Kauffman in 1969
to model a genetic network whose variables take only two
possible values, “on” and “off” (or equivalently, 1 and 0,
resp.) [10]. Over the last decades, Boolean networks have
attracted much attention in many communities, such as
biology [11–13], physics [14–16], system sciences [17–21], and
control theory [22, 23]. In the community of system sciences,
Cheng and his collaborators [24] developed an algebraic
framework for Boolean networks using a semitensor product
approach. In the algebraic framework, a Boolean network
can be equivalently converted into a conventional discrete-
time linear system. A logic network is a generalization of a
Boolean network. The variables of a logical network usually
take multiple values. If they take only two values, say 0 and1, then the logical network is reduced to a Boolean network.
The studies of multi-valued logical networks can refer to, for
instance, [25–27].
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Multi-valued NFSRs have been investigated in several
studies. For example, some construction methods were given
for de Bruijn sequences generated from multi-valued NFSRs
[28–30]. A necessary and sufficient condition was given for
the nonsingularity of multi-valued NFSRs [31]. Recently, the
multi-valuedNFSRs were studied in [32–34]. Some necessary
and sufficient conditions were given for the stability of multi-
valued NFSRs in [35].

In this paper, we study the stability ofmulti-valuedNFSRs
using a logic network approach. A multi-valued NFSR can
be viewed as a logic network. Based on its logic network
representation, we give the state transitionmatrix [34], which
shows the simple relation with the truth table of the feedback
function of the NFSR. From this viewpoint, it is more explicit
than the state transition matrix introduced in [31], where
the state transition matrices are expressed as the products of
some structure matrices of the components of the vectorial
function. In fact, from the cryptography perspective, it is
very important and useful to show the explicit relation
between the truth table of the feedback function and the state
transition matrix in order to analyze and design an NFSR.
This paper is an extension of our previous work [35], which
is more complete and more substantial due to the following
contributions:

(1) Because the stability of an NFSR completely depends
on the basin of the NFSR, we give the explicit forms
for the set of basins, and the algorithm for obtaining
the set of basins is provided as well.

(2) A stable NFSR is an alternative to limit error propa-
gation in the process of decoding; therefore we give a
newmethod for constructing stable 𝑛+1-stage NFSRs
from stable 𝑛-stage NFSRs over the binary field.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly reviews some related works on logic networks.
Sections 3 and 4 are our main results. Some sufficient and
necessary conditions are given for globally (locally) stable
NFSRs in Section 3. In Section 4, we present the method
to construct stable NFSRs, and examples are presented to
show the effectiveness of the proposed method. The paper is
concluded in Section 5.

2. Logic Network Representation of NFSR

In this section, we first briefly review the semitensor product
of matrices and recall the multi-linear form of nonlinear
logic function that is obtained by the semi-tensor product.
Finally, we revisit the logic network representation of amulti-
valued NFSR, which is very useful to investigate the stability
of NFSRs.

For the statement ease, we first give some notations:

(i) D𝑘 = {0, 1, 2, . . . , 𝑘 − 1}; when 𝑘 = 2, we denote F2,
that is, binary field.

(ii) D𝑛𝑘: 𝑛-dimensional vectors over D𝑘; when 𝑘 = 2, we
denote F𝑛2 , that is, 𝑛-dimensional vector space over F2.

(iii) 𝐼𝑛 : the identity matrix of dimension 𝑛.
(iv) 𝛿𝑖𝑛: the 𝑖-th column of the identity matrix 𝐼𝑛.

(v) Δ 𝑛 = {𝛿𝑖𝑛|𝑖 = 1, 2, . . . , 𝑛}.
(vi) Δ𝑚𝑛 : the set of all 𝑚-dimensional vectors over Δ 𝑛.
(vii) 𝐶𝑗(𝐴): the 𝑗-th column of a matrix 𝐴.
(viii) 𝑜𝑟𝑑(𝐵): the order of a square matrix 𝐵 of dimension𝑛, that is, the least power 𝑝 satisfying 𝐵𝑝 = 𝐼𝑛.
(ix) L𝑛×𝑚: the set of 𝑛 × 𝑚 matrices, whose columns

belong to Δ 𝑛. If 𝐿 ∈ L𝑛×𝑚, then it can be expressed as𝐿 = [𝛿𝑖1𝑛 𝛿𝑖2𝑛 ⋅ ⋅ ⋅ 𝛿𝑖𝑛𝑛 ]. For the sake of compactness, it
is briefly denoted by 𝐿 = 𝛿𝑛 [𝑖1 𝑖2 ⋅ ⋅ ⋅ 𝑖𝑛].

2.1. Semi-Tensor Product and Multilinear Form of Logic
Network. Semi-tensor product ofmatriceswas introduced by
Cheng [24]. It is a generalization of the conventional matrix
product and works for any two matrices regardless of their
sizes, while it retains all major properties of the conventional
matrix product. Before reviewing the semitensor product, we
first recall what the Kronecker product is.

Definition 1 (see [36]). Let 𝐴 = (𝑎𝑖𝑗) and 𝐵 be matrices of
dimensions 𝑛 × 𝑚 and 𝑝 × 𝑞, respectively. The Kronecker
product of 𝐴 and 𝐵 is defined as an 𝑛𝑝 × 𝑚𝑞 matrix, given
by

𝐴 ⊗ 𝐵 = (𝑎11𝐵 𝑎12𝐵 ⋅ ⋅ ⋅ 𝑎1𝑚𝐵𝑎21𝐵 𝑎22𝐵 ⋅ ⋅ ⋅ 𝑎2𝑚𝐵... ... ... ...𝑎𝑛1𝐵 𝑎𝑛2𝐵 ⋅ ⋅ ⋅ 𝑎𝑛𝑚𝐵). (1)

Definition 2 (see [24]). Let𝐴 and𝐵 bematrices of dimensions𝑛 × 𝑚 and 𝑝 × 𝑞, respectively, and let 𝛼 be the least common
multiple of 𝑚 and 𝑝. The (left) semitensor product of 𝐴 and𝐵 is defined as an 𝑛𝛼/𝑚 × 𝑞𝛼/𝑝 matrix, given by𝐴 ⋉ 𝐵 = (𝐴 ⊗ 𝐼𝛼/𝑚) (𝐵 ⊗ 𝐼𝛼/𝑝) . (2)

Clearly, if𝑚 = 𝑝, the semi-tensor product𝐴⋉𝐵 is reduced
to their conventional matrix product 𝐴𝐵.

A logical function 𝑓 with 𝑛 variables is a mapping from
D𝑛𝑘 to D𝑘. Let 𝑖 be the decimal number corresponding to
the tuple (𝑖1, 𝑖2, . . . , 𝑖𝑛) ∈ D𝑛𝑘 via the mapping 𝑖 = 𝑖1𝑘𝑛−1 +𝑖2𝑘𝑛−2 + ⋅ ⋅ ⋅ + 𝑖𝑛. Then 𝑖 ranges from 0 to 𝑘𝑛 − 1. For the
sake of simplicity, we denote 𝑓(𝑖) = 𝑓(𝑖1, 𝑖2, . . . , 𝑖𝑛). Then[𝑓(0), 𝑓(1), . . . , 𝑓(𝑘𝑛 − 1)] is the truth table of 𝑓, arranged
in the alphabet order, while [𝑓(𝑘𝑛 − 1), 𝑓(𝑘𝑛 − 2), . . . , 𝑓(0)] is
truth table of 𝑓, arranged in the reverse alphabet order.

Identify a variable 𝑥 ∈ D𝑘 as a vector 𝑋 = 𝛿𝑘−𝑥𝑘 ∈ Δ 𝑘.
Then a logic function 𝑓 with 𝑛 variable from D𝑛𝑘 to D𝑘 is
changed to a function from Δ𝑛𝑘 to Δ 𝑘.
Lemma 3 (see [24]). For any logical function 𝑓(𝑋1,
X2, . . . , 𝑋𝑛) with 𝑋𝑖 ∈ Δ 𝑘, 𝑖 = 1, 2, . . . , 𝑛, let [𝑠1, 𝑠2, . . . , 𝑠𝑘𝑛]
be the truth table of 𝑓, arranged in the reverse alphabet order.
�en 𝑓 can be expressed as a multilinear form:𝑓 (𝑋1, 𝑋2, . . . , 𝑋𝑛) = 𝑀 ⋉ 𝑋1 ⋉ 𝑋2 ⋉ ⋅ ⋅ ⋅ ⋉ 𝑋𝑛, (3)
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where 𝑀 = 𝛿𝑘[𝑘 − 𝑠1𝑘 − 𝑠2 ⋅ ⋅ ⋅ 𝑘 − 𝑠𝑘𝑛] is called the structure
matrix of 𝑓.
Lemma 4 (see [24]). Suppose

x = 𝑋1 ⋉ 𝑋2 ⋉ ⋅ ⋅ ⋅ ⋉ 𝑋𝑛 (4)

with 𝑋𝑖 ∈ Δ 𝑘, 𝑖 = 1, 2, . . . , 𝑛. �en x ∈ Δ 𝑘𝑛 . Moreover, For
any 𝑗 ∈ {1, 2, . . . , 𝑘𝑛}, the state x = 𝛿𝑗

𝑘𝑛
∈ Δ 𝑘𝑛 and the state(𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑇 ∈ D𝑛𝑘, which satisfy 𝑘𝑛−1𝑥1 + 𝑘𝑛−2𝑥2 + ⋅ ⋅ ⋅ +𝑥𝑛 = 𝑘𝑛 − 𝑗, are one-to-one correspondent.

Definition 5 (see [37]). Let 𝐴 = [𝐴1 𝐴2 ⋅ ⋅ ⋅ 𝐴𝑛] and 𝐵 =[𝐵1 𝐵2 ⋅ ⋅ ⋅ 𝐵𝑛] be matrices of dimensions 𝑚 × 𝑛 and 𝑝 × 𝑛,
respectively, where 𝐴 𝑖 and 𝐵𝑖, 𝑖 = 1, 2, . . . , 𝑛, are the 𝑖-th
column of matrices 𝐴 and 𝐵, respectively. The Khatri-Rao
product of 𝐴 and 𝐵 is defined as an 𝑚𝑝 × 𝑛 matrix, given by𝐴 ∗ 𝐵 = [𝐴1 ⊗ 𝐵1 𝐴2 ⊗ 𝐵2 ⋅ ⋅ ⋅ 𝐴𝑛 ⊗ 𝐵𝑛] , (5)

and a logical network with 𝑛-nodes can be described as
the following system:𝑋 (𝑡 + 1) = g (𝑋 (𝑡)) , (6)

where 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑇 ∈ D𝑛𝑘, and g = (𝑔1, 𝑔2, . . . , 𝑔𝑛)𝑇,
with 𝑔𝑖 : D𝑛𝑘 󳨀→ D𝑘 for all 𝑖 = 1, 2, . . . , 𝑛. Let 𝐺𝑖 be the
structure matrix of the function 𝑔𝑖 for any 𝑖 ∈ {1, 2, . . . , 𝑛}.
System (6) can be equivalently described as a linear system
[21]:

x (𝑡 + 1) = 𝐿x (𝑡) , (7)

where x = 𝑋1 ⋉ 𝑋2 ⋉ ⋅ ⋅ ⋅ ⋉ 𝑋𝑛 ∈ Δ 𝑘𝑛 is the state and 𝐿 =𝐺1 ∗ 𝐺2 ∗ ⋅ ⋅ ⋅ ∗ 𝐺𝑛 ∈ L𝑘𝑛×𝑘𝑛 is the state transition matrix.

2.2. Logic Network Representation of Multi-Valued NFSR.
An 𝑛-stage multi-valued Fibonacci NFSR can be described
as Figure 1. It is a collection of 𝑛 storage devices, whose
contents are denoted by the variables 𝑥1, 𝑥2, . . . , 𝑥𝑛, taking
values from the set D𝑘 = {0, 1, . . . , 𝑘 − 1}. Here the logical
function 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) is called the feedback function of
the NFSR. For any 𝑖 ∈ {1, 2, . . . , 𝑛 − 1}, the content 𝑥𝑖+1 is
shifted to 𝑥𝑖 at each periodic interval determined by a master
clock. However, to obtain a new value for the variable 𝑥𝑛,
we compute the function 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) of all the present
contents in the shift register.

The state diagram of an 𝑛-stage 𝑘-valued NFSR is a
directed graph consisting of 𝑘𝑛 nodes and 𝑘𝑛 directed edges.
Each node represents a state of the NFSR, and an edge from
state X to state Y means that X is shifted to the state Y. X is
called a predecessor of Y, and Y is called the successor of X.
Every state of an NFSR has a unique successor but may have
no predecessor or a single predecessor or𝑚predecessors with
a positive integer𝑚 satisfying 1 ≤ 𝑚 ≤ 𝑘.The state with more
than one predecessor is called a branch state, while the state
without predecessors is called a starting state. A sequence of𝑝 distinct states, X1,X2, . . . ,X𝑝, is called a cycle of length 𝑝
if X1 is the successor of X𝑝, and X𝑖+1 is a successor of X𝑖 for
any 𝑖 ∈ {1, 2, . . . , 𝑝 − 1}. Similarly, a sequence of 𝑝 distinct

x1 x2 xn

f(x1, x2, · · · , xn)

Figure 1: An 𝑛-stage nonlinear feedback shift register.

states, X1,X2, . . . ,X𝑝, is called a transient of length 𝑝, if the
following conditions are satisfied: (1) none of them lies on a
cycle; (2) X1 is a starting state; (3) X𝑖+1 is a successor ofX𝑖 for
any 𝑖 ∈ {1, 2, . . . , 𝑝−1}; (4) the successor ofX𝑝 lies on a cycle.

For the sake of statement simplicity, in the sequel an 𝑛-
stage NFSR means an 𝑛-stage multi-valued Fibonacci NFSR
overD𝑘.

View the 𝑛-stage NSFR in Figure 1 as a logic network.
Then it can be expressed as𝑋(𝑡 + 1) = g (𝑋 (𝑡)) , (8)

where 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑇 ∈ D𝑛𝑘 is the state and g =(𝑔1, 𝑔2, . . . , 𝑔𝑛)𝑇 is the state transition function, satisfying𝑔1 (𝑋 (𝑡)) = 𝑥2 (𝑡) ,...𝑔𝑛−1 (𝑋 (𝑡)) = 𝑥𝑛 (𝑡) ,𝑔𝑛 (𝑋 (𝑡)) = 𝑓 (𝑥1 (𝑡) , 𝑥2 (𝑡) , . . . , 𝑥𝑛 (𝑡)) .
(9)

For any positive integer 𝑁, let g𝑁+1(𝑋(𝑡)) = g(g𝑁(𝑋(𝑡))),
which indicates that the state g(𝑋(𝑡)) is shifted𝑁 times from𝑋(𝑡).
Lemma 6 (see [34]). For an 𝑛-stage NFSR with a feedback
function 𝑓, assume the truth table of 𝑓 to be [𝑠1, 𝑠2, . . . , 𝑠𝑘𝑛],
arranged in the reverse alphabet order. �en the NFSR can be
equivalently expressed as a linear system

x (𝑡 + 1) = 𝐿x (𝑡) , (10)

where x ∈ Δ 𝑘𝑛 is the state and 𝐿 ∈ L𝑘𝑛×𝑘𝑛 is the state transition
matrix, expressed as𝐿 = 𝛿𝑘𝑛 [𝜂1 𝜂2 ⋅ ⋅ ⋅ 𝜂𝑘𝑛] , (11)

where𝜂𝑚 = {[(𝑚 − 1) mod 𝑘𝑛−1] + 1} 𝑘 − 𝑠𝑚,𝑚 = 1, 2, . . . , 𝑘𝑛. (12)

3. The Properties of Stable Multi-Valued NFSR

In this section, we first briefly review some existing basic
concepts of the stability of NFSRs. Then we show that the
error-propagation effect is closely related to the stability of
an NFSR. Finally, we give some sufficient and necessary
conditions for their stability.
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+++++ Syndrome
Input

x1 x2 x3
xmxm−1

g1
g2 gmgm−2 gm−1

s1
s2 s3 sm

sm−1 sm+1

eiΔ0

F(s+1,s)

Figure 2: Decoder NFSR.

3.1. Basic Concepts

Definition 7 (see [2]). A state X(𝑡) is called an equilibrium
state of the logic network (6), if g(X(𝑡)) = X(𝑡). For a𝑘-valued NFSR, the equilibrium state of its logic network
representation (8) is also called an equilibrium state of the
NFSR.

Note that an equilibrium state of anNFSR forms a cycle of
length 1, that is, unit cycle, in the state diagram of the NFSR.

Definition 8. The set E is called the basin of an equilibrium
state X of an NFSR, if E is a set of states eventually reaching
the equilibrium state X.

Definition 9 (see [1]). An 𝑛-stage NFSR is globally stable to
the equilibrium state 0, if, for any state X(𝑡), there exists a
positive integer𝑁 such that the state transition function of its
logic network representation (8) satisfies g𝑁(X(𝑡)) = 0; that
is, 0 is the unique equilibrium state and there are no other
cycles in the state diagram of the NFSR.

Definition 10 (see [1]). An 𝑛-stageNFSR is locally stable to the
equilibrium state 0, if there exists some state X(𝑡) ̸= 0 such
that for some positive integer 𝑁 the state transition function
of its logic network representation (8) satisfies g𝑁(X(𝑡)) = 0.

Since an 𝑛-stage multi-valued NFSR has an equivalent
logic network representation in a linear system (10), accord-
ingly, we give an equivalent definition of globally (locally)
stable multi-valued NFSR as follows.

Definition 11. An 𝑛-stage NFSR is globally stable to the
equilibrium state 0, if, for any state x(𝑡), there exists a positive
integer 𝑁 such that the state transition matrix 𝐿 of its logic
network representation (8) satisfies 𝐿𝑁x(𝑡) = 𝛿𝑘𝑛𝑘𝑛 .
Definition 12. An 𝑛-stage NFSR is locally stable to the
equilibrium state 0, if there exists some state x(𝑡) ̸= 𝛿𝑘𝑛𝑘𝑛 such
that for some positive integer 𝑁 the state transition matrix 𝐿
of its logic network representation (8) satisfies 𝐿𝑁x(𝑡) = 𝛿𝑘𝑛𝑘𝑛 .

In the sequel, an NFSR is globally (resp., locally) stable
meaning that an NFSR is globally (resp., locally) stable to the
equilibrium state 0. From their definitions, it is easy to see that

a globally stable NFSR must be locally stable but not the vice
versa.

Definition 13 (see [2]). An NFSR is called a globally stable
maximum transient NFSR if it is globally stable and has a
single starting state.

3.2. Decoder NFSR. We show below that the error-
propagation effect is closely related to the stability of an
NFSR.The relevant portion of a decoder is shown in Figure 2
and is seen to constitute an NFSR. The first 𝑚 terms of
the syndrome sequence are stored in the shift register, and
the current input is 𝑠𝑚+1, at the time when the decoder
forms 𝑒𝑖Δ0 . Let the vector s = (𝑠1, 𝑠2, . . . , 𝑠𝑚) represent the
shift register contents and let 0 denote the all-zero vector.
s will be referred to as the state of the NFSR. The decoding
algorithm is represented by the function 𝐹(𝑠𝑚+1, s); that is,𝐹(𝑠𝑚+1, s) = 𝑒𝑖Δ0 . For any reasonable decoding algorithm,𝐹(0, 0) = 0, since this is the case where all parity checks are
satisfied. From Figure 2, it should be clear that𝑚 consecutive
correct decoding decisions will clear the decoder of any
spurious symbols introduced by a decoding error and hence
will terminate the error propagation. The ability of the
decoder to affect such a “reconvergence” is conveniently
studied by considering the shift register to be loaded with
some initial states s and the syndrome input sequence
to be all zeros; that is, all succeeding parity checks are
satisfied. Finally, the shift register will enter state 0 when
reconvergence has been achieved. Thus the problem of
studying error propagation will be reduced to the stability
analysis of an NFSR in Figure 1.

3.3. Necessary and Sufficient Conditions for Stability

Theorem 14. An NFSR is locally stable if and only if the
feedback function satisfies 𝑓(0, . . . , 0) = 0, and there is at least
one 𝑖 ∈ {1, 2, . . . , 𝑘 − 1} such that 𝑓(𝑖, 0, . . . , 0) = 0.
Proof. Necessity: Clearly, according to Definition 9,𝑓(0, . . . , 0) = 0 is a necessary condition for a locally
stable NFSR. For any NFSR, the state 0 has the possible
predecessors: itself and (𝑖, 0, . . . , 0)𝑇 with 𝑖 ∈ {1, 2, . . . , 𝑘 − 1}.
If the NFSR is locally stable, then there exist some states
X(𝑡) ̸= 0 such that, for some integers 𝑁, g𝑁(X(𝑡)) = 0. Thus,
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0 has a predecessor different to itself. Hence, there is at least
one 𝑖 ∈ {1, 2, . . . , 𝑘 − 1} such that 𝑓(𝑖, 0, . . . , 0) = 0.

Sufficiency: 𝑓(0, . . . , 0) = 0 implies that 0 is an equilib-
rium state of the NFSR. If there is at least an 𝑖 ∈ {1, 2, . . . , 𝑘 −1} such that 𝑓(𝑖, 0, . . . , 0) = 0, and then (𝑖, 0, . . . , 0)𝑇 is a
predecessor of 0. In other words, there exists a state X(𝑡) =(𝑖, 0, . . . , 0)𝑇 ̸= 0 such that g(X(𝑡)) = 0, which implies that
the NFSR is locally stable.

Corollary 15. Let 𝐿 = 𝛿𝑘𝑛 [𝜂1 𝜂2 . . . 𝜂𝑘𝑛] be the state
transition matrix of the logic network representation (10) in
a linear system of an 𝑛-stage NFSR. �en the NFSR is locally
stable if and only if there exists at least one 𝑖 ∈ {1, 2, . . . , 𝑘 − 1}
such that 𝜂𝑘𝑛 = 𝜂(𝑘−𝑖)𝑘𝑛−1 = 𝑘𝑛.
Proof. Let the truth table of the feedback function 𝑓 of the
NFSR be [𝑠1 𝑠2 ⋅ ⋅ ⋅ 𝑠𝑘𝑛], arranged in the reverse alphabet
order. According to Theorem 14, the NFSR is locally stable if
and only if the feedback function satisfies𝑓(0, . . . , 0) = 0, and
there is at least one 𝑖 ∈ {1, 2, . . . , 𝑘−1} such that𝑓(𝑖, 0, . . . , 0) =0, that is, 𝑠𝑘𝑛 = 𝑠(𝑘−𝑖)𝑘𝑛−1 = 0. Then the result follows from
(12).

Proposition 16. Let 𝐿 be the state transition matrix of the
logic network representation (10) in a linear system of an 𝑛-
stage NFSR. If 𝐶𝑘𝑛(𝐿) = 𝛿𝑘𝑛𝑘𝑛 , there exists an integer 𝑙 such that𝐶𝑟(𝐿𝑙) = 𝛿𝑘𝑛𝑘𝑛 with some 𝑟 ̸= 𝑘𝑛. �en the NFSR is locally stable
to 𝛿𝑘𝑛𝑘𝑛 .
Proof. Let 𝐿 = 𝛿𝑘𝑛 [𝜂1 𝜂2 . . . 𝜂𝑘𝑛], and let the truth table
of the feedback function 𝑓 of the NFSR be [𝑠1 𝑠2 ⋅ ⋅ ⋅ 𝑠𝑘𝑛],
arranged in the reverse alphabet order. Since 𝐶𝑘𝑛(𝐿) = 𝛿𝑘𝑛𝑘𝑛 ,
we have 𝜂𝑘𝑛 = 𝑘𝑛. According to (12), we have 𝑠𝑘𝑛 = {[(𝑘𝑛 −1) mod 𝑘𝑛−1] + 1}𝑘 − 𝜂𝑘𝑛 = 0, that is, 𝑓(0, . . . , 0) = 0. Since
there exists an integer 𝑙, such that 𝐶𝑟(𝐿𝑙) = 𝛿𝑘𝑛𝑘𝑛 , we have𝐿𝑙𝛿𝑟𝑘𝑛 = 𝛿𝑘𝑛𝑘𝑛 . According to Definition 10, the NFSR is locally
stable to 𝛿𝑘𝑛𝑘𝑛 .
Theorem 17. If the NFSR is globally stable maximum tran-
sient, then there exists a unique 𝑖 ∈ {1, 2, . . . , 𝑘 − 1} such that𝑓(0, 0, . . . , 0) = 𝑓(𝑖, 0, . . . , 0) = 0.
Proof. If theNFSR is globally stablemaximum transient, then
except the starting state and the state 0, the other states have
their own unique predecessor and unique successor.The state
0has the possible predecessors: itself and (𝑖, 0, . . . , 0)𝑇with 𝑖 ∈{1, 2, . . . , 𝑘 − 1}. Since the NFSR is globally stable maximum
transient, 0 has a unique predecessor different to itself. Then
the result follows.

Remark 18. Theorem 14 shows that there is at least one 𝑖 ∈{1, 2, . . . , 𝑘 − 1} such that 𝑓(0, 0, . . . , 0) = 𝑓(𝑖, 0, . . . , 0) = 0 is
sufficient and necessary condition for a locally stable NFSR.
However, Theorem 17 shows that there exists a unique 𝑖 ∈{1, 2, . . . , 𝑘 − 1} such that 𝑓(0, 0, . . . , 0) = 𝑓(𝑖, 0, . . . , 0) = 0 for
globally stable maximum transient NFSR, which is nothing
but necessary condition.

Theorem 19. Let 𝐿 be the state transition matrix of the logic
network representation (10) in a linear system of an 𝑛-stage
NFSR. �e NFSR is globally stable, if and only if there exists
an integer 𝑁 ≤ 𝑘𝑛 − 1 such that each column of 𝐿𝑁 is equal to𝛿𝑘𝑛𝑘𝑛 .Moreover, the NFSR is globally stable maximum transient,
if and only if each column of 𝐿𝑘𝑛−1 is equal to 𝛿𝑘𝑛𝑘𝑛 .
Proof. Necessity: As the equilibrium state 0 ∈ D𝑛𝑘 is uniquely
corresponding to the state 𝛿𝑘𝑛𝑘𝑛 ∈ Δ 𝑘𝑛 , that an 𝑛-stage NFSR
is globally stale to the equilibrium state 0 is equivalent to
that the 𝑛-stage NFSR is globally stable to the state 𝛿𝑘𝑛𝑘𝑛 .
Clearly, any state of an 𝑛-stage globally stable NFSR with one
more starting state must be shifted fewer times to reach the
equilibrium state 0 than the 𝑛-stage globally stable maximum
transient NFSR. For an 𝑛-stage globally stable maximum
transient NFSR, the starting state x0 = 𝛿𝑖𝑘𝑛 must shift 𝑘𝑛 − 1
times to go through all other states and finally reaches the
state 𝛿𝑘𝑛𝑘𝑛 (or, equivalently, the state 0) and keeps staying at this
state.Therefore,𝑁 = 𝑘𝑛−1 is the largest power such that each
column of 𝐿𝑁 is equal to 𝛿𝑘𝑛𝑘𝑛 .

Sufficiency: There exists an integer 𝑁 ≤ 𝑘𝑛 − 1 such that
each column of 𝐿𝑁 is equal to 𝛿𝑘𝑛𝑘𝑛 .Therefore, for the state 𝛿𝑖𝑘𝑛
with any 𝑖 ∈ {1, 2, . . . , 𝑘𝑛}, we have 𝐿𝑁𝛿𝑖𝑘𝑛 = 𝛿𝑘𝑛𝑘𝑛 .According to
Definition 9, the NFSR is globally stable. In particular, 𝑁 =𝑘𝑛−1means that the starting state 𝛿𝑖𝑘𝑛 for any 𝑖 ∈ {1, 2, . . . , 𝑘𝑛}
eventually reaches the equilibrium state 𝛿𝑘𝑛𝑘𝑛 and keeps staying
at this state. Thus, the result follows.

Theorem 20. Given a globally stable maximum transient 𝑘-
valued 𝑛-stage NFSR, its starting state is (0, 0, . . . , 0, 𝑖)𝑇 with
some 𝑖 ∈ {1, 2, . . . , 𝑘 − 1}.
Proof. For a given globally stable maximum transient 𝑘-
valued 𝑛-stage NFSR, the state (0 0 ⋅ ⋅ ⋅ 0)𝑇 has only
two predecessors, itself and (𝑎, 0, . . . , 0)𝑇 with some 𝑎 ∈{1, 2, . . . , 𝑘 − 1}. Assume that all 𝑘 − 1 states (0, 0, . . . , 0, 𝑖)𝑇,
for any 𝑖 ∈ {1, 2, . . . , 𝑘 − 1}, are not the starting state of the
NFSR. Let the predecessor of any given state (0, 0, . . . , 0, 𝑖)𝑇 be(𝑏𝑖, 0, . . . , 0)𝑇, with some 𝑏𝑖 ∈ {1, 2, . . . , 𝑘−1}.Then there exists𝑏𝑖0 with some 𝑖0 ∈ {1, 2, . . . , 𝑘 − 1} such that (𝑏𝑖0 , 0, . . . , 0)𝑇 =(𝑎, 0, . . . , 0)𝑇, which implies that 𝑏𝑖0 = 𝑎. Note that the suc-
cessor of (𝑏𝑖0 , 0, . . . , 0)𝑇 is (0, 0, . . . , 𝑖0)𝑇 with 𝑖0 ∈ {1, 2, . . . , 𝑘−1}, and the successor of (𝑎, 0, . . . , 0)𝑇 is (0 0 ⋅ ⋅ ⋅ 0)𝑇 . Then(𝑎, 0, . . . , 0)𝑇 has two different successors, (0, 0, . . . , 0)𝑇 and(0, 0, . . . , 0, 𝑖0)𝑇 with some 𝑖0 ∈ {1, 2, . . . , 𝑘 − 1}, which is a
contradiction that any state has a unique successor. Hence,
for any given globally stable maximum transient 𝑘-valued 𝑛-
stage NFSR, there exists some 𝑖 ∈ {1, 2, . . . , 𝑘 − 1} such that(0, 0, . . . , 0, 𝑖)𝑇 is the starting state of the NFSR.
Example 21. When 𝑘 = 3 and 𝑛 = 2, we consider two
nonlinear feedback shift registers, NFSR1 and NFSR2. Their
feedback functions are, respectively, as follows:𝑓1 (𝑥1, 𝑥2) = 𝑥2 + 𝑥1 (𝑥22 + 1) (13)
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Figure 3: State diagram of NFSR1 in Example 21.
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Figure 4: State diagram of NFSR2 in Example 21.

and 𝑓2 (𝑥1, 𝑥2) = 2𝑥1 + 𝑥2 + 𝑥21 + 𝑥1𝑥22 + 𝑥21𝑥22. (14)

Computations show that the state transition matrices of
the logic network representations of both NFSRs, respec-
tively, are 𝐿1 = 𝛿9 [3 4 7 2 6 8 1 5 9] (15)

and 𝐿2 = 𝛿9 [2 6 7 2 6 9 1 5 9] . (16)

We use the same notations in previous sections. For the
state transition matrix 𝐿1, 𝜂3 ̸= 9, 𝜂6 ̸= 9. According
to Corollary 15, we get that NFSR1 is not locally stable.
Meanwhile, for the state transition matrix 𝐿2, 𝜂6 = 9,
and 𝐿52 = 𝛿9 [9 9 9 9 9 9 9 9 9] . From Theorem 17
and Theorem 19, we obtain that NFSR2 is globally stable.
Moreover 𝜂1 = 𝜂4 = 2, 𝜂2 = 𝜂5 = 6, and according to
Proposition13 in [34], the NFSR2 has two branch states: 𝛿29
and 𝛿69 . Actually, theNFSR2 has three starting states. All those
features are consistent with their state diagrams, which are
shown in Figures 3 and 4.

Example 22. When 𝑘 = 3, 𝑛 = 2, we consider two nonlinear
feedback shift registers, NFSR3 and NFSR4. Their feedback
functions are, respectively, as follows:𝑓3 (𝑥1, 𝑥2) = 2𝑥1 + 𝑥2 + 2𝑥1𝑥2 + 𝑥1𝑥22 + 𝑥21 + 𝑥21𝑥2 (17)

and 𝑓4 (𝑥1, 𝑥2) = 2𝑥1 + 𝑥2 + 𝑥1𝑥2 + 2𝑥21 + 2𝑥21𝑥2. (18)

Computations show that the state transition matrices of
the logic network representations of both NFSRs, respec-
tively, are 𝐿3 = 𝛿9 [2 6 7 3 4 9 1 5 9] (19)

and 𝐿4 = 𝛿9 [2 6 9 3 4 8 1 5 9] . (20)

We use the same notations in previous sections. For the
state transition matrix 𝐿3 and 𝐿4, we obtain 𝐿83 = 𝐿84 =𝛿9 [9 9 9 9 9 9 9 9 9]. According to Theorem 19, both
NFSR3 and NFSR4 are globally stable maximum transient.
Their state diagrams are shown in Figure 5.

Clearly, (0, 1)𝑇 (resp., (0, 2)𝑇) is the starting state of
NFSR3 (resp., NFSR4), which is consistent with the result
in Theorem 20. It also shows that different globally stable
maximum transient 𝑘-valued NFSRs with 𝑘 > 2 may have
different starting states, which is unlike the globally stable
maximum transient binary NFSRs whose starting states are
the same, that is, (0, 0, . . . , 0, 1)𝑇.
3.4. Basin of the Equilibrium State of NFSRs

Definition 23. The set E is called the basin of an equilibrium
state X of an NFSR, if E is a set of states eventually reaching
the equilibrium state X.

We let E(𝛿𝑘𝑛𝑘𝑛 ) be the basin of the equilibrium state 𝛿𝑘𝑛𝑘𝑛 .
The stability of an NFSR in Figure 1 completely depends on
the basinE(𝛿𝑘𝑛𝑘𝑛 ). In the following, we will focus on how to get
the basin of the equilibrium state. Reference [34] gives a way
to find all starting states of an NFSR, shown in the following
lemma.

Lemma 24 (see [34]). Let 𝐿 be a state transition matrix of an𝑛-stage NFSR. 𝛿𝑖𝑘𝑛 is a starting state if and only if 𝛿𝑖𝑘𝑛 is not a
column of the state transitionmatrix 𝐿, where 𝑖 ∈ {1, 2, . . . , 𝑘𝑛}.
Theorem 25. Let 𝐿 be a state transition matrix of an 𝑛-stage
NFSR. �en the basin of the equilibrium state 𝛿𝑘𝑛𝑘𝑛 is E(𝑘𝑛𝑘𝑛) ={𝐿𝑘𝛿𝑖𝑘𝑛 |1 ≤ 𝑘 ≤ 𝐾𝑖, 𝐾𝑖 is the smallest 𝑘𝑖 satisfying 𝐿𝑘𝛿𝑖𝑘𝑛 = 𝛿𝑘𝑛𝑘𝑛 ,
and 𝛿𝑖𝑘𝑛 ∈ 𝐶(𝐿) with some positive integer 𝑖 ≤ 𝑘𝑛}.
Proof. The result follows from Lemmas 6 and 24.

In fact, it is easy to get the whole state transition graph
of an NFSR when its state transition matrix 𝐿 is known.
For any 𝐿 ∈ L𝑘𝑛×𝑘𝑛 , 𝐶𝑖(𝐿) = 𝛿𝑗

𝑘𝑛
, we have that 𝛿𝑖𝑘𝑛 is

the predecessor state of 𝛿𝑗
𝑘𝑛

and 𝛿𝑗
𝑘𝑛

is the successor state
of 𝛿𝑖𝑘𝑛 ; that is, 𝐿𝛿𝑖𝑘𝑛 = 𝐶𝑖(𝐿). For example, we consider
the NFSR2 in Example 21. Its state transition matrix 𝐿 =𝛿9 [2 6 7 2 6 9 1 5 9]. Obviously, only 𝛿39 , 𝛿49 , 𝛿89 ∈𝐶(𝐿), and according to Lemma 24, they are all starting states
of NFSR2. For the state 𝛿49 , it is easy to see that 𝐿𝛿49 =𝐶4(𝐿) = 𝛿29 , and 𝐿2𝛿49 = 𝐿𝛿29 = 𝐶2(𝐿) = 𝛿69 and𝐿3𝛿49 = 𝐿2𝛿29 = 𝐿𝛿69 = 𝐶6(𝐿) = 𝛿99 . Thus, according to
Theorem 25, we have 𝛿49 , 𝛿29 , 𝛿69 , 𝛿99 ∈ E(𝑘𝑛𝑘𝑛). Similarly, for
the state 𝛿39 , 𝛿89 , we can also use the same method. Finally,
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1: Set 𝑙 = 1 and E(𝑘𝑛) = 0.
2: Set 𝑖 = 𝑗𝑙 and E1 = 0.
3: Compute 𝜓(𝑖) = 𝜂𝑖, and set 𝑖 = 𝜓(𝑖).
4: If 𝑖 < 𝑘𝑛 and (𝑖 ∉ E1 or 𝑖 ∉ E(𝑘𝑛), then E1 = E1 ∪ {𝑖} and goto step 3;

if 𝑖 < 𝑘𝑛 and (𝑖 ∈ E1 or 𝑖 ∈ E(𝑘𝑛), then 𝑙 = 𝑙 + 1;
if 𝑖 = 𝑘𝑛, then set E(𝑘𝑛) = E(𝑘𝑛) ∪ E1 ∪ {𝑖}.

5: If 𝑙 ≤ |U|, then goto step 2. Otherwise output E(𝑘𝑛) and stop.

Algorithm 1: Basin.

01 11 2220 21 100212

02 22 1110 12 200121 00

00

Figure 5: State diagram of NFSR1 in Example 22.
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Figure 6: Basin diagram of NFSR2 in Example 22.

we have E(𝑘𝑛𝑘𝑛) = {𝛿19 , 𝛿29 , 𝛿39 , 𝛿49 , 𝛿59 , 𝛿69 , 𝛿79 , 𝛿89 , 𝛿99}. All those
features are consistent with the logic network expression
of its state diagrams, which are shown in Figure 6. In the
following, we strive to give an algorithm to obtain the
basin E(𝑘𝑛𝑘𝑛). We define E(𝑘𝑛) to be the set of elements that
represent the positions of the entry 1s of all elements inE(𝑘𝑛𝑘𝑛).
Precisely speaking, ifE(𝑘𝑛𝑘𝑛) = {𝛿𝑖1

𝑘𝑛
, 𝛿𝑖2
𝑘𝑛
, . . . , 𝛿𝑖𝑚

𝑘𝑛
}, thenE(𝑘𝑛) ={𝑖1, 𝑖2, . . . , 𝑖𝑚}. For the sake of convenience, we also called

E(𝑘𝑛) the basin. For an 𝑛-stage NFSR, we first find its starting
states according to Lemma 24. Let U be a set of starting
states, and denote its cardinality as |U|. Suppose that the
starting state setU has been obtained in terms of Lemma 24,
and its elements are denoted by 𝛿𝑗𝑙

𝑘𝑛
, 𝑙 = 1, 2, . . . , |U|. Let

M = {𝑗1, 𝑗2, . . . , 𝑗|U|}, which is a set of the positions of the
entry 1s of all the elements in the starting states U. Second,
we assume that the state transition matrix of the NFSR 𝐿 =𝛿𝑘𝑛 [𝜂1 𝜂2 ⋅ ⋅ ⋅ 𝜂𝑘𝑛] is known. Following by 𝐿𝛿𝑖𝑘𝑛 = 𝐶𝑖(𝐿), we
define a mapping 𝜓 : 𝜓 (𝑖) = 𝜂𝑖. (21)

Actually, Note that any starting state of an NFSR eventually
reaches a cycle and keeps staying on it.E(𝑘𝑛) is constituted by
the starting states that eventually reach the state 𝛿𝑘𝑛𝑘𝑛 and the
states that those starting states go through. Finally, we need
to take away repeat states.

Finally, we give Algorithm 1 to obtain the basinE(𝑘𝑛) for
an 𝑛-stage NFSR based on the mapping𝜓 and the setM if we
knew the starting states of the NFSR.

4. The Construction of Stable Feedback Shift
Registers over the Binary Field

An 𝑛-stage 𝑘-valued NFSR can be described as Figure 1. Let
the present state of the NFSR be s = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈
D𝑛𝑘, and then the successor of s can be (𝑥2, 𝑥3, . . . , 𝑥𝑛, 𝑎) ∈
D𝑛𝑘, 𝑎 ∈ {1, 2, . . . , 𝑘−1}; that is, the state s can have 𝑘 different
successors. Then we construct directly the stable 𝑛 + 1-stage𝑘-valued NFSRs from the stable 𝑛-stage 𝑘-valued NFSRs by
the properties of 𝐷-morphism, which is not a trivial work.
We will consider it in another new work, in which we will
define a newmapping.Therefore, in this section, we first give
a newmethod for constructing stable 𝑛+1-stage NFSRs from
stable 𝑛-stage NFSRs by the properties of 𝐷-morphism over
the binary field.

4.1. 𝐷-Morphism. In this subsection, we will give an
overview of the𝐷-morphism. Let 𝑛 be a positive integer, and
let s = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ F𝑛2 . We define ŝ, the conjugate of s,
and s, the dual of s, by

ŝ = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ F
𝑛
2 (22)

and

s = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ F
𝑛
2 , (23)

where 𝑥𝑖 denotes the Boolean complement of 𝑥𝑖. We define
a mapping 𝐷 : F𝑛2 󳨀→ F𝑛−12 , 𝑛 ≥ 2, as follows. For s =(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ F𝑛2 and s

󸀠 = (𝑥1+𝑥2, 𝑥2+𝑥3, . . . , 𝑥𝑛−1+𝑥𝑛) ∈
F𝑛−12 , 𝐷(𝑥1, 𝑥2, . . . , 𝑥𝑛)= (𝑥1 + 𝑥2, 𝑥2 + 𝑥3, . . . , 𝑥𝑛−1 + 𝑥𝑛) , (24)

and, in the sequel, we denote (24) as 𝐷s = s󸀠.
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For s = (𝑥1, 𝑥2, . . . , 𝑥𝑛) and s = (𝑥1, 𝑥2, . . . , 𝑥𝑛), we have𝐷s = 𝐷 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = (𝑥1 + 𝑥2, 𝑥2 + 𝑥3, . . . , 𝑥𝑛−1+ 𝑥𝑛) , (25)𝐷s = 𝐷 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = (𝑥1 + 𝑥2, 𝑥2 + 𝑥3, . . . , 𝑥𝑛−1+ 𝑥𝑛) = (𝑥1 + 1 + 𝑥2 + 1, 𝑥2 + 1 + 𝑥3 + 1, . . . , 𝑥𝑛−1+ 1 + 𝑥𝑛 + 1) = (𝑥1 + 𝑥2, 𝑥2 + 𝑥3, . . . , 𝑥𝑛−1 + 𝑥𝑛) . (26)

Equations (25) and (26) imply that the mapping𝐷 is a 2-to-1
mapping, and it maps (𝑥1, 𝑥2, . . . , 𝑥𝑛) and (𝑥1, 𝑥2, . . . , 𝑥𝑛) to
the same element. Conversely, each (𝑦1, 𝑦2, . . . , 𝑦𝑛−1) ∈ F𝑛−12
has two preimages in F𝑛2 under 𝐷, which are given by𝐷−1𝑡 (𝑦1, 𝑦2, . . . , 𝑦𝑛−1) = (𝑡, 𝑡 + 𝑦1, 𝑡 + 𝑦1 + 𝑦2, . . . , 𝑡+ 𝑦1 + 𝑦2 + ⋅ ⋅ ⋅ + 𝑦𝑛−1) , 𝑡 = 0, 1. (27)

In the sequel, we denote (27) as 𝐷−1𝑡 s󸀠, 𝑡 = 0, 1.
Some properties of 𝐷-morphism are recalled below. The𝑛-th-order de Bruijn graph 𝐺𝑛 is a directed graph with 2𝑛

vertices, labeled by the elements of F𝑛2 . The vertices 𝑥 and𝑦 of 𝐺𝑛, 𝑥, 𝑦 ∈ F𝑛2 , are jointed by an arc, directed from 𝑥
to 𝑦. A factor of 𝐺𝑛 is a partial graph of 𝐺𝑛, and it includes
all the vertices of 𝐺𝑛. For example, the state graph of every
nonsingular 𝑛-stage NFSR in F𝑛2 is a factor of 𝐺𝑛.
Lemma 26 (see [38]). Let s and ŝ be a pair of conjugate states
in𝐺𝑛.�en {𝐷−10 s, 𝐷−11 ŝ} are {𝐷−11 ŝ, {𝐷−11 s} two conjugate pairs
in 𝐺𝑛+1.

The mapping 𝐷 induces a graph homomorphism (called𝐷-morphism) from the 𝑛-th-order de Bruijn graph 𝐺𝑛 to the(𝑛− 1)-th-order de Bruijn graph𝐺𝑛−1 [38]. If𝐻 is a subgraph
of 𝐺𝑛, then its 𝐷-morphism image 𝐷(𝐻) is a subgraph of𝐺𝑛−1. Obviously, the state diagram of an 𝑛-stage NFSR is a
subgraph of 𝐺𝑛.
4.2. Synthesis �eory of Stable FSRs

Lemma 27 (see [39]). Let 𝐶 be a cycle in 𝐺𝑛, and let s be a
state on 𝐶. �en the state 𝐷−10 s is on one of the cycles 𝐷−10 𝐶
and 𝐷−11 𝐶, and 𝐷−11 s is on the other one.

By Lemma 27, it is easy to obtain the following corollary.

Corollary 28. Let 𝐺󸀠𝑛 be a factor of 𝐺𝑛, and let s be a state on𝐺󸀠𝑛.�en the state𝐷−10 s is on one of𝐷−10 𝐺 and𝐷−11 𝐺, and𝐷−11 s
is on the other one.

Theorem29. Let 𝑆𝐺𝑛 be the state diagram of an 𝑛-stage NFSR,
and let s1, s2, s3 be pairwise different states on 𝑆𝐺𝑛. If s1 and
s2 are two predecessors of s3, then 𝐷−10 s1 and 𝐷−11 s2 are two
predecessors of one of 𝐷−10 s3 and 𝐷−11 s3, and 𝐷−11 s1 and 𝐷−10 s2
are two predecessors of the other one; or 𝐷−11 s1 and 𝐷−10 s2 are
two predecessors of one of 𝐷−10 s3 and 𝐷−11 s3, and 𝐷−10 s1 and𝐷−11 s2 are two predecessors of the other one.

Proof. Since s1 and s2 are two predecessors of s3, we have

s1 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ,
s2 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ,
s3 = (𝑥2, 𝑥3, . . . , 𝑥𝑛, 𝑦)

with s𝑖 ∈ 𝐵𝑛, 𝑖 = 1, 2, 3. (28)

Then, we have𝐷−10 s1 = (0, 𝑥1, 𝑥1 + 𝑥2, . . . , 𝑥1 + 𝑥2 + ⋅ ⋅ ⋅ 𝑥𝑛) ,𝐷−11 s1 = (1, 𝑥1, 1 + 𝑥1 + 𝑥2, . . . , 1 + 𝑥1 + 𝑥2 + ⋅ ⋅ ⋅ 𝑥𝑛) ,𝐷−10 s2 = (0, 𝑥1, 𝑥1 + 𝑥2, . . . , 𝑥1 + 𝑥2 + ⋅ ⋅ ⋅ 𝑥𝑛) ,𝐷−11 s2 = (1, 𝑥1, 1 + 𝑥1 + 𝑥2, . . . , 1 + 𝑥1 + 𝑥2 + ⋅ ⋅ ⋅ 𝑥𝑛) ,𝐷−10 s3 = (0, 𝑥2, 𝑥2 + 𝑥3, . . . , 𝑥2 + 𝑥3 + ⋅ ⋅ ⋅ 𝑥𝑛 + 𝑦) ,𝐷−11 s3 = (1, 1 + 𝑥2, 1 + 𝑥2 + 𝑥3, . . . , 1 + 𝑥2 + 𝑥3+ ⋅ ⋅ ⋅ 𝑥𝑛 + 𝑦) .
(29)

Thus, if 𝑥1 = 0, we have that 𝐷−10 s1 and 𝐷−11 s2 are
two predecessors of 𝐷−10 s3, and 𝐷−11 s1 and 𝐷−10 s2 are two
predecessors of𝐷−11 s3; if𝑥1 = 1, we have that𝐷−10 s1 and𝐷−11 s2
are two predecessors of 𝐷−11 s3, and 𝐷−11 s1 and 𝐷−10 s2 are two
predecessors of 𝐷−10 s3.

ByTheorem 29, it is easy to obtain the following corollary.

Corollary 30. 𝑆𝐺𝑛 is the state diagram of a stable 𝑛-stage
NFSR; then there exists an (𝑛+1)-stageNFSR such that𝐷−1𝑆𝐺𝑛
is the state diagramofNFSR.Moreover,𝐷−1𝑆𝐺𝑛 is two self-dual
in 𝐺𝑛+1.
Theorem 31. If 𝑆𝐺𝑛 is the state diagram of an 𝑛-stage NFSR
with the feedback function 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛), then there exists
an (𝑛 + 1)-stage NFSR such that 𝐷−1𝑆𝐺𝑛 is its state diagram.
Moreover, if the feedback function of the (𝑛 + 1)-stage NFSR
is 𝑓󸀠, then 𝑓󸀠(𝑥1, 𝑥2, . . . , 𝑥𝑛+1) = 𝑥𝑛+1 + 𝑓(𝑥1 + 𝑥2, 𝑥2 +𝑥3, . . . , 𝑥𝑛 + 𝑥𝑛+1).
Proof. We define that the mappings 𝐹󸀠 and 𝐹 are induced by
the functions 𝑓󸀠 and 𝑓, respectively; that is, for any given(𝑥1, 𝑥2, . . . , 𝑥𝑛+1) ∈ 𝐵𝑛+1, (𝑦1, 𝑦2, . . . , 𝑦𝑛) ∈ 𝐵𝑛,𝐹󸀠 : (𝑥1, 𝑥2, . . . , 𝑥𝑛+1) 󳨀→(𝑥2, 𝑥3, . . . , 𝑥𝑛+1, 𝑓󸀠 (𝑥1, 𝑥2 . . . , 𝑥𝑛+1)) ,𝐹 : (𝑦1, 𝑦2, . . . , 𝑦𝑛) 󳨀→(𝑦2, 𝑦3, . . . , 𝑦𝑛, 𝑓 (𝑦1,, 𝑦2, . . . , 𝑦𝑛)) .

(30)

According to Corollary 30, there exists a one-to-one cor-
respondence between 𝑆𝐺𝑛 and the self-dual 𝐷−1𝑆𝐺𝑛. More
explicitly, for any given s = (𝑥1, 𝑥2, . . . , 𝑥𝑛+1) ∈ 𝐵𝑛+1,𝐷𝐹󸀠s = 𝐹𝐷s, (31)
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Figure 7: State diagram of NFSR with the feedback functions 𝑓 in Example 32.
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Figure 8: State diagram of NFSR with the feedback functions 𝑓󸀠 in Example 32.
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Figure 9: State diagram of NFSR with the feedback functions 𝑓󸀠󸀠 in Example 32.

where 𝐷𝐹󸀠s = (𝑥2 + 𝑥3, 𝑥3 + 𝑥4, . . . , 𝑥𝑛 + 𝑥𝑛+1, 𝑥𝑛+1+ 𝑓󸀠 (𝑥1, 𝑥2 . . . , 𝑥𝑛+1)) , (32)

𝐹𝐷s = (𝑥2 + 𝑥3, 𝑥3 + 𝑥4, . . . , 𝑥𝑛 + 𝑥𝑛+1, 𝑥𝑛+1+ 𝑓 (𝑥1 + 𝑥2, 𝑥2 + 𝑥3, . . . , 𝑥𝑛 + 𝑥𝑛+1)) . (33)

Then, the result follows from (31), (32), and (33); that is,𝑓󸀠 (𝑥1, 𝑥2 . . . , 𝑥𝑛+1)= 𝑥𝑛+1 + 𝑓 (𝑥1 + 𝑥2, 𝑥2 + 𝑥3, . . . , 𝑥𝑛 + 𝑥𝑛+1) . (34)

Let 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) be the feedback function of an 𝑛-
stage NFSR1, and letℎ (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) + 𝑥𝑎11 𝑥𝑎22 ⋅ ⋅ ⋅ 𝑥𝑎𝑛𝑛 (35)

be the feedback function of an 𝑛-stage NFSR2, where(𝑎1, 𝑎2, . . . , 𝑎𝑛) ∈ 𝐵𝑛 and 𝑥1𝑖 and 𝑥0𝑖 denote 𝑥𝑖 and 𝑥𝑖,
respectively. Note that 𝑥𝑎11 𝑥𝑎22 ⋅ ⋅ ⋅ 𝑥𝑎𝑛𝑛 = 1 if and only if 𝑥𝑖 = 𝑎𝑖
for 1 ≤ 𝑖 ≤ 𝑛. Then, the values of two functions ℎ and 𝑓 have
different values only at the state (𝑎1, 𝑎2, . . . , 𝑎𝑛).

Example 32. Consider a 3-stage stable NFSR with a feedback
function 𝑓 (𝑥1, 𝑥2, 𝑥3) = 𝑥2 + 𝑥3 + 𝑥1𝑥2 + 𝑥2𝑥3. (36)

According toTheorem 31, we obtain a 4-variant function,
which is the feedback function of the 4-NFSR as follows:𝑓󸀠 (𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑥4+ 𝑓 (𝑥1 + 𝑥2, 𝑥2 + 𝑥3, 𝑥3 + 𝑥4)= 𝑥3 + 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥4 + 𝑥3𝑥4. (37)

According to (35), we obtain a 4-stage stable NFSR with a
feedback function𝑓󸀠󸀠 (𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑓󸀠 (𝑥1, 𝑥2, 𝑥3, 𝑥4) + 𝑥11𝑥12𝑥13𝑥14= 𝑥3 + 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥4 + 𝑥3𝑥4+ 𝑥1𝑥2𝑥3𝑥4. (38)

The state diagrams of the NFSRs with the feedback functions𝑓, 𝑓󸀠, and 𝑓󸀠󸀠 are shown in Figures 7, 8, and 9, respectively.

In summary, the theorems and corollaries in Section 4.1
presented a procedure for constructing stable 𝑛 + 1-stage
NFSRs from stable 𝑛-stage NFSRs. Step 1 determines the
feedback function of the 𝑛+1-stage NFSR from stable 𝑛-stage
NFSR according to Theorem 31. Step 2 is used in finding the
feedback function of 𝑛+1-stage stable NFSR from 𝑛+1-stage
NFSR obtained by step 1.
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5. Conclusion

A stableNFSR is an alternative to limit this error propagation.
This paper studied the stability ofmulti-valuedNFSRs using a
logic network approach. Amulti-valued NFSR can be viewed
as a logic network. Based on its logic network representation,
we first gave some sufficient and necessary conditions for
globally (locally) stable multi-valued NFSRs. Then, explicit
forms have been given for the set of basins, and the algorithm
for obtaining the set of basins is provided as well. The
approach used in this paper is helpful to theoretically analyze
multi-valued NFSRs. Finally, the method of constructing
stable NFSRs is presented, so that we can get a stable 𝑛 + 1-
stage NFSR from stable 𝑛-stage NFSR by the properties of𝐷-morphism. Nonlinear feedback shift registers are subject
to impulsive effects and time-delay effects, which might be
interesting to be considered in the future work.
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