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We present a novel loss function, namely, GO loss, for classi�cation. Most of the existing methods, such as center loss and contrastive
loss, dynamically determine the convergence direction of the sample features during the training process. By contrast, GO loss de-
composes the convergence direction into two mutually orthogonal components, namely, tangential and radial directions, and conducts
optimization on them separately.�e two components theoretically a�ect the interclass separation and the intraclass compactness of the
distribution of the sample features, respectively. �us, separately minimizing losses on them can avoid the e�ects of their optimization.
Accordingly, a stable convergence center can be obtained for each of them. Moreover, we assume that the two components follow
Gaussian distribution, which is proved as an e�ective way to accurately model training features for improving the classi�cation e�ects.
Experiments on multiple classi�cation benchmarks, such as MNIST, CIFAR, and ImageNet, demonstrate the e�ectiveness of GO loss.

1. Introduction

In recent years, deep neural networks have achieved great
success [1, 2], and classi�cation tasks have been widely used
in various �elds [3–6]. Loss function is an indispensable part
of deep learning; various kinds of loss functions, such as
MSE and BCE, are available for di�erent tasks, including
image-based object recognition [7–9], face recognition
[10–12], and speech recognition [13, 14].�e performance of
loss functions has been widely studied [15, 16]. A good loss
function should theoretically make the distribution of fea-
tures of di�erent classes separated while ensuring the fea-
tures of the same class as compact as possible.

Among the existing loss functions, soft-max cross-en-
tropy is the most common [9, 17–19]. However, soft-max
only ensures the separability of the features of di�erent
classes while lacking the ability to compress distances among
features within the same class. As a result, the distances
between features of di�erent classes are less than those of the
same class, as shown in Figure 1(a).

Several variants have been proposed to improve the
intraclass compactness of soft-max. Some metric learning
methods are used to promote the classi�cation e�ectively
[20–22]. �ese studies attempt to resolve this problem
through feature normalization [23, 24] or adding an extra
regularization item to construct a joint supervision [25–28].
In these studies, the stochastic gradient descent algorithm
has been widely used. �is algorithm can determine a
convergence direction in each iteration on the ¢y, depending
on the network parameters and training samples at the time.
�e feature as a vector can be decoupled into two com-
ponents, namely, direction and norm. �eoretically, the two
components determine the interclass separability and
intraclass compactness of the distribution of the sample
features, respectively. �erefore, if we treat the feature as a
whole, as what the existing works do, then the optimizations
of the two components will be intertwined. �erefore, the
computation of the convergence center has to simulta-
neously consider the two components, which will interfere
with each other and thus a�ect the �nal classi�cation e�ects.
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In this paper, we propose an orthogonal decomposition-
based loss function called GO loss, which decomposes the
convergence direction into two mutually orthogonal com-
ponents. Moreover, we assume that the two components
follow Gaussian distribution. Speci�cally, the norm of the
feature in the radial direction follows Gaussian distribution,
while the angles (cosine value) between the features and the
corresponding center vector (class weight vector) of the class
in tangential direction also follow Gaussian distribution. �is
assumption enables the use of Bayes’ rule in loss computation,
which is an e�ective manner to model training features. We
can therefore (1) model the classi�cation loss as the cross
entropy between the posterior probability of features and the
corresponding class labels in tangential direction, called tan-
gential loss, and (2) compute the di�erence between the norm
of feature distribution and the assumed distribution in radial
direction using the negative log likelihood, called radial loss.
�e two losses can be used to form a joint supervision for
balancing interclass separability and intraclass compactness on
the learned training feature space; thus, a high classi�cation
accuracy can be ensured, as shown in Figure 1.

In summary, the main contribution of the paper is a
novel loss function for classi�cation, namely, GO loss, which
integrates the following:

(i) A strategy to optimize loss function through
decomposing the convergence direction into two
mutually orthogonal components and conducting
optimization on them, respectively. �is approach is
di�erent from most traditional methods that mainly
rely on feature normalization and adding regulari-
zation item. �e rationale is to avoid the mutual
in¢uence of the optimizations on the two compo-
nents for obtaining a stable convergence center.

(ii) A solution that implements the optimization. �is
solution decouples the feature into direction and
norm associated with the interclass separability and
intraclass compactness, respectively, and conduct
optimizations on the two components with the as-
sumption that they follow Gaussian distribution.

2. Related Works

For various classi�cation tasks, the loss function directly
a�ects the classi�cation e�ect [29–31]. In the existing
methods, metric learning is widely used in the loss function
to improve the classi�cation e�ect [32–34]. �e idea of GO
loss is based on existing loss functions. We highlight the
most related aspects below.

Soft-max is one of the most common loss functions in
classi�cation. It uses the inner product metric to implement
the classi�cation function. However, loose intraclass feature
distribution brings di¤culty in handling complex classi�-
cation problems. Many other metrics, such as Euclidean and
cosine distances, have been used to resolve the aforemen-
tioned problem. �us, many variants of soft-max are
available.

Contrastive loss [25] uses a prede�ned margin to train a
Siamese network for face recognition. It minimizes the
Euclidean distances between positive pairs and enlarges the
Euclidean distances between negative face image pairs.
However, the combinatorial explosion problem of image
pairs will greatly increase the number of iterations.

Triplet loss [26] applies Euclidean distance regulariza-
tion for loss optimization. �e regularization is conducted
on image triplets rather than the image pairs of contrastive
loss to achieve a high accuracy of face recognition. However,
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Figure 1: Distributions of the features trained using (a) soft-max and (b) GO loss on MNIST. Each color represents a class. �e GO loss has
better intraclass compactness and interclass separation than traditional soft-max loss. Best viewed in color.
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it has the same problem as contrastive loss in terms of
computational complexity.

Center loss [27]minimizes the Euclidean distance between
each feature vector and its class center. However, the extra
regularization item generates two convergence directions,
which not only increases computation complexity but also
makes the convergence center unstable to some extent.

Gaussian mixture loss [28] is an effective alternative to
soft-max. Center loss is a special case of the likelihood
regularization in the GM loss. .e problem of Gaussian
mixture is the same as that of center loss. .us, the former
generates increased computation overhead.

Ring loss [23] utilizes a different optimization mechanism,
which normalizes all features through a convex augmentation
of the primary loss function. In that case, all the features are
put around a ring. As a result, all features have the same norm
and thus cannot be used for optimization.

Large-margin soft-max loss [24] uses the cosine distance
metrics to solve the inconsistency problem of distance
measurements. It introduces an angular margin in the soft-
max through a well-designed angular distance function. It
mainly focuses on angular variation while ignoring im-
portant influence of norm on the classification effects.

.e abovementionedmethods optimize the loss function
from the perspective of the feature distribution. Regularizing
the extracted features or adding regularization terms makes
the features of the same class compact and the features of
different classes separated. Based on this, several loss
functions for classification have been studied from the
perspective of redesigning clusters [35, 36], such as GCPL
loss [37] and Structure-aware loss [38].

L2T-DLF [39], which means “learning to teach with dy-
namic loss functions,” is a novelmodel to train the loss function.
.rough the training process, themodel adjusts and changes the
loss function. .e trained loss function is best suited to the
datasets. As a result, the best classification results are obtained.

Noise-robust loss [40] uses the joint supervision of
categorical cross-entropy loss and mean absolute error to
optimize the loss function from the perspective of noise-
robust. When the label has a wide range of noises, this loss
function can exert a better classification effect than other loss
functions, which normalize the features.

SL [41], which means “symmetric cross-entropy learn-
ing,” is also proposed to solve the noise-robust problem. It
boosts cross-entropy symmetrically with a noise-robust
counterpart called reverse cross-entropy. SL overcomes the
overfitting and under learning problem of cross-entropy
when the label has the noise.

Recent research on loss function focuses on the appli-
cation scenario of loss function. .e methods study the loss
function for the characteristics of the datasets, such as the
presence of noisy labels.

As same as the existing works, we also improve the
classification effect from the perspective of intraclass com-
pactness and interclass separation of feature distribution. .e
aforementioned methods regard direction and norm as a
whole for optimizing the loss. On the contrary, GO loss
performs optimization on the two characteristics separately.
.is approach has not been tried before to the best of our

knowledge. An unknown sufficiently large sample can be
approximated as obeying Gaussian distribution. Considering
the characteristics of the datasets, we reasonably assume that
features obey Gaussian distribution. We use the Gaussian
distribution to guide the optimization process.

3. Problem Statement

3.1.GeneralConsideration. Several aspects should be further
explained before introducing the approach.

.e first aspect is to determine the change in the con-
vergence direction in existing loss functions during the it-
eration and the impacts of the indeterminate direction on
classification results. In loss function, the affinity score
(logit) is usually calculated by different metrics, such as inner
product and Euclidean distance metrics. .ese metrics are
usually used directly to calculate affinity scores or as part of
the process of calculating affinity scores if they are in the
form of extra regularization item. .is way makes conver-
gence direction depend on the network parameters and
training samples, which are changing over each iteration.
.e indeterminate convergence direction causes difficulty in
obtaining a stable convergence center, which indirectly leads
to increased errors in the established model.

Here, we use soft-max as an example to illustrate this
effect. For a K-classification task, we assume that xi and ωk

are the extracted deep feature vector and the class weight
vector for class k, respectively. For inner product metric, the
convergence direction is the same as the direction of xi. For
Euclidean distance, the convergence direction, which is
reflected as the vector from xi to ωk, is determined by the
direction and norm of feature, as shown in Figure 2.

.e second aspect is the decoupling of the feature into
direction and norm..e feature vector is determined by two
characteristics, namely, direction and norm, which are
naturally coupled. It is therefore as incomplete as cosine
metric when only one of the characteristics is considered
during the optimization process. Existing metrics always
treat the two characteristics as a whole. .us, the optimi-
zation inevitably involves both of them. .is condition may
lead to the interference of the two characteristics with each
other, which affects the final classification effects.

3.2.ApproachOverview. As discussed above, we first need to
decompose the convergence direction into two mutually
orthogonal directions. To facilitate implementation, we
make the feature as the subject of decoupling and decouple it
into two components, namely, direction and norm, which
correspond to tangential and radial directions, respectively.
.is step has two advantages. First, we can separately op-
timize the two components to prevent them from interacting
with each other. Second, the relationship between the two
components can be explicitly determined. .e de-
composition makes it convenient to obtain the convergence
center because only one component (direction or norm) is
taken into the calculation process at a time.

We assume that the two components follow Gaussian
distribution to improve the accuracy of the model further. We
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believe that this assumption is reasonable, especially when the
overall distribution is unknown and the sample size is suffi-
ciently large.

Figure 3 shows the optimizing process in a classification
task, in which xi is the extracted deep feature vector for an
input sample and ωk is the class weight vector for the class k,
from which xi belongs to. As observed, the convergence
direction is static during each iteration.

We design the loss function in the tangential direction to
conduct classification. Given that the core purpose of
classification is to separate the different classes from each
other, the loss function in the tangential direction is mainly
responsible for the interclass separation. We adopt the
popular method called cross entropy to implement the
classification function.

.e ability to classify is achieved in tangential loss. .us,
the ability to classify in radial loss need not be obtained. We
achieve interclass separation of feature distributions. We
design the radial loss to be primarily responsible for
intraclass compactness to improve the classification effect
further. We achieve the intraclass compactness by reducing
the difference between the actual distribution of features and
the ideal Gaussian distribution of features. We use a popular
method called likelihood function to measure the difference
in distribution.

4. GO Loss

In this section, we first introduce the optimization of the
tangential and radial components and then give the method
for merging the two parts as the GO loss for implementing
the joint supervision.

4.1. Optimization on Tangential Direction. In tangential
direction, we first provide the formal definition of the
Gaussian distribution. .en, we use Bayes’ rule to calculate
the posterior probability distribution. Finally, we use cross
entropy to calculate the classification loss.

4.1.1. Gaussian Distribution. Let 􏽢xi be the feature following
the Gaussian distribution, as shown in equation (1), where
􏽢xi � xi/|xi| and 􏽢ωk � ωk/|ωk|. 􏽢ωk is the class weight from
which 􏽢xi corresponds to, and σk represents the covariance of

class k in the feature space. For unknown K-classification
task, we assume that the probability of each class is equal,
whose purpose is to ensure that the prior probability is
constant. .e prior probability of class k is p(k) � 1/K. .e
hyperparameter α is used to control the difficulty in the
training process.

p 􏽢xi( 􏼁 � 􏽘
K

k�1
N 􏽢xi; 􏽢ωk, σk( 􏼁p(k)

� 􏽘
K

k�1

1
���
2π

√
σk

exp −
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2

2σ2k
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(1)

Our ideal idea is to guarantee that the angle between the
feature and its corresponding class weight obeys Gaussian
distribution. However, Gaussian distribution of angles is too
complicated to calculate. We use the normalized feature and
its corresponding class weight vector instead of the cosine of
the angle between them to avoid complex angle calculations.
According to the cosine theorem, (􏽢xi − 􏽢ωk)2 can be replaced
by the cosine of the angle between the feature and its
corresponding class center vector. .us, equation (1) can be
understood as a similar Gaussian distribution associated
with the angular cosine. It proves the feasibility of the
replacement.

4.1.2. Bayes’ Rule. Assume 􏽢xi is a normalized feature with
the label zi ∈ [1, K]. Under Gaussian distribution assump-
tion, its conditional probability distribution can be written
as

p 􏽢xi

􏼌􏼌􏼌􏼌 zi􏼐 􏼑 � N 􏽢xi; 􏽢ωzi
, σzi

􏼐 􏼑. (2)

According to Bayes’ rule, its posterior probability dis-
tribution is

p zi
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􏽐
K
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. (3)

4.1.3. Cross-Entropy Loss. We finally use the cross entropy
between the posterior probability distribution and the class
label to calculate the loss of the tangential direction, which is
written as LT and defined as
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Figure 2: Illustration of convergence direction change in the cases of (a) inner product metric and (b) Euclidean distance metric.
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1( ) is an indicator function, which defined as

1 zi � k( 􏼁 �
1, zi � k,

0, otherwise.
􏼨 (5)

4.2. Optimization on Radial Direction. In radial direction, we
first give the formal definition of the Gaussian distribution.
.en, we use Bayes’ rule to calculate the posterior probability
distribution. Finally, we use the likelihood to calculate the loss.

4.2.1. Gaussian Distribution. Similar to that in the tangential
direction, we assume that l2-norm of the feature ‖xi‖2 on the
radial direction also follows the Gaussian distribution, which
is defined as

p xi

����
����2􏼐 􏼑 � 􏽘

K

k�1
N xi

����
����2; ωk

����
����2,Σk􏼐 􏼑p(k), (6)

where ‖ωk‖2, Σk, and p(k) are the l2-norm values of the class
weight vector, the covariance, and the prior probability of
class k, respectively. Similar to the Gaussian distribution
assumption in the tangential direction, the prior probability
is constant. As a result, the prior probability of class k is
p(k) � 1/K.

4.2.2. Bayes’ Rule. Assume ‖xi‖2 is l2-norm of feature with
the label zi ∈ [1, K]. Under the Gaussian distribution as-
sumption, its conditional probability distribution can be
written as

p xi
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According to Bayes’ rule, its posterior probability dis-
tribution is
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4.2.3. Likelihood Loss. For a complete dataset X, Z{ }, the
likelihood can be expressed as

p X, Z | ‖ω‖2,Σ( 􏼁
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.e negative log likelihood can be expressed as
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According to Gaussian distribution assumption, the
prior probability p(xi) is a constant and is equal to 1/K for
K-classification problem. .erefore, the loss on the radial
direction, which is written as LR, can be simplified as

LR � − 􏽘
N

i�1
logN xi

����
����2; ωzi

�����

�����2
,Σzi

􏼒 􏼓. (11)

4.3. Joint Supervision. We have already obtained the loss
functions on tangential and radial directions, namely,LT and
LR. In this section, we continue to introduce the merging of
the two loss functions to construct the final GO loss.

AssumeLO is the GO loss, which can be composed ofLT
and LR, as shown in equation (12). Naturally, LT is only
related to the cosine of the angle between the feature vector and
its corresponding class weight vector, while LR is only related
to the norm of the feature vector.Without loss of generality,LT
and LR share all the parameters:

ωk
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ωk
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Figure 3: Convergence direction of GO loss, which is fixed in (a) the tangential and (b) radial directions during the optimization process.
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A hyperparameter α is used to control the difficulty in
the training process in LT. A nonnegative weighting co-
efficient λ is used to balance the two loss functions. If λ is set
to 0, then onlyLT is used in the optimization, whileLT and
LR will have the same importance when λ is set to 1. .e
influence of the hyperparameter is investigated in the
subsequent experiments.

5. Experiments

5.1. MNIST Datasets. In the first experiment, we compare
GO loss with soft-max loss though the MNIST Handwritten
Digit dataset [42]. .e classification results, which are in the
form of high-dimensional vectors, are projected onto a 2D
plane, as shown in Figure 1. As observed, features distribute
in 300 units of measure by using traditional soft-max loss
and in 3 units of measure by using our GO loss. Our GO loss
has better intraclass compactness and interclass separability
than soft-max loss.

We train the network with different loss functions,
namely, soft-max loss, center loss [27], ring loss with soft-
max [23], LGM loss [28], GCPL loss [37], and SL [41]. In the
aforementioned methods, center loss, ring loss, LGM loss,
and GCPL loss optimize the loss function from the per-
spective of intraclass compactness and interclass separation
of features..esemethods are consistent with the goal of our
GO loss. But SL is a popular method for datasets where the
label has noise. We also compare from new optimization
perspective. We use SampleNet, which has five convolution
layers, each with 32 dimensions, and a fully connected layer
with a two-dimensional output. For the existing loss
function, we attempt to adjust the hyperparameters and
select the best results for recording..e networks are trained
with a batch size of 128 for 50 epochs, and the learning rate is
set to 0.1 and then divided by 2 for every 20 epochs. .e
hyperparameter α is set to 20. .e classification accuracy in
different methods is shown in Table 1. As observed, GO loss
has a better performance than other loss functions on
MNIST.

5.2. Parameter Analysis. We also conduct experiments to
investigate the influence of the hyperparameter α and λ on
the performance. We set α to 10, 20, 30, and 40, each with λ
of 0.1 and 0.01. Table 2 shows that the accuracy of GO loss is
the highest when α is 20 and λ is 0.1. We therefore use this
setting for other experiments.

We determine the effects of tangential and radial losses
on the overall GO loss. We set λ to 0, which indicates that
only the tangential loss is used in GO loss. Only the radial
loss cannot achieve classification. .us, we set λ to 1, which

implies that the radial loss has more evident contribution
than the general experimental situation. .e classification
results, which are in the form of high-dimensional vectors,
are projected onto a 2D plane, as shown in Figure 4. .e
experimental results show that the distance between the
features of the same class becomes significantly larger when
only the tangential loss is used as the loss function. .is
result shows that radial loss can effectively control intraclass
compactness. When the proportion of radial loss is too large,
the different classes of features will be intertwined. .is
condition results in poor interclass separation..is indicates
that tangential loss plays a decisive role in the performance
of separation between classes.

Features distribute in 300 units of measure by using
traditional soft-max loss in Figure 1(a) and in 2 units of
measure by using our tangential loss in Figure 4(a). .e
shape of their distribution may be similar. Most of the
existing loss functions have similar feature distributions in
two-dimensional space with soft-max. However, the reason
has never been discussed to the best of our knowledge. We
analyze the traditional soft-max using the inner product
space metric, which is essentially a linear constraint. As a
result, feature distribution is linearly separable. Although
our tangential loss is calculated by the normalized feature, it
is also related to the cosine according to the cosine theorem.
.e cosine is the inner product of the normalized vector,
which is also a linear constraint. .us, they are similar in the
shape of the distribution. .e Euclidean distance and our
radial loss are quadratic or bilinear constraints. .us, the
features are different, as shown in Figure 4(b).

5.3. Fashion-MNIST Datasets. We conduct another exper-
iment on the Fashion-MNIST dataset [43], which contains
70,000 grayscale images with the pixel resolution of 28× 28.

Table 1: Classification accuracy on MNIST dataset.

Methods Remark Acc. (%)
Soft-max — 99.28
Center loss [27] λ� 0.1 99.62
Ring loss [23] λ� 0.1 99.58
LGM loss [28] α� 1 99.36
GCPL loss [37] λ� 0.1 99.41
SL [41] η � 0.0 99.32
GO loss λ � 0.1 99.66 ± 0.03

Table 2: Classification accuracy of different hyperparameter on
MNIST.

α λ Acc. (%)
α � 10 λ � 0.1 99.34
α � 10 λ � 0.01 99.27
α � 20 λ � 0.1 99.69
α � 20 λ � 0.01 99.53
α � 30 λ � 0.1 99.17
α � 30 λ � 0.01 99.08
α � 40 λ � 0.1 98.58
α � 40 λ � 0.01 98.23
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�e dataset contains 10 categories of fashion products and is
divided into 60, 000 training samples and 10,000 testing
samples. We adopt the same network and training pa-
rameters with MNIST. �e classi�cation accuracy is shown
in Table 3. As observed, GO loss also has the best perfor-
mance on this dataset.

WRN-28 [18] is proven to have the best results on the
Fashion-MNISTdatasets. We try our GO loss on this network
structure. �e classi�cation accuracy is shown in Table 4. �e
experimental results prove that our GO loss also has excellent
performance in the advanced network structure.

5.4. CIFAR-10 and CIFAR-100 Datasets. We use GO loss to
implement three more complex networks on CIFAR-10 and
CIFAR-100 datasets [44]. Each dataset contains 60,000
colored images, which are divided into 50,000 training
images and 10,000 testing images with the pixel resolution of
32× 32. �e dataset adopts standard data augmentation
scheme, which includes mirroring and 32× 32 random
cropping after 4-pixel zero-paddings on each side [9, 24].

For CIFAR-10, we use ResNet [9] of a depth of 20 as the
network structure. �e batch size is set to 128 and epoch is
300.We set the learning rate to 0.1, which will become half of
the original one for every 60 epochs.�e hyperparameter α is
set to 20. We use a weight decay of 5 × 10− 4 and SGD
optimization algorithm with a momentum of 0.9. �e
method introduced in [45] is used to initialize the network
weights. �e main purpose of the experiment is to compare
the classi�cation accuracy on soft-max loss and GO loss.
Moreover, we compare the classi�cation accuracy under
di�erent values of balance parameter λ (0.1 and 0.01), which
describes the degree of contribution of the loss functions of
radial and tangential directions to the �nal GO loss (Section
4.3). �e experimental results are shown in Table 5. As

expected, GO loss can achieve better results than traditional
soft-max loss.

We use another network, namely DenseNet-BC [1] with
12 feature maps, to observe the performance of GO loss on it
for eliminating the deviation in the experimental results
caused by the network structure. �e experiment is also
conducted on the CIFAR-10 dataset. �e experimental re-
sults shown in Table 6 indicate that GO loss also has a better
performance than the others under this experiment
condition.

For CIFAR-100, we use ResNet [9] of a depth of 50 as the
network structure. �e batch size is set to 128 and epoch is
300. We set the learning rate to 0.1, which will be divided by
10 for every 120 epochs. �e hyperparameter α is set to 20.
We use a weight decay of 5 × 10− 4 and SGD optimization
algorithm with a momentum of 0.9. �e method introduced
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Figure 4:�e distributions of the features trained using GO loss (a) λ � 0 and (b) λ � 1 onMNIST. Di�erent colors represent di�erent class.
�e contribution of radial loss and tangential loss to the overall GO loss is shown. Best viewed in color.

Table 3: Classi�cation accuracy with SampleNet on Fashion-
MNIST dataset.

Methods Remark Acc. (%)
Soft-max — 91.56
Center loss λ � 0.1 93.26
Ring loss λ � 0.1 93.08
LGM loss α � 1 92.33
GCPL loss λ � 0.1 92.65
GO loss λ � 0.1 93.40 ± 0.02

Table 4: Classi�cation accuracy with WRN-28 on Fashion-MNIST
dataset.

Methods Remark Acc. (%)
Soft-max — 94.04
GO loss η � 0.0 94.25 ± 0.02
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in [45] is used to initialize the network weights. .e main
purpose of the experiment is to compare the classification
accuracy on soft-max loss and GO loss. Moreover, we
compare the classification accuracy under different values of
balance parameter λ (0.1 and 0.01), which describes the
degree of contribution of the loss functions of radial and
tangential directions to the final GO loss (Section 4.3). .e
experimental results shown in Table 7 indicate that the GO
loss has the best effects when λ � 0.1. .erefore, tangential
direction, which is more related to interclass separability
than the other direction, has a greater impact on the clas-
sification accuracy.

We use another network, namely, DenseNet-BC with
12 feature maps, to observe the performance of GO loss on
it for eliminating the deviation in the experimental results
caused by the network structure. .e experiment is also
performed on the CIFAR-100 dataset. .e experimental
results in Table 8 indicate that GO loss also has a better
performance than the others under this experiment
condition.

5.5. ImageNetDataset. We use ImageNet dataset [46] with a
larger size to observe the performance of GO loss on it for
verifying the scalability of GO loss. A more complex net-
work, namely, ResNet-101 [9], is used. Soft-max is selected
as the reference to compare its classification accuracy with
GO loss. We use 8 Titan GPUs to train all the models. .e
batch size and epoch are set to 128 and 120, respectively.
Meanwhile, the learning rate is initialized as 0.01 with a
decay rate of 50% every 40 epochs. We also investigate the
influence of varying balance parameter λ on the accuracy.
.e results shown in Table 9 indicate that GO loss is also
effective on the large-scale datasets and will achieve a better
performance with a larger λ.

6. Conclusions

In this paper, we present an orthogonal decomposition-
based loss for classification.

Our approach can be summarized as follows:

(1) We propose a new optimization perspective. Spe-
cifically, we consider the optimization problem from
the perspective of convergence direction.

(2) We decompose the convergence direction into two
mutually orthogonal components, namely, tangen-
tial and radial directions, and conduct optimization
on them separately.

(3) We decouple the direction and norm of feature to
avoid their interference with each other during the
optimization process.

(4) We use the direction and norm of feature to associate
with the interclass separability and intraclass com-
pactness, respectively.

(5) We use Gaussian distribution to guide the optimi-
zation processes on direction and norm of feature.

We train six networks on five datasets with different sizes
to evaluate the proposed GO loss. .e results demonstrate
the effectiveness of GO loss. In our future work, we plan to
make two improvements. First, we plan to apply GO loss to
other datasets for a thorough evaluation of its performance
under different application scenarios. Second, we will pro-
pose a method to quantitatively determine the value of the
hyperparameters, such as by visual analytics [6] or adaptive
scaling [47].
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