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In practice, due to the fact that the phenomenon of drawing self-excited vibration can be deemed as one of the hunting
phenomena of the mechanical system, this study focuses on investigating the drawing self-excited vibration process through
proposing the fractional di�erential equation model of hunting phenomenon of the mechanical system. �e fractional Legendre
functions together with their fractional di�erential operational matrices are used to numerically solve the model. In this way, the
numerical solutions of vibration displacement of the model are obtained. At the end, the proposed model and algorithm are
proved to be e�ective via analyzing the numerical results and phase position.

1. Introduction

�e self-excitation vibration exists in the natural and en-
gineering �eld, which requires no external force or external
action to change the structural parameters of the system but
relies on the interaction of various components within the
system to maintain the steady-state periodic motion [1–8].
Some self-excited oscillations are very complicated. For
example, the human circulatory system is an extremely
complex self-excited vibration system.�e heart vibrates at a
certain frequency and intensity to maintain blood �ow in the
blood vessels, which is a typical self-excited vibration
phenomenon.

�e hunting phenomenon of the mechanical system
exists in a low-speed drive system with strong friction force
and frequently occurs in unstable and unevenly stopped
motion, which sometimes is called as stick-slip, or slip. �e
hunting phenomenon is the main reason for the self-excited
vibration of the mechanical system. Once the hunting
phenomenon occurs, the mechanical transmission becomes
unstable so as to be impossible to achieve accurate mea-
surement and precision machining. To avoid the hunting

phenomenon, the theory analysis and experiment research
should be carried out. In order to obtain quantitative results,
a simpli�ed mechanical model with a single degree of
freedom and a quantitative description of the friction force
should be established.

�e steel strand drawing technology has been in-
vestigated for hundreds of years [9]. In the 12th century,
there were blacksmiths and drawers. In the middle of the
13th century, Germany �rst produced the hydraulic drawing
machine to promote in the world, which ushered in a new
era of mechanization. For drawing machine with wire
processing, when the surface reduction rate, drawing speed,
and lubrication parameter are improper and exceed a rea-
sonable range, there will be a hunting or jumping phe-
nomenon. For example, the surface quality of the wire is not
smooth, and the defect leads to the �utter accident of the
puller.

Hao et al. [10] carried out an in-depth theoretical
analysis on the mechanism and conditions of chattering
grains generated in the process of cold drawing of tapered
short mandrel steel tubes. Yang [11] used the �nite element
method to analyze the vibration and self-excited vibration of
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the four-high rolling mill. Lu et al. [12] studied the phe-
nomenon of self-excited vibration of 1420 mm cold mill,
established the mathematical model of the roll and solved it
with the method of multiscale perturbation, and proposed a
method to solve the self-excited vibration. Erdbrink and
Krzhizhanovskaya [13] used the differential evolution
method to analyze the second-order time signal of the self-
excited vibration equation. Aarsnes and Aamo [14] pre-
dicted the occurrence of self-excited vibrations during
drilling using an infinite dimensional model. Zhang et al.
[15] applied a nonlinear friction work formulation for the
analysis of self-excited vibrations.

Recently, fractional partial differential equations have
been widely applied in various fields of science and engi-
neering [16–18], and wave equation is one of the most
important models of them. Over the past decade, the
modelling and control of several classes of wave process have
been researched a hot point [19, 20]. In [21], Jiang et al.
analyzed the boundary control strategy for a fractional wave
equation with external disturbances. In [22], the numerical
approximation of the time fractional diffusion-wave equa-
tion in a semi-infinite channel by using the finite difference
method and Laguerre–Legendre spectral method is carried
out. In [23], time fractional diffusion-wave equation with
damping has been solved by using the method of separation
of variables.

In this study, in order to more accurately describe the
whole process of drawing self-excited vibration, a fractional
differential equation model is proposed, and the fractional-
order Legendre functions are utilized to obtain the nu-
merical vibration displacement solutions.

2. Fractional Dynamic Model of Mechanical
System Hunting Phenomenon

Although some studies considered mechanical system
hunting phenomenon [24], to our best knowledge, the
fractional-order dynamic model to characterize hunting
phenomenon of mechanical system is first presented, as
shown in Figure 1. ,e diagram of drawing plastic working
[25] is depicted in Figure 2. Figure 2 shows the deformation
of drawing long parts from coarse to fine in the drawing
process.

,e fractional differential equation of mechanical system
hunting phenomenon is given as follows:

m€u + c D
α
t u − D

α
t u0(  − φ( _u) + k u − u0(  � 0, 0< α≤ 1,

(1)

where Dα
t denotes the fractional differential operator defined

in the Caputo sense [26, 27], m is the quality of the slider, c is
the fractional damping coefficient, k is the spring stiffness
coefficient, u0 is the displacement at drive end, u is the slider
displacement, and φ( _u) is the frictional force.

If the slider is driven at constant speed, setting the speed
of the driving end as v, then the displacement u0 of the
driving end T can be expressed as

u0 � vt. (2)

Substituting equation (2) into Equation (1), we get

m€u + c D
α
t u − vD

α
t t(  − φ( _u) + k u − u0(  � 0. (3)

Converting the slider displacement u into the relation of
relative displacement x1 as

u � x1 + u0 � x1 + vt, (4)

then we get

m €x1 + cD
α
t x1 + kx1 − φ _x1 + v(  � 0. (5)

Introducing the dimensionless time τ and defining the
dimensionless displacement x and damping ratio ξ:

τ � ω0t ω0 �

��

k

m



⎛⎝ ⎞⎠,

x �
ω0x1

v
,

ξ �
c

2
���
km

√ ,

(6)

the sliding block motion equation can be simplified as

x″ + 2ξD
α
x + x −

φ x′ + 1( v 

mω0v
� 0, (7)

where x′, x″, andDαx are the first, second, and α de-
rivatives of x with respect to τ.

,e Karnopp friction model is employed to describe
friction φ[(x′ + 1)v]. ,e difference between static and
dynamic friction is

ΔF � Fs − Fk � ΔμN Δμ � μs − μk( . (8)

,e dimensionless dynamic friction coefficient f and
dimensionless static-dynamic friction drop d are defined as
follows:

f �
μkN

mω0v
,

d �
ΔμN

mω0v
.

(9)

,e sliding block motion equation is simplified again as

x″ + 2ξD
α
x + x � − fsgn x′ + 1( , (10)

u

k m

c

T
u0

Figure 1: ,e diagram of fractional dynamic model of mechanical
system hunting phenomenon.
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where sgn(x) is the sign function, namely,

sgn(x) �

1, x> 0,

0, x � 0,

− 1, x< 0.

⎧⎪⎪⎨

⎪⎪⎩
(11)

Segmentation analysis:

(a) Sliding section before rolling:

x″ + 2ξD
α
x + x � f, 0< α≤ 1. (12)

(b) Sliding section after rolling:

x″ + 2ξD
α
x + x � − f, 0< α≤ 1. (13)

From equations (12) and (13), the general form of
fractional differential equation model of mechanical system
hunting phenomenon is established:

y″(x) + 2ξD
α
xy(x) + y(x) � f(x), 0< α≤ 1, (14)

where ξ are constants. With the initial conditions,

y(0) � δ1,

y′(0) � δ2.
(15)

3. Computing Method

3.1. Definitions. ,e generalized fractional-order Legendre
functions (GFLFs), devoted by Flhαi (t), is defined by in-
troducing the change of variable t � xh. ,en, the GFLFs
have recurrence formula as follows [28]:

Fl
hα
i+1(t) �

(2i + 1) 2(t/h)α − 1( )

i + 1
Fl

hα
i (t)

−
i

i + 1
Fl

hα
i− 1(t), i � 1, 2, . . . ,

(16)

where Flhα0 (t) � 1 andFlhα1 (t) � 2(t/h)α − 1.

,e analytical form of the GFLFs Flhαi (x) of degree iα is
given by

Fl
hα
i (x) � 

i

s�0
bs,i

tsα

hsα, i � 1, 2, . . . . (17)

3.2. Functions Approximation. Suppose y(x) ∈ L2[0, h], it
can be expanded in terms of the GFLFs as follows [29]:

y(x) � 
∞

i�0
ciFl

hα
i (x), (18)

where ci are obtained by

ci �
α(2i + 1)

hα 
1

0
Fl

hα
i (x)f(x)ωα

l dx, i � 1, 2, . . . , (19)

where the weight function ωα
l (x) � xα− 1.

If we consider truncated series in equation (13), we
obtain

y(x) ≈ ym(x) � 
m− 1

i�0
ciFl

hα
i (x) � CTΦ(x), (20)

where C � [c0, c1, . . . , cm− 1]
T andΦ(x) � [Flhα0 (x), Flhα1 (x),

. . . , Flhαm− 1(x)].

3.3. 4e GFLF Fractional-Order Operational Matrix of
Derivative. ,e derivative of the function vector Φ(x) can
be approximated as follows:

D
αΦ(x) � PαΦ(x), (21)

where Pα is called the GFLF operational matrix of the
derivative.

Theorem 1. Suppose Pα is the m × m GFLF operational
matrix of Caputo fractional derivatives of order α, β> α/2,
β ∉ N, then the elements of Pα are given as follows [30]:

pij 
m− 1,m− 1
i,j�1 � (2j + 1)βh

− α


i

s�0


j

r�0
br,jbs,i
′

·
Γ(sβ + 1)

Γ(sβ − α + 1)

1
(s + r + 1)β − α

,

(22)

Blank
Product

PdT
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σθ
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XX
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(b)

Figure 2: ,e diagram of drawing plastic working.
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where bs,i
′ �

0, sβ ∈ N0 and sβ< α,

bs,i
′ � bs,i, sβ ∉ N0 and sβ≥ α or sβ ∈ N0 and sβ≥ α.



3.4. Solving Process. Substituting equations (18) and (21)
into equation (14), we have

y″(x) ≈ CTd2Φ(x)

dx2 ≈ C
TP2Φ(x), (23)

D
α
xy(x) ≈ CTdαΦ(x)

dxα ≈ C
TPαΦ(x), (24)

f(x) ≈ FTΦ(x), (25)

where the coefficient matrices F can be obtained by equation
(19). Substituting equations (23)–(25) and (18) into equation
(14), we get

CTP2Φ(x) + 2ξCTPαΦ(x) + CTΦ(x) � FTΦ(x). (26)

Simplifying equation (26), we obtain

CTP2
+ 2ξCTPα

+ CT
� FT

. (27)

For equation (15), we have

CTΦ(0) � δ1,

CTPΦ(0) � δ2.
(28)

Equation (27) together with equation (28) constitutes a
system of linear algebraic equations. ,ese unknown co-
efficients ci can be obtained by solving the system. A
flowchart of the algorithm is given in Figure 3.

4. Numerical Simulation

In this section, several numerical experiments are presented
to verify the established model and the provided algorithm.
,e parameters of the following examples are actual physical
parameters. In the following numerical examples, m rep-
resents the number of discrete terms of the polynomial; that
is, the larger the value of m is, the more discrete terms of the
polynomial, the closer the numerical result approaches to
the analytical result, but the corresponding calculation
amount will also increase. In order to obtain effective nu-
merical results and save calculation time, we take m � 4.

Case 1. Considering the following fractional differential
equations model of mechanical system hunting phenome-
non with ξ � 0.1:

y″ + 2ξD
0.5

y + y � 2 + 0.2 ×
2
Γ(2.5)

x
1.5

+ x
2
,

y(0) � y′(0) � 0.

(29)

,e analytical solution of this problem is y � x2. When
m � 4, the numerical and analytical solutions are shown in
Figure 4. In this case, the analytical result is given to verify
the effectiveness of the proposed algorithm. Figure 4 shows
that the proposed method can achieve a good agreement
between numerical and analytical results.

Case 2. Considering the second-order wave equation with
ξ � 0.1, f(x) � − 1. ,e analytical result of this problem is

y � e− ξx(c1 cos
�����

1 − ξ2


x + c2 sin
�����

1 − ξ2


x) − f, here c1 � c2
� 1, ξ � 0.1, andf(x) � − 1. ,e numerical results with m �

4, 5 and analytical results are shown in Figure 5. ,e main
reason why the numerical solutions do not coincide the
analytical solutions at the beginning is that the initial
conditions are homogeneous in this example. However,
when m takes different values, the obtained numerical re-
sults are consistent, which proves that the proposed scheme
is effective:

y″ + 2ξy′ + y � f(x). (30)

Case 3. Considering the fractional-order wave equation
with f(x) � − 1:

y″ + 2ξD
α
y + y � f(x). (31)

When m � 4 and α � 0.5, the numerical results with ξ �

0.15, 0.6 are shown in Figure 6. Figure 6 shows that the
numerical results are frequency invariant attenuation
waveforms. When m � 4 and ξ � 0.15, the numerical results
with α � 0.5, 0.7, 0.9, and 1 are shown in Figure 7. When
m � 4 and α � 1, the phase diagram with ξ � 0.15 and ξ �

0.6 is shown in Figure 8. Figure 8 shows that images with
ξ � 0.6 attenuate faster than those with ξ � 0.15, which is
consistent with the results in Figure 6. Figures 7, 10, and 13
show that the numerical vibration displacement solutions
approach to the solution (α � 1) with the fractional order α
gradually approximating to 1. ,ese show that the fractional
order model has memory and can extract short-term se-
quence details arbitrarily.

Case 4 (see [31]). Considering the fractional-order wave
equation, in this case, we take the friction force f � 400
(1 − e− 20x) + 100 sin(6πx). When m � 4 and α � 0.5, the
numerical results with ξ � 0.01, 0.15, and 0.6 are shown in
Figure 9. Figure 9 shows that the vibration displacement so-
lutions are still attenuated waveform, and the waveform is
equiperiodic when ξ � 0.01. Moreover, the waveforms no
longer change regularly with ξ increasing.Whenm � 4 and ξ �

0.15, the numerical results with α � 0.5, 0.7, 0.9, and 1 are
shown in Figure 10.Whenm � 4 and α � 1, the phase diagram
with ξ � 0.01, ξ � 0.15, and ξ � 0.6 is shown in Figure 11.
Figure 11 shows that the waveform attenuation is the fastest
when ξ � 0.6. From Figures 6, 9, and 12, it can be concluded
that the larger the value of ξ takes, the faster the waveform
attenuates:

y″ + 2ξD
α
y + y � − 400 1 − e

− 20x
  + 100 sin(6πx) .

(32)

Case 5 (see [31]). Considering the following fractional-
order wave equation, in this case, we take the friction
force f � 200e− x cos(2πx). When m � 4 and α � 0.8, the
numerical results with ξ � 0.01, 0.15, and 0.6 are shown in
Figure 12. Figure 12 shows that the vibration displace-
ment solutions are still attenuated waveform, and the
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Introduce the definition of
the caputo fractional derivative

Start

Define legendre functions

Construct legendre function
vectors

Introduce the fractional
differential operational matrix

of legendre functions

Represent the boundary
functions by legendre

function vectors

Represent the second-order
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and constant function terms
by legendre function vectors

Solve the system of above equations
by dispersing the unknown variables

and get the coefficient matrices

Substitute them into the
approximate solution expression to

get the numerical solutions

End
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boundary condition

equations
Form the main system
of regional equations

Figure 3: Algorithm flowchart.
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Figure 6: Numerical vibration displacement solutions with ξ � 0.15 and 0.6.
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Figure 5: Analytical solutions and numerical vibration displacement solutions with m � 4, 5.
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Figure 9: Numerical vibration displacement solutions with ξ � 0.01, 0.15, and 0.6.
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waveform is equiperiodic when ξ � 0.01. Moreover, the
waveforms no longer change regularly with ξ increasing.
,e numerical results show that there is a large fluctu-
ation at the beginning, and the fluctuation process tends
to be smooth with x increasing. When m � 4 and ξ � 0.15,

the numerical results with α � 0.6, 0.7, 0.8, 0.9, and 1 are
shown in Figure 13. When m � 4 and α � 1, the phase
diagram with ξ � 0.01, ξ � 0.15, and ξ � 0.6 is shown in
Figure 14.

y″ + 2ξD
α
y + y � − 200e

− x cos(2πx). (33)

5. Conclusions

In this paper, a fractional differential equation model
of drawing self-excited vibration is proposed based on the
mechanical system hunting phenomenon. ,e fractional-
order Legendre function method is utilized to obtain the
vibration displacement solutions of the given model, and the
established model and proposed algorithm are analyzed
from several specific numerical experiments.
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Figure 11: ,e phase diagram with ξ � 0.01, ξ � 0.15, and ξ � 0.6.
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