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In this paper, the problem of the control for an uncertain nonlinear chaotic system has been studied; based on fuzzy logic, a
kind of single-dimensional controller is constructed for the control of the chaotic systems in the situation that uncertainties and
unknowns exist; at last some typical numerical simulations are carried out, and corresponding results illuminate the effectiveness
of the controller.

1. Introduction

Nonlinear systems exist in real engineering widely. Since
the pioneering work from Lurie in 1944, the research on
nonlinear system control has become the challenging issue,
andmany techniques, such as differential geometry technique
[1, 2], sliding mode technique [3–6] and so on, have been
proposed to deal with this problem. It can be noted that
these approaches are based on multidimensional control.
However, in some cases, the single-dimensional controller is
more cherished for its simpler structure andmore convenient
application in practice.

As an important branch of nonlinear systems, chaotic
system and its control received many attentions, and a lot
of related results have been reported so far [7–14]. For
instance, in [7], based on output feedback control strategy,
a method was presented to realize the control for unified
chaotic systems; in [8], the synchronization control for Lü
systems with unknown parameters was investigated; in [9],
the adaptive control for the synchronization of hyperchaotic
systems was studied; in [10], the fuzzy control for Arneodo
chaotic system is discussed.Howevermost of these researches
focused on just one typical chaotic system. In addition, it is
well known that there exist many kinds of uncertainties in

practical control system, and the following chaotic system
model is studied.

�̇�𝑖 = (𝑏𝑖 + Δ𝑏𝑖) 𝑥𝑖+1 + 𝑓𝑖 (𝑥𝑖) , 1 ≤ 𝑖 ≤ 𝑛 − 1
̇𝑥𝑛 = ℎ𝑛 (𝑥) + Δℎ𝑛 (𝑥) + 𝑓𝑛 (𝑥) + 𝑏𝑛𝑢
𝑦 = 𝑥1

(1)

where 𝑥 = [𝑥1, 𝑥2, ⋅ ⋅ ⋅, 𝑥𝑛]T ∈ R𝑛, 𝑥𝑖 = [𝑥1, 𝑥2, ⋅ ⋅ ⋅, 𝑥𝑖]T ∈ R𝑖, 𝑏𝑖
are the known system parameters and satisfy 0 < 𝑏𝑖𝑚 ≤ |𝑏𝑖| ≤𝑏𝑖𝑀, where 𝑏𝑖𝑚 and 𝑏𝑖𝑀 are the positive scalars,𝑓𝑛 (𝑥) and𝑓𝑖(𝑥𝑖)
are the unknown terms, Δ𝑏𝑖 and Δℎ𝑛 are the uncertainties, ℎ𝑛
is the known term, 𝑏𝑛 is the control parameter, 𝑦 is the system
output, and 𝑢 is the single-dimensional control input. A lot of
chaotic systems can be transformed into the system with the
form (1) through topological mapping.

As an important technique, fuzzy techniques are very
suitable for the research of nonlinear and complex sys-
tems (see [15–23] and references therein), and they will be
introduced to design the single-dimensional controller for
system (1) in this paper. Some simulations will be included
to illuminate the effectiveness of the constructed controller.
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2. Model Description and Preliminaries

It is well known that fuzzy logic system can approximate the
nonlinear function. Let𝑓(𝑥) denote the smooth function and𝜑(𝑥) denote the fuzzy logic system. There exists the optimal
parameter 𝜃∗ = argmin𝜃∈Ω0[sup𝑥∈Ω|𝑓(𝑥)−𝜑(𝑥)|] for the least
approximation error, where Ω0 and Ω are bounded sets of 𝜃
and x.

Define fuzzy rules as

IF 𝑥1 is F𝑗1 and . . . and 𝑥𝑛 is F𝑗𝑛,
then 𝜑 (𝑥) is B𝑗 (𝑗 = 1, 2, ⋅ ⋅ ⋅ ,𝑁) (2)

Define the following fuzzy logic system [16]

𝜑 (𝑥) = ∑𝑁𝑗=1 𝜃𝑗∏𝑛𝑖=1𝜇𝐹𝑗
𝑖
(𝑥𝑖)

∑𝑁𝑗=1 ∏𝑛𝑖=1𝜇𝐹𝑗
𝑖

(𝑥𝑖) (3)

where 𝑥 = [𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛]T ∈ R𝑛, 𝜇
𝐹
𝑗

𝑖

(𝑥𝑖) is the fuzzy
membership function, 𝜃𝑗 = max𝜑(𝑥)∈R𝐵𝑗(𝜑(𝑥)).

Let 𝜉(𝑥) = [𝜉1(𝑥), 𝜉2(𝑥), ⋅ ⋅ ⋅ , 𝜉𝑁(𝑥)]T and 𝜃 =[𝜃1, 𝜃2, ⋅ ⋅ ⋅ , 𝜃𝑁]T; one can get 𝜑(𝑥) = 𝜉T(𝑥)𝜃.
Hence, if 𝑓𝑘 is the continuous function from a compact

set, 𝜑𝑘(𝑥𝑘) can approximate 𝑓𝑘, which means that there exist𝜃𝑘 = [𝜃1𝑘, 𝜃2𝑘, ⋅ ⋅ ⋅, 𝜃𝑁𝑘]T and 𝜀𝑘 > 0, such that

𝑓𝑘 (𝑥𝑘) − 𝜉𝑘T (𝑥𝑘) 𝜃𝑘 ≤ 𝜀𝑘, 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝑛. (4)

where 𝑥𝑘 = [𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑘]T, 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝑛.
In the paper, the following lemmas are concerned.

Lemma 1 (see [24]). If 𝑓(𝑡) ∈ 𝐿∞ ∩ 𝐿2 and ̇𝑓(𝑡) ∈ 𝐿∞, one
has

lim
𝑡→+∞

𝑓 (𝑡) = 0 (5)

3. Main Results

For convenience, let Δ𝑔𝑖(𝑥𝑖+1) = Δ𝑏𝑖𝑥𝑖+1, 1 ≤ 𝑖 ≤ 𝑛 − 1, andΔ𝑔𝑛 = Δℎ𝑛(𝑥).
Step 1. Define the tracking error 𝑒1 = 𝑦−𝑦d; 𝑦d is the desired
trajectory.

For the first subsystem of system (1), the virtual variable𝛼1 is introduced, such that

̇𝑒1 = �̇�1 − ̇𝑦d
= 𝑏1𝑥2 − 𝑏1𝛼1 + 𝑏1𝛼1 + 𝑓1 (𝑥1) + Δ𝑔1 (𝑥2) − �̇�d
= 𝑏1𝑒2 + 𝑏1𝛼1 + 𝑓1 (𝑥1) + Δ𝑔1 (𝑥2) − ̇𝑦d

(6)

where 𝑒2 = 𝑥2 − 𝛼1.

Step 2. For the second subsystem of system (1), the virtual
variable 𝛼2 is introduced, such that

̇𝑒2 = �̇�2 − �̇�1
= 𝑏2𝑥3 − 𝑏2𝛼2 + 𝑏2𝛼2 − �̇�1 + 𝑓2 (𝑥2) + Δ𝑔2 (𝑥3)
= 𝑏2𝑒3 + 𝑏2𝛼2 − �̇�1 + 𝑓2 (𝑥2) + Δ𝑔2 (𝑥3)

(7)

where 𝑒3 = 𝑥3 − 𝛼2.
Step k (𝑘 < 𝑛). For k-th subsystem of system (1), the virtual
variable 𝛼𝑘 is introduced, such that

̇𝑒𝑘 = �̇�𝑘 − �̇�𝑘−1
= 𝑏𝑘𝑥𝑘+1 − 𝑏𝑘𝛼𝑘 + 𝑏𝑘𝛼𝑘 − �̇�𝑘−1 + 𝑓𝑘 (𝑥𝑘)
+ Δ𝑔𝑘 (𝑥𝑘+1)

= 𝑏𝑘𝑒𝑘+1 + 𝑏𝑘𝛼𝑘 − �̇�𝑘−1 + 𝑓𝑘 (𝑥𝑘) + Δ𝑔𝑘 (𝑥𝑘+1)
(8)

where 𝑒𝑘+1 = 𝑥𝑘+1 − 𝛼𝑘
Step n. For the n-th subsystem of system (1), one can get

̇𝑒𝑛 = �̇�𝑛 − �̇�𝑛−1
= 𝑏𝑛𝑢 + ℎ𝑛 (𝑥) + 𝑓𝑛 (𝑥) + Δ𝑔𝑛 (𝑥) − �̇�𝑛−1 (9)

where 𝑒𝑛 = 𝑥𝑛 − 𝛼𝑛−1
Then, the following tracking error dynamic system can be

derived
̇𝑒𝑖 = 𝑏𝑖𝑒𝑖+1 + 𝑏𝑖𝛼𝑖 − �̇�𝑖−1 + 𝑓𝑖 (𝑥𝑖) + Δ𝑔𝑖 (𝑥𝑖+1 (𝑡)) ,

1 ≤ 𝑖 ≤ 𝑛 − 1
̇𝑒𝑛 = −�̇�𝑛−1 + ℎ𝑛 (𝑥) + 𝑓𝑛 (𝑥) + Δ𝑔𝑛 (𝑥) + 𝑏𝑛𝑢

(10)

where 𝛼0 = 𝑦d
The object of this paper is to design a controller, such that

lim
𝑡→+∞

𝑒 (𝑡) = 0 (11)

Choose the first Lyapunov function as

𝑉1 = 12𝑏1 𝑒
2
1 (12)

then

�̇�1 = 1𝑏1 𝑒1 ̇𝑒1 =
1𝑏1 𝑒1 (𝑏1𝑒2 + 𝑏1𝛼1 + 𝑓1 + Δ𝑔1 − ̇𝑦d)

= 𝑒1 (𝑒2 + 𝛼1) + 1𝑏1 𝑒1 (𝑓1 + Δ𝑔1 − �̇�d)
= 𝑒1 (𝑒2 + 𝛼1 + 𝑓1)

(13)

where

𝑓1 = 𝑓1 + Δ𝑔1 − ̇𝑦d𝑏1 . (14)

Let 𝛼1 = −𝜆1𝑒1 −𝜑1, 𝜆1 > 0, where 𝜑1 = 𝜉1T(𝑥2)𝜃1 is used
to approximate the nonlinear function 𝑓1, then
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�̇�1 = −𝜆1𝑒21 + 𝑒1𝑒2 + 𝑒1 (𝑓1 − 𝜑1) (15)

Choose the second Lyapunov function as

𝑉2 = 𝑉1 + 12𝑏2 𝑒
2
2 (16)

Let 𝛼2 = −𝜆2𝑒2 − 𝑒1 − 𝜑2, 𝜆2 > 0, where 𝜑2 = 𝜉2T(𝑥3)𝜃2 is
used to approximate the nonlinear function 𝑓2, then

�̇�2 = �̇�1 + 1𝑏2 𝑒2 ̇𝑒2
= �̇�1 + 𝑒2 (𝑒3 + 𝛼2 + 𝑓2 + Δ𝑔2 − �̇�1𝑏2 )
= −𝜆1𝑒21 + 𝑒2 (𝑒1 + 𝑒3 + 𝛼2 + 𝑓2) + 𝑒1 (𝑓1 − 𝜑1)
= −𝜆1𝑒21 + 𝑒2𝑒3 − 𝜆2𝑒22 + 𝑒1 (𝑓1 − 𝜑1)
+ 𝑒2 (𝑓2 − 𝜑2)

= − 2∑
𝑖=1

𝜆𝑖𝑒2𝑖 +
2∑
𝑖=1

𝑒𝑖 (𝑓𝑖 − 𝜑𝑖) + 𝑒2𝑒3

(17)

where

𝑓2 = 𝑓2 + Δ𝑔2 − �̇�1𝑏2 . (18)

Let 𝛼𝑘−1 = −𝜆𝑘−1𝑒𝑘−1−𝑒𝑘−2−𝜑𝑘−1, 𝜆𝑘−1 > 0, where 𝜑𝑘−1 =𝜉𝑘−1T(𝑥𝑘)𝜃𝑘−1 is used to approximate the nonlinear function𝑓𝑘−1, then
�̇�𝑘−1 = −𝑘−1∑

𝑖=1

𝜆𝑖𝑒2𝑖 +
𝑘−1∑
𝑖=1

𝑒𝑖 (𝑓𝑖 − 𝜑𝑖) + 𝑒𝑘−1𝑒𝑘 (19)

Choose the k-th Lyapunov function (𝑘 < 𝑛) as
𝑉𝑘 = 𝑉𝑘−1 + 12𝑏𝑘 𝑒

2
𝑘 (20)

Hence

�̇�𝑘 = �̇�𝑘−1 + 1𝑏𝑘 𝑒𝑘 ̇𝑒𝑘
= �̇�𝑘−1 + 𝑒𝑘 (𝑒𝑘+1 + 𝛼𝑘 + 1𝑏𝑘 (𝑓𝑘 + Δ𝑔𝑘 − �̇�𝑘−1))

= −𝑘−1∑
𝑖=1

𝜆𝑖𝑒2𝑖 +
𝑘−1∑
𝑖=1

𝑒𝑖 (𝑓𝑖 − 𝜑𝑖)
+ 𝑒𝑘 (𝑒𝑘+1 + 𝛼𝑘 + 𝑒𝑘−1 + 1𝑏𝑘 (𝑓𝑘 + Δ𝑔𝑘 − �̇�𝑘−1))

= −𝑘−1∑
𝑖=1

𝜆𝑖𝑒2𝑖 +
𝑘−1∑
𝑖=1

𝑒𝑖 (𝑓𝑖 − 𝜑𝑖)
+ 𝑒𝑘 (𝑒𝑘+1 + 𝛼𝑘 + 𝑒𝑘−1 + 𝑓𝑘)

(21)

where

𝑓𝑘 = 1𝑏𝑘 (𝑓𝑘 + Δ𝑔𝑘 − �̇�𝑘−1) . (22)

Let𝛼𝑘 = −𝜆𝑘𝑒𝑘−𝑒𝑘−1−𝜑𝑘, 𝜆𝑘 > 0, where𝜑𝑘 = 𝜉𝑘T(𝑥𝑘+1)𝜃𝑘
is used to approximate the nonlinear function 𝑓𝑘, then

�̇�𝑘 = − 𝑘∑
𝑖=1

𝜆𝑖𝑒2𝑖 +
𝑘∑
𝑖=1

𝑒𝑖 (𝑓𝑖 − 𝜑𝑖) + 𝑒𝑘𝑒𝑘+1 (23)

It is consistent with our notation that 𝛼𝑛−1 = −𝜆𝑛−1𝑒𝑛−1 −𝑒𝑛−2 − 𝜑𝑛−1, 𝜆𝑛−1 > 0, where 𝜑𝑛−1 = 𝜉𝑛−1T(𝑥𝑛)𝜃𝑛−1 is used to
approximate the nonlinear function 𝑓𝑛−1, then

�̇�𝑛−1 = −𝑛−1∑
𝑖=1

𝜆𝑖𝑒2𝑖 +
𝑛−1∑
𝑖=1

𝑒𝑖 (𝑓𝑖 − 𝜑𝑖) + 𝑒𝑛−1𝑒𝑛 (24)

Choose the n-th Lyapunov function as

𝑉𝑛 = 𝑉𝑛−1 + 12𝑏𝑛 𝑒
2
𝑛 (25)

Hence

�̇�𝑛 = �̇�𝑛−1 + 𝑒𝑛 (𝑢 + 1𝑏𝑛 (𝑓𝑛 − �̇�𝑛−1))

= −𝑛−1∑
𝑖=1

𝜆𝑖𝑒2𝑖 +
𝑛−1∑
𝑖=1

𝑒𝑖 (𝑓𝑖 − 𝜑𝑖) + 𝑒𝑛−1𝑒𝑛
+ 𝑒𝑛 (𝑢 + 1𝑏𝑛 (𝑓𝑛 + Δ𝑔𝑛 − �̇�𝑛−1))

= −𝑛−1∑
𝑖=1

𝜆𝑖𝑒2𝑖 +
𝑛−1∑
𝑖=1

𝑒𝑖 (𝑓𝑖 − 𝜑𝑖)
+ 𝑒𝑛 (𝑢 + 𝑒𝑛−1 + 1𝑏𝑛 (𝑓𝑛 + Δ𝑔𝑛 − �̇�𝑛−1))

(26)

where

𝑓𝑛 = 1𝑏𝑛 (𝑓𝑛 + Δ𝑔𝑛 − �̇�𝑛−1) (27)

Suppose that 𝜑𝑛 = 𝜉𝑛T(𝑥)𝜃𝑛 approximate the nonlinear
function 𝑓𝑛 and that is based on Lyapunov theory, then the
following theoretical result can be obtained.

Theorem 2. For 𝜆𝑛 > 0, 𝑟𝑖 > 0 and 𝑘𝑖 > 0, based on the
controller

𝑢 = −𝜆𝑛𝑒𝑛 − 𝑒𝑛−1 − ℎ𝑛 (𝑥)𝑏𝑛 − 𝜉𝑛T (𝑥) 𝜃𝑛 (28)

and the adaptive law

̇𝜃𝑖 = 𝑟𝑖𝑒𝑖𝜉𝑖 − 2𝑘𝑖𝜃𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛 (29)

then the output of chaotic system (10) can track the desired
trajectory.
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Proof. Based on (25), construct Lyapunov function as

𝑉 = 𝑉𝑛 + 𝑛∑
𝑖=1

12𝑟𝑖 𝜃
T
𝑖 𝜃𝑖 (30)

where 𝜃𝑖 = 𝜃∗𝑖 − 𝜃𝑖.
Combined with (28), it can be concluded that

�̇� = − 𝑛∑
𝑖=1

𝜆𝑖𝑒2𝑖 +
𝑛∑
𝑖=1

𝑒𝑖 (𝑓𝑖 − 𝜑𝑖) −
𝑛∑
𝑖=1

1𝑟𝑖 𝜃
T
𝑖
̇𝜃𝑖

= − 𝑛∑
𝑖=1

𝜆𝑖𝑒2𝑖 +
𝑛∑
𝑖=1

𝑒𝑖 (𝑓𝑖 − 𝜃∗𝑖 T𝜉𝑖)

+ 𝑛∑
𝑖=1

𝑒𝑖 (𝜃∗𝑖 T𝜉𝑖 − 𝜃T𝑖 𝜉𝑖) −
𝑛∑
𝑖=1

1𝑟𝑖 𝜃
T
𝑖
̇𝜃𝑖

= − 𝑛∑
𝑖=1

𝜆𝑖𝑒2𝑖 +
𝑛∑
𝑖=1

𝑒𝑖 (𝑓𝑖 − 𝜃∗𝑖 T𝜉𝑖) +
𝑛∑
𝑖=1

𝑒𝑖𝜃T𝑖 𝜉𝑖
− 𝑛∑
𝑖=1

1𝑟𝑖 𝜃
T
𝑖
̇𝜃𝑖

≤ − 𝑛∑
𝑖=1

𝜆𝑖𝑒2𝑖 +
𝑛∑
𝑖=1

𝜃T𝑖 (𝑒𝑖𝜉𝑖 − 1𝑟𝑖 ̇𝜃𝑖) +
𝑛∑
𝑖=1

𝑒𝑖𝜀𝑖

(31)

Define

𝑆 = − 𝑛∑
𝑖=1

𝜆𝑖𝑒2𝑖 +
𝑛∑
𝑖=1

𝜃T𝑖 (𝑒𝑖𝜉𝑖 − 1𝑟𝑖 ̇𝜃𝑖) +
𝑛∑
𝑖=1

𝑒𝑖𝜀𝑖 (32)

Supposing that 𝑎𝑖 = 𝜆𝑖 − 1/2, it can be derived

𝜆𝑖 = 𝑎𝑖 + 12 (33)

Hence

𝑆 = − 𝑛∑
𝑖=1

𝑎𝑖𝑒2𝑖 − 12
𝑛∑
𝑖=1

𝑒2𝑖 +
𝑛∑
𝑖=1

𝜃T𝑖 (𝑒𝑖𝜉𝑖 − 1𝑟𝑖 ̇𝜃𝑖) +
𝑛∑
𝑖=1

𝑒𝑖𝜀𝑖 (34)

Consider

−12
𝑛∑
𝑖=1

𝑒2𝑖 +
𝑛∑
𝑖=1

𝑒𝑖𝜀𝑖 ≤ −12
𝑛∑
𝑖=1

𝜀2𝑖 (35)

and with adaptive law (29), one can get

𝑆 ≤ − 𝑛∑
𝑖=1

𝑎𝑖𝑒2𝑖 +
𝑛∑
𝑖=1

𝜃T𝑖 (𝑒𝑖𝜉𝑖 − 1𝑟𝑖 (𝑟𝑖𝑒𝑖𝜉𝑖 − 2𝑘𝑖𝜃𝑖))

+ 12
𝑛∑
𝑖=1

𝜀2𝑖
= − 𝑛∑
𝑖=1

𝑎𝑖𝑒2𝑖 +
𝑛∑
𝑖=1

2𝑘𝑖𝑟𝑖 (𝜃
∗
𝑖 − 𝜃𝑖)T 𝜃𝑖 + 12

𝑛∑
𝑖=1

𝜀2𝑖
= − 𝑛∑
𝑖=1

𝑎𝑖𝑒2𝑖 +
𝑛∑
𝑖=1

𝑘𝑖𝑟𝑖 (2𝜃
∗
𝑖

T𝜃𝑖 − 2𝜃T𝑖 𝜃𝑖) + 12
𝑛∑
𝑖=1

𝜀2𝑖

(36)

Consider

𝜃∗𝑖 T𝜃∗𝑖 + 𝜃T𝑖 𝜃𝑖 ≥ 2𝜃∗𝑖 T𝜃𝑖 (37)

Then

2𝜃∗𝑖 T𝜃𝑖 − 2𝜃T𝑖 𝜃𝑖 ≤ 𝜃∗𝑖 T𝜃∗𝑖 − 𝜃T𝑖 𝜃𝑖 (38)

One can derive

�̇� ≤ − 𝑛∑
𝑖=1

𝑎𝑖𝑒2𝑖 +
𝑛∑
𝑖=1

𝑘𝑖𝑟𝑖 (−𝜃
T
𝑖 𝜃𝑖 + 𝜃∗𝑖 T𝜃∗𝑖 ) + 12

𝑛∑
𝑖=1

𝜀2𝑖
= − 𝑛∑
𝑖=1

𝑎𝑖𝑒2𝑖 +
𝑛∑
𝑖=1

𝑘𝑖𝑟𝑖 (−𝜃
T
𝑖 𝜃𝑖 − 𝜃∗𝑖 T𝜃∗𝑖 ) +

𝑛∑
𝑖=1

2𝑘𝑖𝑟𝑖 𝜃
∗
𝑖

T𝜃∗𝑖
+ 12
𝑛∑
𝑖=1

𝜀2𝑖

(39)

Consider

𝜃T𝑖 𝜃𝑖 = (𝜃∗𝑖 − 𝜃𝑖)T (𝜃∗𝑖 − 𝜃𝑖) = 𝜃∗𝑖 T𝜃∗𝑖 − 2𝜃∗𝑖 T𝜃𝑖 + 𝜃T𝑖 𝜃𝑖
≤ 2𝜃∗𝑖 T𝜃∗𝑖 + 2𝜃T𝑖 𝜃𝑖

(40)

Then

−12𝜃
T
𝑖 𝜃𝑖 ≥ −𝜃T𝑖 𝜃𝑖 − 𝜃∗𝑖 T𝜃∗𝑖 (41)

One can derive

�̇� ≤ − 𝑛∑
𝑖=1

𝑎𝑖𝑒2𝑖 −
𝑛∑
𝑖=1

𝑘𝑖2𝑟𝑖 𝜃
T
𝑖 𝜃𝑖 +

𝑛∑
𝑖=1

2𝑘𝑖𝑟𝑖 𝜃
∗
𝑖

T𝜃∗𝑖 + 12
𝑛∑
𝑖=1

𝜀2𝑖
≤ − 𝑛∑
𝑖=1

𝑎𝑖 2𝑏𝑖𝑚2𝑏𝑖 𝑒
2
𝑖 −
𝑛∑
𝑖=1

𝑘𝑖2𝑟𝑖 𝜃
T
𝑖 𝜃𝑖 +

𝑛∑
𝑖=1

2𝑘𝑖𝑟𝑖 𝜃
∗
𝑖

T𝜃∗𝑖
+ 12
𝑛∑
𝑖=1

𝜀2𝑖

(42)

Choosing 𝜆𝑖 > 1/2, one can obtain 𝑎𝑖 > 0.
Let

𝑎0 = min {2𝑏𝑖𝑚𝑎𝑖, 𝑘𝑖 : 𝑖 = 1, 2, ⋅ ⋅ ⋅, 𝑛}
𝑏0 = 𝑛∑
𝑖=1

2𝑘𝑖𝑟𝑖 𝜃
∗
𝑖
T𝜃∗𝑖 + 12

𝑛∑
𝑖=1

𝜀2𝑖 (43)

Then

�̇� ≤ −𝑎0( 𝑛∑
𝑖=1

12𝑏𝑖 𝑒
2
𝑖 +
𝑛∑
𝑖=1

12𝑟𝑖 𝜃
T
𝑖 𝜃𝑖) + 𝑏0 = −𝑎0𝑉 + 𝑏0 (44)

The solution of differential equation �̇� = −𝑎0𝑉 + 𝑏0 is
𝑉(𝑡) = 𝑉 (0) exp (−𝑎0𝑡)

+ 𝑏0 exp (−𝑎0𝑡) exp (𝑎0𝑡) − 1𝑎0
(45)
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Considering (44), it can be derived that

𝑉(𝑡) ≤ (𝑉 (0) − 𝑏0𝑎0) exp (−𝑎0𝑡) + 𝑏0𝑎0
≤ 𝑉 (0) exp (−𝑎0𝑡) + 𝑏0𝑎0 ≤ 𝑉 (0) +

𝑏0𝑎0
(46)

Define

𝑑0 = min {𝑎𝑖 : 𝑖 = 1, 2, ⋅ ⋅ ⋅, 𝑛} . (47)

From (42), one can obtain

�̇� ≤ − 𝑛∑
𝑖=1

𝑎𝑖𝑒2𝑖 −
𝑛∑
𝑖=1

𝑘𝑖2𝑟𝑖 𝜃
T
𝑖 𝜃𝑖 +

𝑛∑
𝑖=1

2𝑘𝑖𝑟𝑖 𝜃
∗
𝑖

T𝜃∗𝑖 + 12
𝑛∑
𝑖=1

𝜀2𝑖
≤ −min {𝑎𝑖} 𝑛∑

𝑖=1

𝑒2𝑖 +
𝑛∑
𝑖=1

2𝑘𝑖𝑟𝑖 𝜃
∗
𝑖

T𝜃∗𝑖 + 12
𝑛∑
𝑖=1

𝜀2𝑖
= −𝑑0 𝑛∑

𝑖=1

𝑒2𝑖 + 𝑏0

(48)

Hence, when ‖𝑒‖ > (𝑏0/𝑑0)1/2, one can get �̇� < 0, which
means 𝑒(𝑡) ∈ 𝐿∞.

Integrating both sides of inequality (48) from 0 to T, one
can get

∫𝑇
0
�̇� (𝑡) 𝑑𝑡 ≤ −∫𝑇

0
𝑑0 𝑛∑
𝑖=1

𝑒2𝑖 (𝑠) 𝑑𝑠 + 𝑇𝑏0 (49)

Consider

∫𝑇
0
�̇� (𝑡) 𝑑𝑡 = 𝑉 (𝑇) − 𝑉 (0) (50)

One can get

𝑉 (𝑇) − 𝑉 (0) ≤ −𝑑0 𝑛∑
𝑖=1

∫𝑇
0
𝑒2𝑖 (𝑠) 𝑑𝑠 + 𝑇𝑏0 (51)

Hence
𝑛∑
𝑖=1

∫𝑇
0
𝑒2𝑖 (𝑠) 𝑑𝑠 ≤ 1𝑑0 (𝑉 (0) − 𝑉 (𝑇) + 𝑇𝑏0) (52)

which means 𝑒(𝑡) ∈ 𝐿2. From error dynamic system (10),
it can be concluded that ̇𝑒(𝑡) ∈ 𝐿∞. Accordingly based on
Lemma 1, one can get lim𝑡→+∞𝑒(𝑡) = 0, which means the
achievement of the track control. The proof of Theorem 2 is
thus completed.

4. Numerical Simulation

First the following uncertain Arneodo system is considered.

�̇�1 = 𝑏1𝑥2 + 𝑓1
�̇�2 = (𝑏2 + Δ𝑏2) 𝑥3 + 𝑓2
�̇�3 = ℎ3 + Δℎ3 + 𝑓3 + 𝑏3𝑢

(53)

where
𝑏1 = 1,
𝑓1 = 0.3 sin 𝑥1,𝑏2 = 1,Δ𝑏2 = 0.02,
𝑓2 = 0.1 cos (𝑥1𝑥2) ,
ℎ3 = 𝑐3𝑥13 − 𝑐0𝑥1 − 𝑐1𝑥2 − 𝑐2𝑥3,

Δℎ3 = 0.1𝑥1,
𝑓3 = 0.2 cos (𝑥1) sin (𝑥3) ,𝑏3 = 5,𝑐0 = −5.4,
𝑐1 = 3.5,𝑐2 = 1,𝑐3 = −1,𝑘1 = 1,𝑘2 = 1.5,𝑘3 = 1.5,𝑟1 = 1.5,𝑟2 = 2,𝑟3 = 2,𝜆1 = 2.5,𝜆2 = 5,𝜆3 = 5,𝛼1 = −𝜆1 (𝑥1 − 𝑦𝑑) + ̇𝑦𝑑,
𝛼2 = −𝜆2 (𝑥2 − 𝛼1) − (𝑥1 − 𝑦𝑑) − 𝜉T2 (𝑥2) 𝜃,𝑢 = −𝜆3 (𝑥3 − 𝛼2) − (𝑥2 − 𝛼1) − 𝜉T3 (𝑥3) 𝜃,

𝜉1𝑗 (𝑥1) = 𝜇F𝑗1 (𝑥1)∑9𝑗=1 𝜇F𝑗1 (𝑥1) ,
𝜉2𝑗 (𝑥2) = 𝜇F𝑗1 (𝑥1) 𝜇F𝑗2 (𝑥2)∑9𝑗=1 𝜇F𝑗1 (𝑥1) 𝜇F𝑗2 (𝑥2) ,
𝜉3𝑗 (𝑥) = 𝜇F𝑗1 (𝑥1) 𝜇F𝑗2 (𝑥2) 𝜇F𝑗3 (𝑥3)∑9𝑗=1 𝜇F𝑗1 (𝑥1) 𝜇F𝑗2 (𝑥2) 𝜇F𝑗3 (𝑥3) ,

𝜇F1𝑖 (𝑥𝑖) = exp (−0.5 (𝑥𝑖 + 2)2] ,
𝜇F2𝑖 (𝑥𝑖) = exp (−0.5 (𝑥𝑖 + 1.5)2] ,
𝜇F3𝑖 (𝑥𝑖) = exp (−0.5 (𝑥𝑖 + 1)2] ,
𝜇F4𝑖 (𝑥𝑖) = exp (−0.5 (𝑥𝑖 + 0.5)2] ,
𝜇F5𝑖 (𝑥𝑖) = exp (−0.5𝑥2𝑖 )] ,
𝜇F6𝑖 (𝑥𝑖) = exp (−0.5 (𝑥𝑖 − 0.5)2] ,
𝜇F7𝑖 (𝑥𝑖) = exp (−0.5 (𝑥𝑖 − 1)2] ,
𝜇F8𝑖 (𝑥𝑖) = exp (−0.5 (𝑥𝑖 − 1.5)2] ,
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Figure 1: Chaotic attractor of Arneodo system.

𝜇F9𝑖 (𝑥𝑖) = exp (−0.5 (𝑥𝑖 − 2)2] ,
𝜉1 (𝑥1) = [𝜉11 (𝑥1) , 𝜉12 (𝑥1) , ⋅ ⋅ ⋅, 𝜉19 (𝑥1)]T ,
𝜉2 (𝑥2) = [𝜉21 (𝑥2) , 𝜉22 (𝑥2) , ⋅ ⋅ ⋅, 𝜉29 (𝑥2)]T ,
𝜉3 (𝑥3) = [𝜉31 (𝑥3) , 𝜉32 (𝑥3) , ⋅ ⋅ ⋅, 𝜉39 (𝑥3)]T .

(54)

Let desired trajectory 𝑦𝑑 = sin 2𝜋𝑡, initial value 𝑥(0) =[2, 0, 0]T, and the simulation results are displayed in Figures
1–7.

Remark 3. Figure 1 displays the chaotic attractor of Arneodo
system. Figure 2 displays the state response of x1 of Arneodo
system. From Figures 1 and 2, it can be seen that Arneodo
system has the complicated dynamical behavior. Figure 3 dis-
plays the state response of variable x1 of uncertain Arneodo
system. It can be seen that the existence of unknowns and
uncertainties makes Arneodo system unstable.

Remark 4. Figure 4 displays the fuzzy membership function.
Figure 5 displays the state response of control input. Figure 6
displays the state response of yd and y. Figure 7 displays the
state response of position tracking error. From Figures 4–7, it
can be seen that for uncertain Arneodo system, the position
tracking can be achieved during 0.5 second based on the
designed controller.

5. Conclusion

In this paper, based on fuzzy logic, a single-dimensional
controller has been constructed for the control of a kind
of uncertain chaotic systems. Some typical examples have
been employed and corresponding simulation results have
illuminated the effectiveness of proposed controller.
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Figure 2: State response of x1 of Arneodo system.
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Figure 3: State response of x1 of uncertain Arneodo system.
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Figure 7: State response of position tracking error.
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