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Copyright © 2019 Dávid Csercsik and Levente Kovács. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

We formulate a dynamic model of vascular tumor growth, in which the interdependence of vascular dynamics with tumor volume
is considered.Themodel describes the angiogenic switch; thus the inhibition of the vascularization process by antiangiogenic drugs
may be taken into account explicitly. We validate the model against volume measurement data originating from experiments on
mice and analyze the model behavior assuming different inputs corresponding to different therapies. Furthermore, we show that a
simple extension of themodel is capable of considering cytotoxic and antiangiogenic drugs as inputs simultaneously in qualitatively
different ways.

1. Introduction

Neovascularization means the formation of new blood ves-
sels. Angiogenesis, an important form of neovascularization,
is characterized by hypoxia-driven sprouting of new capil-
laries from postcapillary venules. This mechanism plays an
important role in many physiological (e.g., wound healing
[1]) and pathological (e.g., macular degeneration [2]) pro-
cesses. In the development of tumors, angiogenesis plays an
exceptionally important role [3, 4]. In the beginning, when
the tumorous cells form a small plaque, the tumor cells
are well supported with metabolites by diffusion from the
environment. However, as the size of the tumor increases,
cells in the inside become insufficiently supported. Tumor-
induced angiogenesis is the process of blood vessel formation,
in which new vasculature is formed in order to support these
insufficiently supported tumor cells.

Lately,much has been revealed about the details of tumor-
induced angiogenesis and the underlying biochemical and
biomechanical regulatory processes. These studies served as
basis for the development of targeted molecular therapies
[5]. The aim of these therapies is to inhibit tumor-related
angiogenesis, thus cutting the tumor frommetabolic support.

Bevacizumab (Avastin) is a pharmacotherapeutic antian-
giogenic agent developed to withhold pathological angiogen-
esis [6] via the inhibition of the tumor angiogenic factor
VEGF (vascular endothelial growth factor) [7]. VEGF may
be considered as a representative member of the family of
biochemical agents promoting angiogenesis, called tumor
angiogenic factors (TAFs).

In [8], two different dosage protocols of bevacizumab
were compared. In the case of the first protocol, experimental
animals (mice) received one high dose according to the
generally accepted medical principle, while in the case of
the second protocol (quasi-continuous therapy), a much
lower dose was delivered every day of the therapy. Results
have shown that the quasi-continuous protocol was more
effective, while the total injected amount of the drug was
significantly less. As antiangiogenic agents are expensive, the
total used drug amount is an important aspect to consider
in therapeutic design. In addition, reduction of therapeutic
doses is also desirable to minimize drug side effects. The
result described in [8] underlines the importance of therapy
optimization in the case of the application of antiangiogenic
drugs and shows that computational methods may help to
exploit the potentials of this approach.
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On the other hand, based on the new data and paradigms
brought to light in biological studies on angiogenesis, compu-
tational modeling of tumor-related vasculature development
has became popular in the last decades, producing numerous
computational models describing tumor growth and tumor-
induced angiogenesis under different physiological circum-
stances (for a review on mathematical modeling of angio-
genesis, see [9–12], while for a biological viewpoint on the
mechanisms of physiological and tumor-related/pathological
angiogenesis, one may refer to [13]). An important aspect
of these modeling studies is to predict the effect of possible
therapeutic approaches in cancer treatment [14–16].

A large part of the aforementioned models exhibit a
quite high level of complexity, which implies that while
they may be potentially appropriate for the comparison of
different therapeutic approaches under the assumption of
a given parameter set, it can be challenging to fit them to
single patients. Furthermore, exact therapy optimizationmay
be computationally infeasible if one relies on complex and
spatially detailed models as [17, 18].

Feedback control [19, 20] may be an alternative to offline
therapy optimization approaches. One benefit of closed-
loop methods is that, assuming appropriate physiological
signals, they may provide performance guarantees also in
the presence of parametric uncertainties [21]. Other potential
benefits of closed-loop treatments over protocol-based can-
cer therapies are discussed in [22]. In the case of diabetes,
a similar biological control problem, such approaches have
been successfully applied [23–27]. Control theoretic meth-
ods require, however, concentrated parameter models and
ordinary differential (or difference) equation models with
moderate complexity to perform well.

Recently, a simple dynamical model of tumor growth and
the effect of the antiangiogenic drug bevacizumab has been
published [28].This model contains very few parameters and
state variables and thus it is ideal for parameter estimation
and controller design purposes. This model is based on three
state variables, namely, the proliferating tumor volume, the
necrotic tumor volume, and the concentration of the angio-
genic inhibitor. Although this model provides a good fit for
certain experimental data (see the data later in Section 2.2), it
holds some flaws.

First, as it does not include the description of vasculature
dynamics, its drawback is that it is unable to interpret
advanced measurement data corresponding to tumor and
vasculature evolution dynamics, potentially available in the
foreseeable future. Recently, several imaging techniques have
been described, which allow the reconstruction of vascular
microstructures: Doppler optical frequency domain imaging
[29] and functional photoacoustic microscopy [30] are used
today already in in vivo setups to map vascular networks,
while diffusible iodine-based contrast-enhanced computed
tomography [31] may be used in terminal experimental
animals. These methods could provide valuable data about
vasculature dynamics in the near future, which may be
used for the identification of the details of the angiogenic
processes.

Second, minimal models not including vasculature
dynamics as [28] are lacking the potential to describe the

phenomenon of the angiogenic switch [32]. This hypothesis,
formulated by Folkman, assumes that angiogenesis begins
only at a certain stage of tumor development, more precisely
at the time when the limited diffusion distance (which is
about 0.1mm [33]) makes the support of tumor cells inside
the tumor with oxygen and metabolites no longer possible.
According to the prediction of the minimal model [28],
antiangiogenic drugs significantly affect the tumor growth
also in the initial period. This contradicts with the consid-
eration based on Folkman’s hypothesis that implies that in
the initial period no insufficiently supported tumor cells are
present, so no TAF synthesis is present; thus its effect can not
be inhibited. In addition to the fact that minimal models like
[28, 34] do not explicitly consider angiogenesis, the model
[28] assumes a very simple constant rate of drug-independent
necrosis, in which the proliferating cells turn into necrotic
cells. In contrast, the process of necrosis strongly depends on
the metabolic support and thus on the vascularization state
of the tumor.

Third, paper [28] is based on the comparison of sim-
ulation results to measurement data originating from two
scenarios. In these two scenarios, the antiangiogenic drug
Bevacizumab was administered to experimental animals
according to different protocols. In the first protocol, one
200 𝜇g bevacizumab dose was used for an 18-day therapy,
while in the second (quasi-continuous) protocol one-tenth
of the 200 𝜇g (20 𝜇g) dose was spread over 18 days; that
is, 1.11 𝜇g bevacizumab was administered every day to the
animals. Paper [8] is also based on results corresponding to
these 2 administration protocols but also discusses results
corresponding to therapy/drug-free case; namely, it states
that mice that were treated with protocol 1 (one 200 𝜇g
bevacizumab dose) did not have significantly smaller tumor
volume than mice that did not receive therapy at all. In
contrast to this result, if we compare the final tumor volumes
resulting from the simulation of the model [28] in the case
of protocol 1 and in the no-therapy case, we find that, in the
case of protocol 1, the model prediction for the final tumor
volume is 4741mm3 (which is in good agreement with the
experimental results), while in the no-therapy case, themodel
prediction for the final tumor volume is 37628mm3. This
means that, according to the prediction of this model, the
no-therapy final tumor size is almost 8 times larger than the
protocol 1 case, making the validity of themodel questionable
in the no-therapy case, based on the results of [8]. We would
underline that this does not question the validity of themodel
[28] in the case of Bevacizumab protocols and feedbacks
similar to the ones discussed therein.

Another paper that aimed to formulate a control-
oriented dynamical model was also recently published [35].
This model, which uses a bicompartmental approach, does
describe the dynamics of vasculature but results in a 7-
dimensional state space and 23 parameters, which is quite
challenging size for control design. In addition, the model
described in [35] was fit only to data corresponding to the
first protocol in [8] (not both, like [28]).

According to the above preliminary results and consid-
erations, our aim in this paper is as follows. We formulate
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a dynamic model, which includes the dynamics of the
vasculature volume and describes the interplay between the
tumor and vasculature volumes. To achieve this, we also
include the dynamics of TAF in themodel, which is produced
by unsupported tumor and initiates the formation of new
blood vessels from existing ones. This way our model will be
capable of the interpretation of measurement corresponding
to tumor and vasculature evolution dynamics. Furthermore,
we aim to formulate amodel, the predictions of which are also
more acceptable in the therapy-free case.

2. Model Synthesis

In the following, we introduce the state-space variables of the
model and interpret the state equations with the discussion of
the model assumptions. Afterwards, the model parameters,
their estimation, and the contextualization of the resulting
parameters are described.

2.1. State Variables and Equations. The state-space variables
of the model are summarized in Table 1 and their dynamics
are described by the following equations:

𝑑𝑉
𝑑𝑡 = 𝑐𝑔𝛾𝑉 − 𝑐𝑛𝑉𝑢 (1)

𝑑𝑁
𝑑𝑡 = 𝑐𝑛𝑉𝑢 (2)

𝑑𝐵
𝑑𝑡 = 𝑐𝑒V𝑉̇𝑡𝑜𝑡 + 𝑐V𝑇𝐵 (3)

𝑑𝑇
𝑑𝑡 = 𝑐𝑇𝑉𝑢𝑉 − 𝑞𝑇𝑇 − 𝑐ℎ 𝑇𝐼

𝐸𝐷50 + 𝐼 (4)

𝑑𝐼
𝑑𝑡 = 𝑢 − 𝑞𝐼 𝐼

𝑘𝐼 + 𝐼 − 𝑘𝑉𝑐ℎ 𝑇𝐼
𝐸𝐷50 + 𝐼 (5)

𝑉𝑡𝑜𝑡 is the total volume of the tumor, the sum of the
proliferating (living) volume and the necrotic volume: 𝑉𝑡𝑜𝑡 =𝑉 + 𝑁; thus 𝑉̇𝑡𝑜t = 𝑐𝑔𝛾𝑉. Furthermore, 𝑉𝑢 denotes the
unsupported living tumor volume𝑉𝑢 = (1−𝛾)𝑉; thus𝑉𝑢/𝑉 =(1−𝛾). 𝑢 denotes the input, the injection of the antiangiogenic
drug.

We assume a simple spherical tumor. This simplifying
assumption (one-dimensional growth in other words) is
widely used in the tumor modeling literature (see, e.g., [36–
42]).

The auxiliary variable 𝛾 in the above equation is a key
element of the model: it describes the actual ratio of the well-
supported tumor cells in the tumor. 𝛾 is the function of the
actual total volume 𝑉𝑡𝑜𝑡 and the vascularization ratio of the
tumor (𝑟V). 𝑟V can be computed as

𝑟V = 1 − [𝐵]𝑖𝑑 − [𝐵]
[𝐵]𝑖𝑑 (6)

where [𝐵]𝑖𝑑 denotes the ideal density of vasculature in
the tumor (notations with square brackets always refer to
densities). This ideal density corresponds to the vasculature

Table 1: State variables of the model.

Notation Variable Dimension
V Proliferating tumor volume mm3

N Necrotic tumor volume mm3

B Vasculature volume in the tumor mm3

T Concentration of TAF in the tumor mg/ml
I Inhibitor serum level mg/ml

density, when all tumor cells are sufficiently supported; in
otherwords, 𝑟V = 1. In accordancewith biological results [43–
45], we assume that the vasculature is present in the living
part of the tumor; thus the vasculature density is interpreted
as density of blood vessels in the living (nonnecrotic) part of
the tumor and is calculated as [𝐵] = 𝐵/𝑉. Regarding the
validity range of the model, we assume that the inequality
[𝐵] < [𝐵]𝑖𝑑 holds at all times (in other words, we assume that
the tumor is never fully vascularized).

The supported ratio of the tumor (𝛾) is computed as

𝛾 = (1 − 𝑟V) 𝑓𝑃 (𝑉𝑡𝑜𝑡) + 𝑟V (7)

which may be viewed as a linear homotopy in 𝑟V ∈ [0, 1]
between the constant 1 function and the function 𝑓𝑃(𝑉𝑡𝑜𝑡),
which is also between zero and one. Thus 𝛾 ∈ [0, 1] also
holds. The interpretation is that 𝑓𝑃(𝑉𝑡𝑜𝑡) denotes a function
that describes the ratio of tumor cells on the periphery of the
tumor, which receive nutrients from outside of the tumor,
so they are well supported. Naturally, this ratio depends on
the actual total tumor volume 𝑉𝑡𝑜𝑡. More precisely, in our
terms, the periphery of the tumor is the outer shell of the
sphere of our model, composed by tumor cells, which are
closer to the surface of the tumor than the diffusion distance.
According to [33], we assume the diffusion distance to be 150𝜇𝑚. The ratio of periphery cells depends upon the radius of
the tumor, which can be expressed from the tumor volume𝑉, according to the following simple derivation. Based on the
tumor volume, we may derive the tumor radius (in mm) as

𝑉𝑡𝑜𝑡 = 4
3𝜋𝑟3

𝑟 = 3√3𝑉𝑡𝑜𝑡4𝜋 .
(8)

If 𝑟 ≤ 0.15, there is no tumor core. Assuming 𝑟 > 0.15, the
volume of the tumor core is

𝑉𝐶 = 4
3𝜋 (𝑟 − 0.15)3 , (9)

And thus the volume of the periphery is

𝑉𝑃 = 𝑉𝑡𝑜𝑡 − 𝑉𝐶, (10)

and finally the function 𝑓𝑃(𝑉𝑡𝑜𝑡) is derived as

𝑓𝑃 (𝑉𝑡𝑜𝑡) = 𝑉𝑃𝑉𝑡𝑜𝑡 . (11)
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Figure 1: The function 𝑓𝑃(𝑉𝑡𝑜𝑡) describing the ratio of periphery
cells in the range of 20-15000mm3 tumor volume.

If the tumor radius is below the diffusion distance, all cells
are considered as periphery cells. The function 𝑓𝑃(𝑉𝑡𝑜𝑡)
describing the ratio of periphery cells in the range of 20-
15000mm3 is depicted in Figure 1 (according to [8], in the
time of the first measurement, the volume of the tumors is
about 50-60mm3).

Now let us return our focus to the auxiliary variable 𝛾.
The consideration behind the form of function (7) is that
we assume two possible ways by which a tumor cell may get
nutrient support. On one hand, if it is at the periphery of the
tumor, it gets nutrients from the environment of the tumor
via diffusion. On the other hand, if it is inside the tumor near
a blood vessel, it also receives nutrient supply. The properties
of function (7) reflect these considerations.Wemay see that if
the tumor is composed only (or because of the approximation
mostly) periphery cells or is almost fully vascularized (𝑟V ≃1), the value of 𝛾 is approximately 1. In addition, at a fixed
value of 𝑟V, it increases as the value of 𝑓𝑃(𝑉𝑡𝑜𝑡) is increased,
and at a fixed vale of 𝑓𝑃(𝑉𝑡𝑜𝑡), the value of 𝛾 is increased as 𝑟V
increases (to put it simple, it is monotonically increasing in
both variables).

Now, as we have discussed the interpretation of the
auxiliary variables and the corresponding assumptions, we
may return to the state equations. Equation (1) describes the
tumor growth. The formula originates from the assumption
that the well-supported part of the tumor volume (𝛾𝑉)
proliferates at the rate 𝑐𝑔, while the unsupported volume 𝑉𝑢
necrotizes at the rate 𝑐𝑛.

Equation (3) formalizes the dynamics of the vasculature,
which may increase by two ways. On one hand, the term𝑐𝑒V𝑉̇𝑡𝑜𝑡 describes the internalization of new vasculature from
the environment as the tumor grows, and on the other hand
the term 𝑐V𝑇𝐵 describes the formation of new blood vessels
from existing ones in response to the TAF.

Equation (2) corresponds to necrotic volume.The impor-
tance of formally describing the process of necrosis lies in the
fact that necrotized cells neither proliferate nor contribute

to TAF production, so they must be distinguished from the
general tumor volume.

Equations (4) and (5) describe the dynamics of TAF and
the inhibitor concentration, respectively. The terms

𝑐𝑇𝑉𝑢𝑉 − 𝑞𝑇𝑇 (12)

of (4) describe that the production of TAF is proportional to
the ratio of unsupported cells 𝑉𝑢/𝑉 and takes place at rate𝑐𝑇, while it is cleared at the rate 𝑞𝑇 from the tumor. In the
case of the inhibitor, the source is the injection (the input) 𝑢,
while based on [28], we assume that its clearance takes place
according to Michaelis-Menten kinetics. The terms

𝑐ℎ 𝑇𝐼
𝐸𝐷50 + 𝐼 (13)

and

𝑘𝑉𝑐ℎ 𝑇𝐼
𝐸𝐷50 + 𝐼 (14)

in (4) and (5), respectively, correspond to the reaction in
which the inhibitor binds the TAF molecule. Also, based on
[28], the dynamics of the inhibition are considered assuming
Michaelis-Menten kinetics with Michaelis-Menten constant𝐸𝐷50 (effective median dose).

The variable 𝑘𝑉 corresponds to the consideration that
the concentrations of TAF (𝑇) and the inhibitor (𝐼) are not
interpreted in the same volume (the compartment in the
former case is the tumor; the volume in the latter case is the
plasma). 𝑘𝑉 is the ratio of these volumes and can be computed
as

𝑘𝑉 = 𝑉𝑡𝑜𝑡1460 (15)

where the value 1460 stands for the average blood volume of
a mice in 𝜇𝑚3, in which the concentration of the inhibitor is
interpreted [46].

2.2. Model Parameters. Some parameters of the model were
taken from the literature (see Table 2), while the remaining
parameters were estimated using experimental data originat-
ing from mice. Sápi et al. [8] carried out experiments, where
C57Bl/6 mice with C38 colon adenocarcinoma were treated
with bevacizumab using two different therapies.

(i) Therapy 1 (protocol-based treatment): fivemice (mice
C1-C5) were injected with 0.171mg/ml bevacizumab
at day 3 of the treatment (day 0 is considered as the
day of the tumor implantation) (see Figure 2(a)).

(ii) Therapy 2 (daily, quasi-continuous small amount
administration): ninemice (mice E1-E9) received 9.5 ⋅10−4 mg/ml injection of bevacizumab each day for 18
days from day 3 (see Figure 2(b)).

The nominal parameter set of the model was determined
using the average of measurements as reference and mini-
mizing the mean square error of the deviance between the
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Figure 2: (a) The measured tumor volumes for mice C1-C5 that received therapy 1 and their average. (b) The measured tumor volumes for
mice E1-E9 that received therapy 2 and their average.

simulated andmeasured total volumes using the combination
of particle swarm global optimization method [47] and the
“nlinfit” function of MATLAB. During the simulations, the
initial volume of the tumor was assumed to be equal to
5mm3, while the initial values of all other state variables
were assumed to be 0. To capture the qualitatively different
response of tumor growth to the two different protocols, both
average curves (corresponding to protocols 1 and 2) were
used simultaneously for the purpose of parameter estimation.
While initial guess of the parameters was determined by the
particle swarm global search method, the final values of the
parameters were obtained using the “nlinfit” function. From
the results of this function, the 95% confidence intervals
(CI95) were determined using the function “nlparci.”

In order to potentially achieve a global optimumwith the
resulting parameter set, the estimation procedure was started
from several initial coordinates in the parameter space. Dur-
ing parameter estimation, the averagemeasurement results of
both protocols were used to capture the qualitatively different
response of the system to different inputs. Table 2 summarizes
the model parameters. These parameters are to be referenced
as nominal parameters in the further discussion and are
denoted as 𝜃𝑛𝑜𝑚.

In addition, to quantify parameter variance in the context
of single trajectories, the model was fitted also for single
growth curves as described in the Appendix.

Most estimated parameters of the model are hard to mea-
sure individually (in fact some of them are only interpreted
inside the framework of this model) and no data are available
on them which could serve as basis for comparison.

3. Results and Discussion

3.1. Fitting the Model to Measurement Data. In this subsec-
tion, we compare the model behavior and parameter values
to measurement data. Figure 3 shows the fit of the model
simulation output (total volume) to the experimental data
sets that were used for the parameter estimation (therapy 1
and therapy 2). As it can be seen in the figures, the model
sufficiently reproduces themeasured growth trajectories, and
the better fit is achieved in the case of therapy 2. For the
sake of clarity, we note that since the average curve of
measurement results was used for parameter estimation, the
number of mice used in the experiments did not influence
the objective function (in other words, this is not the reason
for better fit in the case of therapy 2). To quantify the fit, we
introduce the normalized squared deviation (NSD) as

𝑁𝑆𝐷 = ∑𝑡𝑆 (𝑉𝑡𝑜𝑡 (𝑡𝑆) − 𝑉𝑀𝑡𝑜𝑡 (𝑡𝑆))2󵄨󵄨󵄨󵄨𝑡𝑠󵄨󵄨󵄨󵄨
(16)

where 𝑉𝑡𝑜𝑡 is the simulated total volume (𝑉𝑡𝑜𝑡 = 𝑉 + 𝑁)
and 𝑉𝑀𝑡𝑜𝑡 is the measured total volume. 𝑡𝑆 stands for the set
of sample times, corresponding to days 3, 5, 7, 9, 11, 13, 15,
17, 19, and 21 in this case, while |𝑡𝑆| denotes the number
of sample days. Normalization by the number of days is
required, because we will use this measure later as well in the
case of experimental data, where the number of sample points
is lower. According to this measure, the representative values
are 𝑁𝑆𝐷𝑇1 = 5.5614 ⋅ 105 and 𝑁𝑆𝐷𝑇2 = 6.0609 ⋅ 104𝑚𝑚6 in
the case of therapy 1 and therapy 2, respectively.
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Table 2: Nominal model parameters (𝜃𝑛𝑜𝑚) and their dimension, source, and 95% confidence interval (CI95). PE stands for parameter
estimation.

Notation Dimension Value Source CI95
𝑐𝑔 1

𝑑𝑎𝑦 1.4353 PE [1.4252 1.4455]
[𝐵]𝑖𝑑 - 0.0388 PE [0.0383 0.0393]
𝑐𝑒V - 1.1586 ⋅ 10−3 PE [1.1548 1.1624] ⋅ 10−3
𝑐𝑛 1

𝑑𝑎𝑦 0.0941 PE [0.0934 0.0947]
𝑐V 𝑚𝑙

𝑚𝑔 𝑠 11.6690 PE [11.6060 11.7320]
𝑐𝑇 𝑚𝑔

𝑚𝑙 𝑠 1.1377 ⋅ 10−2 PE [1.1330 1.1423] ⋅ 10−2
𝑞𝑇 1

𝑑𝑎𝑦 0.2473 PE [0.2466 0.2480]
𝑐ℎ 𝑚𝑔

𝑚𝑙𝑚𝑚3 𝑠 0.1633 PE [0.1628 0.1637]
𝐸𝐷50 𝑚𝑔

𝑚𝑙 5 ⋅ 10−5 [48] -

𝑞𝐼 1
𝑑𝑎𝑦 0.5776 [49] -

𝑘𝐼 𝑚𝑔
𝑚𝑙 0.4409 [28] -
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Figure 3: Measured and simulated tumor volumes in the case of therapy 1 (a) and therapy 2 (b).
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The possible reason for the better fit in the case of
the quasi-continuous therapy may be that the average of
the measurements provides a more smooth, exponential-
like curve in this case, which was possibly more easy to be
achieved by the model.

The final volume of the tumor according to simulation
results is 6670mm3 in the case of therapy 1 and 3993mm3 in
the case of therapy 2. Considering the data described in Sec-
tion 2.2, the final average measured volumes (corresponding
to day 21) were 6604 and 3257mm3 in the cases of therapy 1
and therapy 2, respectively.

3.2. Model Validation

3.2.1. Qualitative Validation. In this subsection, we analyze
and compare the dynamic behavior of key model variables in
the cases of no therapy, therapy 1, and therapy 2 defined in
Section 2.2.

Figure 4 depicts the trajectory of 𝛾 and 𝑟V in the various
cases.

In general, it can be said that, in the beginning, when the
tumor is small, due to the high ratio of periphery cells, 𝛾 (i.e.,
the ratio of the well-supported tumor cells) is high. However,
as the tumor grows, the ratio of peripherial cells and so 𝛾 also
decrease.The trajectories of the various cases differ only after
day 6. The reason for this is that the process of angiogenesis
becomes significant only if a large part of unsupported cells
and TAF is already present, and the inhibition of the process
becomes important only in this period. This is also shown
in Figure 4(b), where it can be seen that the various cases
regarding the vascularization ratio (𝑟V) differ only after day
6. Furthermore, it can be seen in Figure 4 that both 𝛾 and𝑟V remain in the range [0, 1] as assumed during the model
formulation. Figure 5 depicts the inhibitor concentration
in the cases of therapy 1 and therapy 2 (in the case of no
therapy, the inhibitor concentration is constant zero during
the simulation). It can be seen in the figure that, in the case
of therapy 1, the concentration is several orders of magnitude
higher compared to therapy 2.

Figure 6 depicts the concentration of TAF (𝑇) and the
term 𝑐V𝑇𝐵 of (3) (corresponding ot TAF-dependent vascular-
ization) in response to the various levels of the inhibitor in
the case of different therapies.

In this figure (Figure 6(a)), it can be seen that the
concentration of TAF (𝑇) around days 3-8 is almost the
same in the case of therapy 1 and therapy 2, although the
concentration of the inhibitor (𝐼) differs on the orders of
magnitude. The explanation for this is the effective median
dose (𝐸𝐷50) of the inhibitor, which defines the inhibitor level
at which the effect of the drug saturates. We have to note
that this parameter was not subject to estimation but it was
taken from the article [48]. Figure 6(b) depicts that from the
time when the large bolus has been cleared in the case of
therapy 1 (aroundday 13), theTAF-dependent vascularization
(TdV) becomes significantly different in the case of the two
therapies.

Since the volume trajectories of the model follow an
exponential-like fashion in all cases, they are maybe not so

Table 3: Simulated and measured average total volumes on day 21
(mm3).

Therapy 𝑉𝑡𝑜𝑡(21) 𝑉𝑀𝑡𝑜𝑡(21)
No therapy 1.03⋅104 No data
Therapy 1 6.67⋅103 6.60⋅103
Therapy 2 3.99⋅103 3.26⋅103

Table 4: Simulated and measured average total volumes on day 19
(mm3).

Therapy 𝑉𝑡𝑜𝑡(19) 𝑉𝑀𝑡𝑜𝑡(19)
No therapy 4.68⋅103 6.15⋅103
Therapy 1 3.10⋅103 4.44⋅103
Therapy 2 2.13⋅103 2.03⋅103

informative as, for example, the plot of 𝛾, but for the sake of
completeness, they are depicted in Figure 7.

3.2.2. Validation against Measurement Data with NoTherapy.
In phase I of the experiments described in [8], the experimen-
tal animals received no treatment. In this case, the length of
the experiment was only 19 days (compared to 21 days in all
other experiments discussed before and depicted in Figure 2).
The measurement data originating from this experiment was
used to validate the model. Figure 8 shows the results of the
model validation.

The measure of the fit introduced in (16) gives a value of𝑁𝑆𝐷𝑁𝑇 = 1.5451 ⋅ 106mm6 in this case (the lower index
corresponds to “no therapy”). If one compares this value to
the NSD values corresponding to the experimental data to
which the model was fitted (see Section 3.1), or examines the
figures, it can be seen that the error of the fit is one order of
magnitude higher in this case (since the no-therapy case was
not considered during parameter estimation). On the other
hand, taking into account the significant variation among
experimental animals aswell, the themodel output in the case
of no therapy provides an acceptable fit with measurement
data.

3.2.3. Validation regarding Final Tumor Volume Values in
Various Cases. As in control applications, for which the
current model is primary proposed, the usual aim is to
minimize the final volume of the tumor (under, e.g., con-
straints corresponding to the total applied drug quantity); it
is important to compare the final tumor sizes. As the final day
of the experiments was different in the no-therapy case and
therapies 1 and 2, Tables 3 and 4 summarize the simulated and
measured tumor volumes on days 19 and 21.

For the sake of comparison to previous literature results,
let us note that the simulated volume on day 19 assuming no
therapy is 1.85 ⋅ 104 in the case of the model described in
[28] (this value has been obtained by the reproduction of the
model described in [28]). Comparing the differences of the
values, we may say that the validity of the proposed model
compared to [28] is significantly better regarding the final
volume in the no-therapy case.
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Figure 4: (a) Ratio of the well-supported tumor cells (𝛾) in the case of various therapies; (b) vascularization ratio (𝑟V) in the case of various
therapies.
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Figure 5: Concentration of the inhibitor (𝐼) in the case of various therapies on two different scales.

3.3. Model Identifiability. In the following two subsections,
we present some results related to the parameter sensitivity
and structural identifiability of the proposed model.

3.3.1. Parameter Sensitivity of the Model. In this subsection,
we analyze the parameter sensitivity of the model for the
estimated parameters.The sensitivity analysis is an important
tool to characterize how the model parameters affect the
simulation output. The presence of very large differences in
the sensitivities of parameters may point to identifiability
problems.

In order to formalize this analysis, we define the sensitiv-
ity measure detailed in the following equation:

𝑆 (𝜃) = ∫𝑇
0

(𝑉𝑡𝑜𝑡 (𝑡, 𝜃𝑛𝑜𝑚) − 𝑉̂𝑡𝑜𝑡 (𝑡, 𝜃))2
𝑇 𝑑𝑡 (17)

In (17), 𝜃𝑛𝑜𝑚 denotes the nominal parameter vector
detailed in Table 2, while 𝜃 denotes a perturbed parameter
vector. 𝑉𝑡𝑜𝑡(𝜏, 𝜃𝑛𝑜𝑚) and 𝑉̂𝑡𝑜𝑡(𝜏, 𝜃) stand for the nominal
output (𝑉𝑡𝑜𝑡(𝑡)) of the model and for the output in the case
of the perturbed parameter vector, respectively.
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Figure 6: (a) Concentration of TAF (𝑇) in the case of various therapies; (b) TAF-dependent vascularization (TdV) in the case of different
therapies.

No-Therapy Case. Table 5 summarizes the results in the
no-therapy case. Each row of this table corresponds to a
𝜃 perturbed parameter vector, in which only one element
differs from the nominal 𝜃 vector (by 20, 10, or 5%).

First, it is conspicuous that the sensitivity to the parameter𝑐ℎ is zero in this case. The explanation for this is that
this parameter corresponds to the effect of the angiogenic
inhibitor (𝐼), the concentration ofwhich is constantly 0 in this
case. In other words, there is no drug effect in this case, the
dynamics of which are affected by this parameter.

Second, we can see in Table 5 that the sensitivity for𝑐V is equal to the sensitivity of 𝑐𝑇 in the no-therapy case.
The reason for this is that while 𝑐𝑇 corresponds to the
synthesis rate of TAF, 𝑐V corresponds to the rate of TAF-
dependent vascularization. If no inhibitor is present, there is
no difference between an increase in the TAF concentration
and a more efficient TAF-driven vascularization (see (3) and
(4)). Let us note that if the inhibitor is present, not the whole
portion of the synthetized TAF takes part in the blood vessel
formation process (since some molecules are binding to the
inhibitor); thus the situation is different if input (thus nonzero
drug concentration) is also present.

Third, themodel is themost sensitive to the parameter 𝑐𝑔.
This is not surprising, as 𝑐𝑔 directly affects the dynamics of 𝑉
(see (1)) as a proportional term, so its effect in 𝑉, which is
directly present in the output, is exponential. Apart form 𝑐ℎ,𝑞𝐼, and 𝑘𝑉, the model shows the least sensitivity to 𝑐𝑛, the rate
of necrosis.

Therapy 1. Table 6 shows that the model sensitivity for 𝑐ℎ,
the parameter corresponding to the effect of the inhibitor, is
relatively low.

Table 7 shows that, in the case of therapy 2, an extreme
high sensitivity is experienced in the case of the increase of

parameter 𝑐𝑔. Moreover, the sensitivity to 𝑞𝐼 is also signifi-
cantly decreased. As the injections and thus the concentra-
tions of the inhibitor (𝐼) are by 2 orders of magnitude lower
compared to therapy one (see Figure 5), it is plausible that the
exact value of its clearance parameter (𝑞𝐼) has a significantly
less effect on the dynamics of the model compared to therapy
1, where a large dose is applied.

Apart from this, the results are similar to the case of
therapy 1.

Altogether, based on the results of the sensitivity analysis,
it can be said that further experiments focusing solely
on pharmacokinetics of the applied drugs are desirable
to estimate the parameter 𝑐ℎ decoupled from other model
parameters.

3.3.2. Structural Identifiability. Structural identifiability
properties of a system describe whether there is a theoretical
possibility for the unique determination of systemparameters
from appropriate input-output measurements or not. It is
important to emphasize that identifiability is a property
of the model structure. Basic early references for studying
identifiability of dynamical systems are [50, 51]. Since the
introduction of this concept, multiple approaches have been
proposed for the analysis of structural identifiability of
various nonlinear system classes, for example, polynomial
systems [52] or rational function state-space models [53]. A
critical comparison of methods for identifiability analysis is
described in [54].

First, let us note that as our model uses the variable [𝐵] =𝐵/𝑉 describing vasculature density, our model falls into the
class of rational function state-space models.

Second, let us consider the factors that make the
structural identifiability analysis challenging in our case.
Structural identifiability methods usually rely on iterative
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Figure 7: Volume trajectories of the model (living volume 𝑉, unsupported volume 𝑉𝑢, necrotic volume 𝑁, and total volume 𝑉𝑡𝑜𝑡,
corresponding to subfigures (a), (b), (c), and (d), resp.) in the case of various therapies.

Table 5: Sensitivities (𝑆) of the model to the changes of parameters [𝐵]𝑖𝑑, 𝑐𝑔, 𝑐𝑒V, 𝑐𝑛, 𝑐V, 𝑐𝑇, 𝑞𝑇, 𝑐ℎ, 𝑞𝐼, and 𝑘𝑉 in the no-therapy case. One unit
is 106mm3.

-20% -10% -5% +5% +10% +20%
[𝐵]𝑖𝑑 0.1321 0.0240 0.0052 0.0040 0.0143 0.0462
𝑐𝑔 0.4715 0.1601 0.0467 0.0640 0.2996 1.6456
𝑐𝑒V 0.0653 0.0173 0.0044 0.0047 0.0193 0.0821
𝑐𝑛 0.0072 0.0017 0.0004 0.0004 0.0016 0.0061
𝑐V 0.2287 0.0769 0.0224 0.0309 0.1454 0.8147
𝑐𝑇 0.2287 0.0769 0.0224 0.0309 0.1454 0.8148
𝑞𝑇 0.5561 0.0868 0.0176 0.0120 0.0405 0.1185
𝑐ℎ 0 0 0 0 0 0
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Table 6: Sensitivities (𝑆) of the model to the changes of parameters [𝐵]𝑖𝑑, 𝑐𝑔, 𝑐𝑒V, 𝑐𝑛, 𝑐V, 𝑐𝑇, 𝑞𝑇, 𝑐ℎ, 𝑞𝐼, and 𝑘𝑉 in the case of therapy 1. One unit
is 106mm3.

-20% -10% -5% +5% +10% +20%
[𝐵]𝑖𝑑 0.2926 0.0525 0.0114 0.0086 0.0305 0.0975
𝑐𝑔 0.9383 0.3259 0.0962 0.1353 0.6422 3.6265
𝑐𝑒V 0.1375 0.0368 0.0095 0.0102 0.0420 0.1807
𝑐𝑛 0.0181 0.0043 0.0011 0.0010 0.0039 0.0149
𝑐V 0.4498 0.1518 0.0442 0.0611 0.2889 1.6242
𝑐𝑇 0.4594 0.1559 0.0456 0.0634 0.3011 1.7086
𝑞𝑇 0.9364 0.1493 0.0305 0.0213 0.0720 0.2128
𝑐ℎ 0.0100 0.0023 0.0005 0.0005 0.0019 0.0069

Table 7: Sensitivities (𝑆) of the model to the changes of parameters [𝐵]𝑖𝑑, 𝑐𝑔, 𝑐𝑒V, 𝑐𝑛, 𝑐V, 𝑐𝑇, 𝑞𝑇, 𝑐ℎ, 𝑞𝐼, and 𝑘𝑉 in the case of therapy 2. One unit
is 107mm3.

-20% -10% -5% +5% +10% +20%
[𝐵]𝑖𝑑 0.1304 0.0230 0.0050 0.0038 0.0131 0.0415
𝑐𝑔 0.4012 0.1422 0.0427 0.0620 0.3015 1.7891
𝑐𝑒V 0.0582 0.0157 0.0041 0.0044 0.0185 0.0798
𝑐𝑛 0.0090 0.0021 0.0005 0.0005 0.0019 0.0072
𝑐V 0.1232 0.0402 0.0116 0.0155 0.0722 0.3971
𝑐𝑇 0.1332 0.0448 0.0131 0.0179 0.0859 0.4902
𝑞𝑇 0.1690 0.0288 0.0061 0.0045 0.0154 0.0473
𝑐ℎ 0.0135 0.0030 0.0007 0.0006 0.0023 0.0081

computation of (Lie-) derivatives of the output (see, e.g., [55],
on which the software used later is based).

For identifiability analysis, let us consider a reduced
version of the proposed model, which assumes no input (no
antiangiogenic drug is present). The simplified form of the
model is described by (18)-(21). As we will see, this submodel
already poses a challenge regarding identifiability due to the
complexity of the resulting equations.

𝑑𝑉
𝑑𝑡 = 𝑐𝑔𝛾𝑉 − 𝑐𝑛 (1 − 𝛾)𝑉 (18)

𝑑𝑁
𝑑𝑡 = 𝑐𝑛 (1 − 𝛾)𝑉 (19)

𝑑𝐵
𝑑𝑡 = 𝑐𝑒V𝑐𝑔𝛾𝑉 + 𝑐V𝑇𝐵 (20)

𝑑𝑇
𝑑𝑡 = 𝑐𝑇 (1 − 𝛾) − 𝑞𝑇𝑇 (21)

In this case, if only the total volume may be measured
(as in the case of our measurements used for the parameter
estimation),

𝑦 = 𝑉𝑡𝑜𝑡 = 𝑉 + 𝑁
̇𝑦 = 𝑉̇ + 𝑁̇ = 𝑐𝑔𝛾𝑉 (22)

If we consider further derivatives,

̈𝑦 = 𝑐𝑔 ( ̇𝛾𝑉 + 𝑉̇𝛾) (23)

where

𝛾 = (1 − 𝑟V) 𝑓𝑃 (𝑉𝑡𝑜𝑡) + 𝑟V = (1 − 𝑟V) 𝑓𝑃 (𝑉𝑡𝑜𝑡) + 𝑟V (24)

([𝐵]𝑖𝑑 − [𝐵]
[𝐵]𝑖𝑑 )𝑓𝑃 (𝑉𝑡𝑜𝑡) + (1 − [𝐵]𝑖𝑑 − [𝐵]

[𝐵]𝑖𝑑 ) (25)

It is easy to se that, in ̇𝛾, on one hand, the derivative of
the function 𝑓𝑃(𝑉𝑡𝑜𝑡) appears, and, on the other hand, the
derivative of [𝐵] = 𝐵/𝑉 is also present. These are long
and complicated expressions, the higher-order derivatives of
which are needed in the further steps.

Based on the above considerations, for the structural
identifiability analysis, we use the freely available GenSSI
[56, 57] software, which is able to handle complex expressions
with the help of computer-algebra methods. GenSSI imple-
ments iteratively the generating series method, as presented
in [58], with the help of identifiability tableaus, as described
in [55].

According to the results of this software, the parameter 𝑐𝑔
of the model is structurally globally identifiable, but neither
positive (structural global/local identifiability) nor negative
(structural nonidentifiability) results are obtained for other
parameters. This result is based on 7𝑡ℎ-order Lie-derivatives,
which has been proven to be the computational limit in our
case.

Nevertheless, let us discuss this topic a bit further
from the point of view of possible future measurements
with regard to the proposed model. In the recent years,
multiple imaging techniques have been developed, which
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Figure 8: Measured and simulated tumor volumes in the case of no
therapy.

allow the 3D reconstruction of vascular microstructures:
Doppler optical frequency domain imaging [29] and func-
tional photoacoustic microscopy [30] are used today already
in in vivo setups to map vascular networks, while dif-
fusible iodine-based contrast-enhanced computed tomog-
raphy [31] may be used in terminal experimental ani-
mals.

If these methods will be applicable in the case of
animals used in the experiments, total tumor volume 𝑉𝑡𝑜𝑡
will be accessible during measurements together with the
total vasculature volume 𝐵. Interpreted for our case, this
will mean that we will have two observables 𝑦1 = 𝑉𝑡𝑜𝑡
and 𝑦2 = 𝐵. If we rerun the structural identifiability
analysis with this new model output, we get the result that
𝑐𝑔, 𝑐𝑒V, [𝐵]𝑖𝑑, and 𝑐𝑛 are structurally globally identifiable
(and no result is obtained for other parameters, similar
to the previous case, so they might be or might be not
identifiable). In this case, the maximum order of the Lie-
derivatives, for which the computation was feasible, was the
6𝑡ℎ order.

The complete identifiability tableaus of the reducedmodel
are depicted in Figure 9. For the interpretation of these
tableaus, see [55] or the GenSSI UserGuide [56].

Based on the above, it may be suspected that the model
will have beneficial properties shall it be fitted for measure-
ments planned to be carried out in the foreseeable future.

3.4. Extension of the Model in order to Account for Combined
Therapy. In the clinical practice, antiangiogenic drugs are
often used together with conventional cytotoxic substances.
In this setup, while the cytotoxic agent enhances the degen-
eration/necrosis of tumor cells, the antiangiogenic drugs are
resposible for cutting the tumor from metabolic support via
the inhibition of angiogenesis. Several results have been pub-
lished recently corresponding to these combined therapies
[59, 60].

Models with predictive power regarding the efficiency of
combined therapies and model-based optimization of such
treatments are not prevalent in literature. Some initial results
on the optimization of combined therapies are described in
[61], using the model of [35].

As the proposed model is taking into account vasculature
and tumor cell dynamics in a differentiated way, it is able to
distinguish between qualitatively different inputs related to
different therapeutic agents. As a consequence, the proposed
modelmay be easily extended to consider not only angiogenic
drugs but also cytotoxic drugs. Let us consider the following
modified state-space model described in the following equa-
tions:

𝑑𝑉
𝑑𝑡 = 𝑐𝑔𝛾𝑉 − 𝑐𝑛𝑉𝑢 − 𝑐𝑐𝐶𝑉

𝐾𝐶 + 𝑉 (26)

𝑑𝑁
𝑑𝑡 = 𝑐𝑛𝑉𝑢 + 𝑐𝑐𝐶𝑉

𝐾𝐶 + 𝑉 (27)

𝑑𝐵
𝑑𝑡 = 𝑐𝑒V𝑉̇𝑡𝑜𝑡 + 𝑐V𝑇𝐵 (28)

𝑑𝑇
𝑑𝑡 = 𝑐𝑇𝑉𝑢𝑉 − 𝑞𝑇𝑇 − 𝑐ℎ 𝑇𝐼

𝐸𝐷50 + 𝐼 (29)

𝑑𝐼
𝑑𝑡 = 𝑢1 − 𝑞𝐼 𝐼

𝑘𝐼 + 𝐼 − 𝑘𝑉𝑐ℎ 𝑇𝐼
𝐸𝐷50 + 𝐼 (30)

𝑑𝐶
𝑑𝑡 = 𝑢2 − 𝑞𝐶𝐶 (31)

First, the new equation (31) describes the time evolution
of the cytotoxic drug, the injection of which is described
by the term 𝑢2. To clarify notations, the injection of the
angiogenic inhibitor is denoted by 𝑢1 in this case. The
term 𝑞𝐶𝐶 describes the clearance of the cytotoxic drug; the
parameter 𝑞𝐶 denotes its clearance rate. In this case, we
assume a simple clearance (no saturation dynamics). The
reason for this is on one hand that this approach requires
less parameters, and on the other hand as long as the exact
identity of the cytotoxic drug is unknown, the dynamical
features of its clearance can not be precisely determined (of
course the clearance dynamics may be later refined).

The effect of the cytotoxic drug is modeled in this case as
an enzymatic reaction, in which the cytotoxic drug acts as an
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Figure 9: Complete identifiability tableaus of the reduced model in the case when the output is 𝑉𝑡𝑜𝑡 (a) and in the case when the output is[𝑉𝑡𝑜𝑡, 𝐵] (b).

enzyme, turning living cells to necrotic cells.Thismechanism
is described by the term

− 𝑐𝑐𝐶𝑉
𝐾𝐶 + 𝑉 (32)

in (26) and by the complementary term

𝑐𝑐𝐶𝑉
𝐾𝐶 + 𝑉 (33)

in (27). 𝑐𝑐 and 𝐾𝐶 are new parameters describing the effi-
ciency of the cytotoxic drug in enzymatic context assuming
Michaelis-Menten kinetics.

This way the effects of the two drugs are considered in
qualitatively different ways in the model. While the antian-
giogenic drug acts explicitly on the formation of new blood
vessels by binding to TAF and thus inhibiting angiogenesis,
the cytotoxic drug acts as an enzyme, driving living tumor
cells to necrosis, independent of the actual vascular state of
the tumor.

4. Conclusions and Future Work

In this article, we formulated a dynamic model of vascular
tumor growth, which accounts for the vasculature and TAF
concentration development of the tumor and thus is able
to reproduce the phenomenon of the angiogenic switch.
We validated the model against volume measurement data
originating from experiments on mice and found that the
model provides a good fit for tumor volume data in both
cases of the two analyzed therapies. The extension of the
model described in Section 3.4 makes the model capable of
accounting for qualitatively different effect of antiangiogenic
and cytotoxic drugs.

When comparing the proposed model to literature
results, we may state the following. Regarding the model in

[28] (considering the extended model described therein), the
proposed approach uses more state variables (5 vs 3) and
holdsmore parameters (12 versus 8) but describes vasculature
dynamics as well. This feature will allow us to fit the model
to dynamical vasculature data, hopefully available in the
foreseeable future, and thus get a more precise dynamical
representation of angiogenesis-dependent tumor growth and
its inhibition. Furthermore, the validity of the proposed
model compared to [28] seems better regarding the no-
therapy case.

Comparing the model described in the current article
to [35], we see that although the model described in [35]
accounts for vasculature dynamics as well, it uses more state
variables (7 versus 5) and significantly more parameters (22
versus 12). Furthermore, the model in [35] was fitted only
for measurement data originating from protocol 1, while the
proposed model has been validated against both protocol 1
and protocol 2. Similar to the model described in [35], the
model proposed in the current article also allows for the
analysis of combined therapies, as done in the article in [61].

Regarding future work, in the framework of the project
Tamed Cancer (ERC grant agreement number 679681),
animal experiments (mice) aiming to characterize the vas-
culature development during tumor growth are planned in
the near future. These experiments will provide reference
data for both vasculature volumes and tumor volumes,
so we will be able to fit the model in either dimension
against experimental data. This will allow further validation,
refinement, or recalibration of the model.

Experiments regarding the efficiency of various com-
bined therapies are also expected in the future, which will
serve as reference scenarios regarding the identification of the
extended model described in Section 3.4.

Once the model is identified and validated frommultiple
aspects, studies on therapy optimization in open-loop and
closed-loop setup will take place.
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Figure 10: Fitting the model to individual trajectories in the case of therapy 1: simulated output (with the parameters obtained from fitting
the model to the specific trajectory (𝜃𝑎𝑘𝑡), simulated output with nominal parameters (𝜃𝑛𝑜𝑚), and measured output.)
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Figure 11: Fitting the model to individual trajectories in the case of therapy 2: simulated output (with the parameters obtained from fitting
the model to the specific trajectory (𝜃𝑎𝑘𝑡), simulated output with nominal parameters (𝜃𝑛𝑜𝑚), and measured output.)

Appendix

In this appendix, we detail the fitting of the model to the
individual trajectories corresponding to single mice in the
case of either therapy 1 or therapy 2. 𝑉0 = 5 was assumed in
all cases. Figures 10(a)–10(e) depict the fit of themodel output
(𝑉𝑡𝑜𝑡) to the individual measured growth trajectories in the
case of therapy 1, while Figures 11(a)–11(i) depict the fit of the

model output to the individual measured growth trajectories
in the case of therapy 2.

In every case, the simulated output assuming the nominal
parameters detailed in Table 2 is also depicted to serve as
basis of comparison. Tables 8 and 9 summarize the parameter
values resulting in the case of fitting to individual trajectories
in the case of therapy 1 and therapy 2, respectively.
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Table 8: Model parameter values resulting from fitting to individual trajectories in the case of therapy 1 (mice C1-C5).

Parameter C1 C2 C3 C4 C5 Scale
[𝐵]𝑖𝑑 0.0336 0.0127 0.0289 0.0374 0.0246
𝑐𝑔 1.4336 1.4454 1.55 1.435 1.4154
𝑐𝑒V 1.4403 1.9642 1.4604 2.2084 1.2167 10−3
𝑐𝑛 0.0838 0.1684 0.0737 0.0739 0.0791
𝑐V 4.4337 5.5455 10.2252 4.4032 4.4909
𝑐𝑇 1.8021 0.5612 0.7111 1.9291 1.4795 10−2
𝑞𝑇 0.2762 0.3917 0.2517 0.1173 0.3162
𝑐ℎ 0.1995 0.1637 0.1701 0.2114 0.1369

Table 9: Model parameter values resulting from fitting to individual trajectories in the case of therapy 2 (mice E1-E9).

Par. E1 E2 E3 E4 E5 E6 E7 E8 E9 Scale
[𝐵]𝑖𝑑 0.0322 0.0393 0.0331 0.0184 0.039 0.0179 0.0422 0.0223 0.0331
𝑐𝑔 1.622 0.9568 1.436 1.433 1.408 1.442 1.634 1.609 1.432
𝑐𝑒V 1.463 2.01 1.373 2.026 1.195 2.004 1.173 0.9805 0.6332 10−3
𝑐𝑛 0.0933 0.0552 0.1056 0.0567 0.0618 0.1236 0.0933 0.0425 0.1056
𝑐V 17.34 18.67 18.08 18.66 18.66 18.08 18.08 18.65 18.08
𝑐𝑇 0.444 0.6039 0.4612 0.4512 0.923 0.1138 0.6959 0.335 0.9693 10−2
𝑞𝑇 0.2834 0.2657 0.4071 0.3201 0.3063 0.4105 0.3123 0.3311 0.4066
𝑐ℎ 0.2449 0.1011 0.2605 0.2546 0.259 0.2496 0.1749 0.2643 0.2603

Table 10: Standard deviation (STD) of the estimated parameters,
regarding fitting to individual trajectories compared to their nomi-
nal value in %.

Parameter STD (%)
𝑐𝑔 10.96
[𝐵]𝑖𝑑 23.40
𝑐𝑒V 39.60
𝑐𝑛 33.33
𝑐V 52.64
𝑐𝑇 47.20
𝑞𝑇 31.40
𝑐ℎ 32.57

Table 10 holds the standard deviation (STD) values of
the estimated parameters obtained by fitting the model
to individual trajectories. Let us emphasize that, in the
case of these estimates, only one of the protocols was
considered for the fitting, namely, the one from which the
actual trajectory originates. Naturally, it is a significantly
harder task to find a parameter set for the model which
describes the response to both protocols simultaneously (as
in Table 2). Parameters obtained by fitting to single volume
trajectories are potentially unable to appropriately describe
the response to the two protocols at the same time. The
relatively high STD values are not surprising in the light of
the significant differences among individual tumor growth
trajectories.
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Supplementary Materials

simulate MMAGS.m is the file that performs the simulation
of the model in MATLAB; it uses the following files:
inj fnc prot 1 discrete.m, description of the injection
function in the case of therapy 1; inj fnc prot 2 discrete.m,
description of the injection function in the case
of therapy 2; f gamma.m, implementation of the
function \gamma detailed in the article (see (7)).
sim tumor dynamics MMAGS 2 discrete.m is one central
file that calls simulate MMAGS.m; it has two important input
parameters, flag plot details, may be 0 or 1, if it is one, more
figures are generated, protocol - can be 0, 1 or 2 depending
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on the actual simulated protocol (therapy); it depicts the
simulation results and compares them with experimental
data (Figure 3 in the manuscript). Experimental data is
defined inside the file. Corresponding to protocol 1, the
variable “adatsor” holds the vector of the experimental data.
Corresponding to protocol 2, the variable “adatsor 2” holds
the vector of the experimental data. In both cases, the data
corresponding to various mice are integrated in one vector
(see its decomposition later in the file. In the case of protocol
1, the variable sote data holds the decomposed version; in
the case of protocol 2, the variables “Eger1” and so forth hold
the decomposed data). sim compare discrete 1.m performs
the simulations in the case of no therapy, protocol 1, and
protocol 2 and depicts the results corresponding to the 3
different cases in figures (Figures 4–7 in the manuscript).
(Supplementary Materials)
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