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The semidirect drive cutting transmission systemof coal cutters is prone to unstable torsional vibrationwhen the resistance values of
its driving permanent magnet synchronous motor (PMSM) are affected by changes in temperatures and tough conditions. Besides,
the system has the properties of complex electromechanically coupling such as the coupling between electrical parameters and
mechanical parameters. Therefore, in this study, the nonlinear torsional vibration equation was established on the basis of the
Lagrange-Maxwell theory. Moreover, in light of the nonlinear dynamic bifurcation theory, the system stability was analyzed by
taking the resistance value of power motor as the bifurcation parameter. In addition, the influence of subcritical bifurcation on the
torsional vibrationwas studied by investigating the necessary and sufficient conditions for dynamicHopf bifurcation and classifying
the bifurcation types. At last, in order to suppress destabilizing oscillation induced by Hopf bifurcation, the nonlinear feedback
controller was constructed, with the introduction of feedback from the motor velocity as well as the selection of voltage value
on the 𝑞 shaft as the controlled variable. Meanwhile, the three-order normal form and controlling parameters of the system were
obtained with the aid of the multiple scales method and the harmonic balance method. In this way, the Hopf bifurcation point was
transferred to control the stability of Hopf bifurcation and the amplitude of limit cycle, thus guaranteeing reliable and safe operation
of the system. The numerical simulation results indicate that the designed controller boosts an ideal controlling effect.

1. Introduction

When the tail drum of the permanent magnet semidirect
drive cutting transmission system in the coal cutters cuts
coals and rocks, due to the uneven intensity of the coal seam,
the brittle caving of the coal rock mass, and hard parcels
existing, the loads on the drum exhibit the characteristics
of randomness, major fluctuations, great impact, etc. [1–
3]. Besides, since coal cutters operates in a relatively tough
environment, the electrical parameters of its driving motor
change with the different temperatures. This not only causes
abundant dynamic behaviors of the coupling nonlinear
dynamic system, but also leads to the torsional vibration
and instability phenomena of the system, thus affecting the

working efficiency of coal cutters. The cutting transmission
system of permanent magnet semidirect drive in coal cutters,
which consists of a permanent magnet synchronous motor
(PMSM), a speed reducer, cutting drums, and other com-
ponents, is a typical electromechanical coupling system [4–
6].The electromechanical coupling mechanism and coupling
dynamics are influenced by complicate factors, including
mechanics, electromagnetism, and nonlinear dynamics [7–
9]. The multivariable and multienergy-domain coupling
existing within the complicate electromechanical coupling
system is a basic characteristic which the system exhibits
during nonstationary processes such as the starting, braking,
and load variations. The electromechanical coupling vibra-
tion that happens in nonstationary processes will result in
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defective condition of the equipment and affect the dynamics
and stability of the system. It may also give rise to major
failure and even safety accidents. Therefore, it is essential to
study electromechanical coupling dynamics of the semidirect
drive cutting transmission system in coal cutters and the
mechanism of torsional vibrations; thus the dynamics of the
system will be further optimized.

At present, the research on the dynamic properties of
cutting units in the coal cutter is mainly focused on the
investigation of its whole vibration characteristics based on
the virtual prototype technology [10, 11], the influence of
gear clearance, meshing stiffness, and gear friction on the
system dynamics [12, 13], and forces among gears [14, 15].
Scholars have conducted studies on system dynamics which
take “motor-gear-actuator” as the model of transmission
structure. The breakdown diagnosis [16, 17] and torsion
vibration tests [18, 19] of the transmission system bymeans of
dynamic analysis have become research hot spots. Taking the
torsional vibration system of rolling mill with nonlinear fric-
tion damping as the research object, Liu et al. [20, 21] analyzed
the effects of both subcritical bifurcation and supercritical
bifurcation on the system torsional vibration.With the intro-
duction of the motor speed feedback, the nonlinear feedback
controller was designed, in which the stator voltages of the
drive motor were selected as the control variable, suppressing
unstable vibrations for transmission system caused by Hopf
bifurcation. The kinetic simulation technology was applied
to one-stage gearbox and two-stage gearbox byW. Bartelmus
[22], providing more ways for gearbox fault diagnosis. The
transient dynamic response of drivemotor-gear transmission
system in starting process was investigated by T. Khabou et
al. [23]. Through the transfer matrix theory and the finite
element analyses, Yu et al. [24] studied the propagation of
torsional vibration in the shaft which was equipped with
periodically attached local resonators. They were also the
pioneers in finding the dispersion relation and incidental
structure for such structure, confirming the existence of low-
frequency gap torsional vibration. Different load fluctuations
may result in various rotational speed of the driving motor
with the planetary gear. Depending on this case, F. Chaari
et al. [25] investigated dynamic behaviors of the planetary
gear by considering the fact that variable loads could induce
a great change in rotational speed of the motor. Shi et al.
[26, 27] illustrated the bifurcation structures and chaotic
behaviors when the nonlinear torsional vibration systemwith
nonlinear stiffness and nonlinear friction force was under
the external excitation. The stability of undisturbed system
was given by means of the stability theory of equilibrium
positions of Hamiltonian systems. And chaotic behaviors
under periodic disturbance were detected by using Melnikov
theory. However, from the above, it can be seen that most
public literatures attach high attention on the single aspect,
either from mechanical perspective or from electrical aspect
which cannot present a thorough insight into the mechanism
of torsional vibration to provide the corresponding control
methods. One reason to explain this limitation is the com-
plex energy transmission between electromagnetic energy of
the motor and kinetic energy of the machinery. Therefore,
some scholars have started to study the reasons of torsional

vibration and push for controlling methods from the view of
electromechanical coupling. According to Xu et al. [28], the
nonlinear electromechanically coupling dynamic equation of
the driving system was given by the analysis of the nonlinear
interactive magnetic forces in the electromechanical system
in order to further study on the bifurcation and chaotic
motions. The influence of the electromagnetic stiffness and
the damping coefficient on the electromechanical system was
generated by Tomasz Szolc et al. [29], where the rotating
machine under dynamic coupling effect was modeled. Con-
cerning those electromechanical coupling system of rolling
mills with nonlinear friction force, the dynamic equation of
its torsional vibration was set up by Liu et al. [30] through the
adoption of electromechanical analytical dynamic method.

In this paper, the electromechanical coupling transmis-
sion system of coal cutters under the coupling effect of
electrical parameters and mechanical parameters is studied,
where the dynamic model of its nonlinear coupling torsional
vibration is established with reference to the Lagrange-
Maxwell equation. Besides, based on numerical and ana-
lytical methods, the necessary and sufficient conditions are
presented with various the stator resistance values of PMSM.
Furthermore, the Hopf bifurcation types are determined,
which makes it possible to analyze their influence on the
torsional vibration of the system. Aimed at suppressing
unstable vibration, the voltage value of the motor on the
q-axis is taken as control parameter, in which the velocity
feedback is introduced; thus, the feedback controller under
nonlinear states is designed. Finally, the methods of multiple
scales and harmonic balance are employed to obtain the
third-order normal form for the system and its controlling
parameters, by which the bifurcation point is transferred,
enhancing the system stability and decreasing the limit cycle
amplitudes.

2. Electromechanical Coupling
Dynamic Model

The permanent magnet semidirect drive cutting transmis-
sion system in coal cutters which incorporates a variety of
subsystems serves as a typical complex electromechanical
coupling system. The electromechanical coupling of such
system mainly refers to the fact that the electromagnetic
parameters of the PMSM are coupled with the mechanical
parameters of the gear transmission system and the load
system. The conversion of motor electrical energy requires
air gap magnetic field. Unlike a three-phase asynchronous
motor, which generates a magnetic field by passing current
through a motor winding, a PMSM generates a magnetic
field by a permanent magnet. In order to facilitate the
establishment of an electromechanical coupling dynamics
model, the latter part of the gear transmission system is
equivalent to the end of the elastic connection shaft. The
simplified model is shown in Figure 1.

Under the assumptions that (I) the core saturation, the
eddy current, and hysteresis are ignored; (II) air gap distribu-
tion is uniform and the stator windings are star-connected;
(III) no damping effect is on the rotor and the permanent
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Table 1: Generalized coordinates of electromechanical system.

Generalized coordinates Stator Motor rotation angle Mechanical system𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 𝑗 = 5𝑞𝑗 𝑒𝑎 𝑒𝑏 𝑒𝑐 𝜃1 𝜃2𝑞̇𝑗 𝑖𝑎 𝑖𝑏 𝑖𝑐 𝜃̇1 𝜃̇2𝑄𝑗 𝑢𝑎 𝑢𝑏 𝑢𝑐 − 𝑇𝐿

Cutter roller

J2J1

mT

C
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Rotor
(Permanent Magnet)

Permanent magnet synchronous motor
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Figure 1: Schematic diagram of electromechanical coupling system in coal cutter.

magnet; (IV) the back electromotive force waveform is a sine
wave, the dynamic equations of the system are established, as
shown in the simplified model of Figure 1.

Based on the basic principles of electromechanical anal-
ysis dynamics and Lagrange-Maxwell equation, the mathe-
matical model is established. The generalized coordinates of
the system are first determined as shown in Table 1.

The specific calculation method of 𝑇𝐿 is shown in the
literature [3]. The system kinetic energy 𝐸 is given by

𝐸 = 12𝐽1𝜃̇21 + 12𝐽2𝜃̇22 (1)

𝐽1 is the moment of inertia of the rotor in the PMSM and𝐽2 is the equivalent mass moment of inertia of the driven
mechanical part reduced to the motor rotor rotation axis.

The system magnetic energy𝑊H is expressed as follows:

𝑊𝐻 = 𝑊𝐻1 +𝑊𝐻2 = {12𝐿𝑎𝑖2𝑎 + 12𝐿𝑏𝑖2𝑏 + 12𝐿𝑐𝑖2𝑐+ 𝐻𝑖𝑎𝑖𝑏 + 𝐻𝑖𝑏𝑖𝑐 + 𝐻𝑖𝑎𝑖𝑐} + {𝑖𝑎𝜓𝑓 cos 𝜃1+ 𝑖𝑏𝜓𝑓 cos(𝜃1 − 23𝜋) + 𝑖𝑐𝜓𝑓 cos(𝜃1 + 23𝜋)}
(2)

Themagnetic energy𝑊H of the PMSM includes twoparts:𝑊H1 is the magnetic energy generated by the stator current;𝑊H2 is the magnetic energy generated by stator current with
the flux which is produced by rotor in the stator. 𝑖𝑎, 𝑖b, and𝑖c are the current at both ends of each winding. 𝐿 and 𝐻 are
the self-inductance andmutual inductance of the stator three-
phasewindings respectively. 𝜃1 is the rotor position angle, and𝜓𝑓 is the flux generated by the permanent magnet.

The system potential energy 𝑉 can be derived as follows:𝑉 = 12𝑘 (𝜃1 − 𝜃2)2 (3)

The Lagrange function 𝐿 of the system is calculated as
follows:𝐿 = 𝐸 +𝑊𝐻 − 𝑉 = 12𝐽1𝜃̇12 + 12𝐽2𝜃̇22 + {12𝐿𝑎𝑖2𝑎+ 12𝐿𝑏𝑖2𝑏 + 12𝐿𝑐𝑖2𝑐 + 𝐻𝑖𝑎𝑖𝑏 + 𝐻𝑖𝑏𝑖𝑐 + 𝐻𝑖𝑎𝑖𝑐}+ {𝑖𝑎𝜓𝑓 cos 𝜃1 + 𝑖𝑏𝜓𝑓 cos(𝜃1 − 23𝜋)+ 𝑖𝑐𝜓𝑓 cos(𝜃1 + 23𝜋)} − 12𝑘 (𝜃1 − 𝜃2)2

(4)

The system dissipation function 𝐹 can be expressed as
follows:𝐹 = 𝐹1 + 𝐹2= {12𝑅𝑎𝑖2𝑎 + 12𝑅𝑏𝑖2𝑏 + 12𝑅𝑐𝑖2𝑐} + 12𝐶 (𝜃̇1 − 𝜃̇2)2 (5)

F1 is the dissipation function of the electromagnetic
system. F2 is the dissipation function of the mechanical
system. 𝑅𝑎, 𝑅b, and 𝑅c are the three-phase resistance of the
PMSM, and 𝑅𝑎 = 𝑅b = 𝑅c = 𝑅. 𝐶 is the viscous damping
coefficients of the shaft.

The frictional resistance torque caused by the nonlinear
friction damping at the end of semidirect drive transmission
system in coal cutter takes a widely existing form of nonlinear
sliding frictional torque.𝑓 (𝜃̇2) = 𝜅 + 𝛾𝜃̇2 + 𝜒𝜃̇22 (6)
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Substituting (4) and (5) into the system’s Lagrange-
Maxwell equation, the result is shown as follows:𝑑𝑑𝑡 ( 𝜕𝐿𝜕𝑞̇𝑗) − 𝜕𝐿𝜕𝑞𝑗 + 𝜕𝐹𝜕𝑞̇𝑗 = 𝑄𝑗 (7)

For the stator winding 𝐴(𝑗 = 1), the specific expansion
form is shown as follows:𝜕𝐿𝜕𝑞1 = 0,𝜕𝐿𝜕𝑞̇1 = 𝐿𝑖𝑎 + 𝐻𝑖𝑏 + 𝐻𝑖𝑐 + 𝜓𝑓 cos 𝜃1𝑑𝑑𝑡 ( 𝜕𝐿𝜕𝑞̇1) 󳨀→𝑑𝑑𝑡 ( 𝜕𝐿𝜕𝑖𝑎) = 𝐿𝑑𝑖𝑎𝑑𝑡 + 𝐻𝑑𝑖𝑏𝑑𝑡 + 𝐻𝑑𝑖𝑐𝑑𝑡 + 𝑑𝑑𝑡 (𝜓𝑓 cos 𝜃1)𝜕𝐹𝜕𝑞̇1 󳨀→ 𝜕𝐹𝜕𝑖𝑎 = 𝑅𝑎𝑖𝑎

𝑄1 = 𝑑𝑑𝑡 ( 𝜕𝐿𝜕𝑞̇1) − 𝜕𝐿𝜕𝑞1 + 𝜕𝐹𝜕𝑞̇1 ,𝑢𝑎 = 𝑄1

(8)

So the voltage equation of the stator winding𝐴(𝑗 = 1) can
be expressed as follows:𝑢𝑎 = 𝑄1 = 𝑑𝑑𝑡 ( 𝜕𝐿𝜕𝑞̇1) − 𝜕𝐿𝜕𝑞1 + 𝜕𝐹𝜕𝑞̇1= 𝐿𝑑𝑖𝑎𝑑𝑡 + 𝐻𝑑𝑖𝑏𝑑𝑡 + 𝐻𝑑𝑖𝑐𝑑𝑡 + 𝑑𝑑𝑡 (𝜓𝑓 cos 𝜃1) + 𝑅𝑎𝑖𝑎 (9)

Similarly, the voltage equation of the stator winding𝐵(𝑗 =2) is given by𝑢𝑏 = 𝑄2 = 𝑑𝑑𝑡 ( 𝜕𝐿𝜕𝑞̇2) − 𝜕𝐿𝜕𝑞2 + 𝜕𝐹𝜕𝑞̇2= 𝐿𝑑𝑖𝑏𝑑𝑡 + 𝐻𝑑𝑖𝑎𝑑𝑡 +𝑀𝑑𝑖𝑐𝑑𝑡+ 𝑑𝑑𝑡 (𝜓𝑓 cos(𝜃1 − 23𝜋)) + 𝑅𝑏𝑖𝑏
(10)

The voltage equation of the stator winding 𝐶(𝑗 = 3) is
given by 𝑢𝑐 = 𝑄3 = 𝑑𝑑𝑡 ( 𝜕𝐿𝜕𝑞̇3) − 𝜕𝐿𝜕𝑞3 + 𝜕𝐹𝜕𝑞̇3= 𝐿𝑑𝑖𝑐𝑑𝑡 + 𝐻𝑑𝑖𝑎𝑑𝑡 + 𝐻𝑑𝑖𝑏𝑑𝑡+ 𝑑𝑑𝑡 (𝜓𝑓 cos(𝜃1 + 23𝜋)) + 𝑅𝑐𝑖𝑐

(11)

The motion equation of the motor rotation angle (𝑗 = 4)
is formulated,𝐽1 𝑑𝜃̇1𝑑𝑡 = −𝑖𝑎𝜓𝑓 sin 𝜃1 − 𝑖𝑏𝜓𝑓 sin(𝜃1 − 23𝜋)− 𝑖𝑐𝜓𝑓 sin(𝜃1 + 23𝜋) − 𝑘 (𝜃1 − 𝜃2)− 𝐶 (𝜃̇1 − 𝜃̇2)

(12)

The motion equation of the mechanical system (𝑗 = 5) is
generated,𝐽2 𝑑𝜃̇2𝑑𝑡 = −𝑘 (𝜃1 − 𝜃2) + 𝐶 (𝜃̇1 − 𝜃̇2) + 𝑇𝐿 + 𝜅 + 𝛾𝜃̇2+ 𝜒𝜃̇22 (13)

The mathematical model of PMSM in ABC three-phase
stationary coordinate system is shown in the following
equation:

[[[
𝑢𝑎𝑢𝑏𝑢𝑐]]] = [[[

𝑅 0 00 𝑅 00 0 𝑅]]][[[
𝑖𝑎𝑖𝑏𝑖𝑐]]] + 𝑑𝑑𝑡 [[[

𝐿 𝐻 𝐻𝐻 𝐿 𝐻𝐻 𝐻 𝐿]]][[[
𝑖𝑎𝑖𝑏𝑖𝑐]]]

+ 𝑑𝑑𝑡 [[[[[[
𝜓𝑓 cos 𝜃1𝜓𝑓 cos(𝜃1 − 23𝜋)𝜓𝑓 cos(𝜃1 + 23𝜋)

]]]]]]
(14)

The system dynamics equation can be written as follows:𝐿𝑎 𝑑𝑖𝑎𝑑𝑡 + 𝐻𝑑𝑖𝑏𝑑𝑡 + 𝐻𝑑𝑖𝑐𝑑𝑡 − 𝜓𝑓𝜃̇1 sin 𝜃1 + 𝑅𝑖𝑎 = 𝑢𝑎𝐿𝑏 𝑑𝑖𝑏𝑑𝑡 + 𝐻𝑑𝑖𝑎𝑑𝑡 + 𝐻𝑑𝑖𝑐𝑑𝑡 − 𝜓𝑓𝜃̇1 sin(𝜃1 − 23𝜋) + 𝑅𝑖𝑏= 𝑢𝑏𝐿𝑐 𝑑𝑖𝑐𝑑𝑡 + 𝐻𝑑𝑖𝑎𝑑𝑡 + 𝐻𝑑𝑖𝑏𝑑𝑡 − 𝜓𝑓𝜃̇1 sin(𝜃1 + 23𝜋) + 𝑅𝑖𝑐= 𝑢𝑐𝐽1𝜃̈1 + 𝐶 (𝜃̇1 − 𝜃̇2) + 𝐾 (𝜃1 − 𝜃2)= −𝑖𝑎𝜓𝑓 sin 𝜃1 − 𝑖𝑏𝜓𝑓 sin(𝜃1 − 23𝜋)− 𝑖𝑐𝜓𝑓 sin(𝜃1 + 23𝜋)𝐽2𝜃̈2 − 𝐶 (𝜃̇1 − 𝜃̇2) − 𝐾 (𝜃1 − 𝜃2)= 𝑇𝐿 + 𝜅 + 𝛾𝜃̇2 + 𝜒𝜃̇22

(15)

From (15), as a variable-coefficient differential equation,
the established mathematical model is more complex. In
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Figure 2: Principle of coordinate transformation.

order to simplify the equation and describe the motion state
conveniently, the ABC three-phase stationary coordinate
system is converted to the dq axis coordinate system.

The principle of coordinate conversion is shown in
Figure 2. Firstly, the ABC three-phase coordinate system
needs to be converted to the 𝛼𝛽 plane stationary coordinate
system. Then, the 𝛼𝛽 plane stationary coordinate system
is converted to the dq axis coordinate system. Finally the
coordinate conversion equation is written as follows:

𝐶3𝑠/2𝑟
= √23 [[[[[[[

cos 𝜃 cos(𝜃 − 2𝜋3 ) cos(𝜃 + 2𝜋3 )− sin 𝜃 − sin(𝜃 − 2𝜋3 ) − sin(𝜃 + 2𝜋3 )√12 √12 √12
]]]]]]]

(16)

The electromechanical coupling dynamic equation of the
system is shown as follows:

𝐼̇𝑑 = − 𝑅𝐿 − 𝐻𝐼𝑑 + 𝑢𝑑𝐿 − 𝐻 + 𝜔1𝐼𝑞
𝐼̇𝑞 = − 𝑅𝐿 − 𝐻𝐼𝑞 + 𝑢𝑞𝐿 − 𝐻 − √6𝜓𝑓2 (𝐿 − 𝐻)𝜔1 − 𝜔1𝐼𝑑𝛼̇ = 𝜔1 − 𝜔2𝜔̇1 = 1𝐽1 [−𝐶 (𝜔1 − 𝜔2) − 𝐾𝛼 − √6𝜓𝑓2 𝐼𝑞]
𝜔̇2 = 1𝐽2 [𝐶 (𝜔1 − 𝜔2) + 𝐾𝛼 + 𝜅 + 𝛾𝜔2 + 𝜒𝜔22 + 𝑇𝐿]

(17)

3. Hopf Bifurcation Analysis of
Electromechanical Coupling System

Taking 𝑘1 = −𝑅/(𝐿 − 𝐻), 𝑘2 = −√6𝜓𝑓/2(𝐿 − 𝐻), and𝑘3 = −√6𝜓𝑓/2𝐽1, (𝐼𝑑 𝐼𝑞 𝛼 𝜔1 𝜔2)𝑇 is expressed with(𝑥1 𝑥2 𝑥3 𝑥4 𝑥5)𝑇. Then the equilibrium point of (17)
can be transferred to the origin of coordinates by proper
linear transformation.Without loss of generality, the dynamic
characteristics of the equilibrium point of the system at the
origin are studied, and the Jacobian matrix of the system at
the origin can be expressed as follows:

𝐴 (0, 𝑅) =(((((
(

𝑘1 0 0 0 00 𝑘1 0 𝑘2 00 0 0 1 −10 𝑘3 −𝐾𝐽1 −𝐶𝐽1 𝐶𝐽10 0 𝐾𝐽2 𝐶𝐽2 𝛾 − 𝐶𝐽2
)))))
)

(18)

The stability of the system at the equilibrium point is
determined by the real part of the eigenvalues of the Jacobian
matrix 𝐴(0, 𝑅). If the eigenvalues of Jacobian matrix 𝐴(0, 𝑅)
are all negative, then the system is asymptotically stable at
the equilibrium point; If there is a positive real part in the
eigenvalues of 𝐴(0, 𝑅), then the system is unstable at the
equilibrium point and easily induces instability oscillation; if
there is a pure imaginary root in the eigenvalue of 𝐴(0, 𝑅),
then the higher order terms need to be analyzed. At this time,
the system has rich dynamic behavior.

The characteristic equation of the system Jacobian matrix
𝐴(0, 𝑅) can be expressed as follows:𝜆5 + 𝑝1𝜆4 + 𝑝2𝜆3 + 𝑝3𝜆2 + 𝑝4𝜆 + 𝑝5 = 0 (19)

In (19),𝑝1 = 𝐶𝐽1 + 𝐶 − 𝛾𝐽2 − 2𝑘1,𝑝2 = 𝐾 + 𝐽2𝑘21 + 2𝛾𝑘1 − 2𝐶𝑘1 − 𝐽2𝑘2𝑘3𝐽2 + 𝐾 − 2𝑘1𝐶𝐽1− 𝛾𝐶𝐽1𝐽2𝑝3 = 𝐶𝑘21 − 2𝐾𝑘1𝐽1+ 𝐶𝑘21 + 𝐽2𝑘1𝑘2𝑘3 − 𝛾𝑘21 − 2𝐾𝑘1 − (𝐶 − 𝛾) 𝑘2𝑘3𝐽2+ 2𝑘1𝛾𝐶 − 𝛾𝐾𝐽1𝐽2 ,



6 Complexity𝑝4 = 𝐾𝑘21𝐽1 + 𝐾𝑘21 + (𝐶 − 𝛾) 𝑘1𝑘2𝑘3 − 𝐾𝑘2𝑘3𝐽2+ 2𝐾𝑘1𝛾 − 𝑘21𝛾𝐶𝐽1𝐽2 ,
𝑝5 = 𝐾𝑘1𝑘2𝑘3𝐽2 − 𝛾𝐾𝑘21𝐽1𝐽2

(20)

The Hurwitz determinant can be constituted by the
coefficient 𝑝𝑖 and be expressed in the following form.

Δ 𝑖 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑝1 1 0 ⋅ ⋅ ⋅ 0𝑝3 𝑝2 𝑝1 ⋅ ⋅ ⋅ 0𝑝5 𝑝4 𝑝3 ⋅ ⋅ ⋅ 𝑝1... ... ... ...𝑝2𝑖−1 𝑝2𝑖−2 𝑝2𝑖−3 ⋅ ⋅ ⋅ 𝑝𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(21)

If i>5, then 𝑝𝑖 =0. R=R0 is defined as the Hopf bifurcation
point of the original system. According to the Hurwitz
determinant, the necessary and sufficient conditions for Hopf
bifurcation in the system can be expressed as follows:𝑝𝑖 (𝑅0) > 0 𝑖 = 1, 2, 3, . . . , 5Δ 𝑖 (𝑅0) > 0 𝑖 = 1, 2, 3Δ 4 (𝑅0) = 0𝑑 (Δ 4 (𝑅))𝑑𝑅 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑅=𝑅0 ̸= 0 (22)

Let the pure imaginary root of the system be ±𝜔0𝑖. The
normalized left and right characteristic vectors of the matrix
𝐴(0,R) corresponding to the eigenvalue𝜔0𝑖 are denoted by𝑈
and 𝑉, respectively. 𝑈𝐴 = 𝜔0𝑖𝑈𝐴𝑉 = 𝜔0𝑖𝑉𝑈𝑉 = 1 (23)

LetΨ = Re (−𝑈𝑓𝑥𝑥𝑥𝑉𝑉𝑉∗ + 2𝑈𝑓𝑥𝑥𝑉𝐴−1 (0) 𝑓𝑥𝑥𝑉𝑉∗+ 𝑈𝑓𝑥𝑥𝑉∗ × [𝐴 (0) − 2𝑖𝜔0𝐼]−1 𝑓𝑥𝑥𝑉𝑉) (24)

𝑉∗ is the conjugate complex number of 𝑉.

𝐴 (0) = 𝐴 (0, 𝑅)|𝑅=𝑅0 ,𝑓𝑥𝑥𝑥𝑉𝑉𝑉∗ = 𝜕𝜕𝑥 (( 𝜕𝜕𝑥 ((𝜕𝑓 (𝑥, 𝑅)𝜕𝑥 ) ×𝑉) ×𝑉)
×𝑉∗)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑅=𝑅0 ,𝑥=0 .

(25)

According to the positive or negative values of Ψ, the
stability of the periodic solution during the Hopf bifurcation
period can be determined. If Ψ > 0 the bifurcation period
of the system is asymptotically stable, and the limit cycle
is stable. The Hopf bifurcation occurring at this time is
supercritical bifurcation. If Ψ < 0, the bifurcation period
of the system is unstable, and the limit cycle is unstable.
The Hopf bifurcation occurring at this time is subcritical
bifurcation.

The mechanical and electrical parameters of the per-
manent magnet semidirect drive system in the coal cut-
ter are taken as follows: L=2.3×10∧-3H, H=6.2×10∧-5H,
K=400000N⋅m/rad, J1=J2=100kg⋅m2. 𝜓𝑓 = 3.8Wb. Numeri-
cal simulation analysis of systemmodel is carried out inMat-
lab2015b. The numerical simulation results show that when
R=R0=0.09Ω, Hopf bifurcation occurs in the system, which
could cause system instability and oscillation. Substituting R0
into (24), Ψ = −0.8962 < 0, so the periodic orbit is unstable
and the Hopf bifurcation is a complex subcritical bifurcation.

With different resistance values of the PMSM in the
neighborhood of the subcritical Hopf bifurcation point, the
motion state of the input elastic torque shaft of permanent
magnet semidirect drive electromechanical coupling system
is shown as Figures 3–6. When R=0.1Ω which is away from
the limitR0=0.09Ω of instability, themotion state of the input
elastic torque shaft is stable and is shown as Figure 3. When
R=0.094Ω which is near the limit R0=0.09Ω of instability,
there are two different trajectories determined by the initial
conditions.When the initial value is closer to the equilibrium
point, taking [0.1 0.1 0.1 0.1 0.1], the motion state of the
input elastic torque shaft is stable and is shown as Figure 4;
when the initial point is farther from the initial point, taking[0.7 0.7 0.7 0.7 0.7], the motion state of the input elastic
torque shaft is unstable and is shown as Figure 5. The
amplitude of limit cycle is large.The system becomes unstable
which could cause system instability oscillation. When R is
less than R0, for any initial condition, the motion state of the
input elastic torque shaft is divergent and unstable. Taking
R=0.085Ω as an instance, the system is in a diverging state
and as Figure 6.

It can be found through the above analysis that when
the system makes subcritical bifurcation, the behavior of the
system is more complicated. Under normal circumstances,
the initial conditions will have an important impact on the
stability of the system. When the motor resistance R is
close to or smaller than the Hopf bifurcation point, a large
amplitude unstable oscillation will burst, and the system
will suddenly burst from stable to unstable. Therefore, when
subcritical Hopf bifurcation occurs in the system, a sudden
violent torsional oscillation will be caused on the input
elastic torque shaft of the permanent magnet semidirect
drive electromechanical coupling system in coal cutter, which
will do harm to the safe and reliable operation of the
system. In order to avoid this phenomenon, it is necessary
to propose a control method for Hopf bifurcation in the
above system and suppress the occurrence of subcritical
bifurcation by shifting the bifurcation point or reducing the
amplitude of vibration to avoid the occurrence of destructive
oscillations.
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Figure 3: When the motor resistance R = 0.1Ω, initial value = [0.1 0.1 0.1 0.1 0.1], system motion state: (a) time history diagram; (b)
phase diagram.
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Figure 4: When the motor resistance R = 0.094Ω, initial value = [0.1 0.1 0.1 0.1 0.1], system motion state: (a) time history diagram; (b)
phase diagram.
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Figure 5: When the motor resistance R = 0.094Ω, initial value = [0.7 0.7 0.7 0.7 0.7], system motion state: (a) time history diagram; (b)
phase diagram.

4. Nonlinear Feedback Control of
Electromechanical Coupling System

The vector control method with of 𝐼d= 0 is adopted, and the
q-axis voltage of the PMSMstands for a controlled quantity. A

nonlinear state feedback controller is constructed as follows
by introducing the motor speed feedback.𝑢𝑞 = 𝐾𝑐𝜔1 + 𝐾𝑛𝜔31 (26)
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Figure 6: When the motor resistance R = 0.085Ω, initial value = [0.1 0.1 0.1 0.1 0.1], systemmotion status: (a) time history diagram; (b)
phase diagram.

𝐾𝑐 is a linear state feedback parameter. 𝐾𝑛 is a nonlinear
state feedback parameter.

Since the vector control method with 𝐼d=0 is used, the
bifurcation characteristics is no longer affected by the first
equation of the system. The system state equation can be
written as follows:

𝑥̇2 = − 𝑅𝐿 − 𝐻𝑥2 + 𝐾𝑐𝑥4 + 𝐾𝑛𝑥34𝐿 − 𝐻 − √6𝜓𝑓2 (𝐿 − 𝐻)𝑥4𝑥̇3 = 𝑥4 − 𝑥5𝑥̇4 = 1𝐽1 [−𝐶 (𝑥4 − 𝑥5) − 𝐾𝑥3 − √6𝜓𝑓2 𝑥2]
𝑥̇5 = 1𝐽2 [𝐶 (𝑥4 − 𝑥5) + 𝐾𝑥3 + 𝜅 + 𝛾𝑥5 + 𝜒𝑥25 + 𝑇𝐿]

(27)

According to the state equation, it can be found that the
equilibrium point of the system remains unchanged after
adding the nonlinear state feedback controller.

Let 𝑘𝑐 = 𝐾𝑐/(𝐿−𝐻); let the Jacobian matrix of the system
be expressed as follows:

𝐴󸀠 (0, 𝑅) = ((
(

𝑘1 0 𝑘𝑐 + 𝑘2 00 0 1 −1𝑘3 −𝐾𝐽1 −𝐶𝐽1 𝐶𝐽10 𝐾𝐽2 𝐶𝐽2 𝛾 − 𝐶𝐽2
))
)

(28)

The characteristic equation of the Jacobian matrix is
developed as

𝜆4 + 𝑝󸀠1𝜆3 + 𝑝󸀠2𝜆2 + 𝑝󸀠3𝜆 + 𝑝󸀠4 = 0 (29)

In (29),

𝑝󸀠1 = 𝐶𝐽1 + 𝐶 − 𝛾𝐽2 − 𝑘1,𝑝󸀠2 = 𝐾 − 𝐶𝑘1𝐽1 + 𝐾 − 𝐶𝑘1 + 𝑘1𝛾𝐽2 − 𝐶𝛾𝐽1𝐽2− (𝑘2𝑘3 + 𝑘3𝑘𝑐)𝑝󸀠3 = −𝐾𝑘1𝐽1+ 𝑘2𝑘3𝛾 + 𝑘𝑐𝑘3𝛾 − 𝐾𝑘1 − 𝐶𝑘2𝑘3 − 𝐶𝑘3𝑘𝑐𝐽2+ 𝐶𝑘1𝛾 − 𝐾𝛾𝐽1𝐽2 ,
𝑝󸀠4 = −𝐾𝑘2𝑘3 − 𝐾𝑘3𝑘𝑐𝐽2 + 𝐾𝑘1𝛾𝐽1𝐽2

(30)

The Hurwitz determinant is constituted by the character-
istic equation coefficient 𝑝󸀠𝑖 and shown as follows:

Δ󸀠𝑖 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝󸀠1 1 0 ⋅ ⋅ ⋅ 0𝑝󸀠3 𝑝󸀠2 𝑝󸀠1 ⋅ ⋅ ⋅ 0𝑝󸀠5 𝑝󸀠4 𝑝󸀠3 ⋅ ⋅ ⋅ 𝑝󸀠1... ... ... ...𝑝󸀠2𝑖−1 𝑝󸀠2𝑖−2 𝑝󸀠2𝑖−3 ⋅ ⋅ ⋅ 𝑝󸀠𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(31)

If i>4, then 𝑝󸀠𝑖=0. 𝑅 = 𝑅∗0 is defined as the Hopf
bifurcation point of the original system. The necessary and
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sufficient conditions for Hopf bifurcation in the system can
be expressed in terms of the Hurwitz determinant,𝑝󸀠𝑖 (𝑅∗0 ) > 0 𝑖 = 1, 2, 3, 4Δ󸀠𝑖 (𝑅∗0 ) > 0 𝑖 = 1, 2Δ󸀠4 (𝑅∗0 ) = 0𝑑 (Δ󸀠4 (𝑅))𝑑𝑅 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑅=𝑅∗

0

̸= 0
(32)

According to the calculation results of the systemHurwitz
determinant, it is found that the Hopf bifurcation point can
be transferred with different values of the parameter 𝐾c for
a larger stable interval. To be more specific, when 𝐾c=0.5,
the bifurcation point is transferred to 𝑅∗0 = 0.079Ω, then
the minimum value of the stable area of the system changes
from 0.09 to 0.079; when 𝐾c=1, the bifurcation point is
transferred to 𝑅∗0 = 0.0679Ω, and the minimum value
of the stable area of the system reduces to 0.0679 from
0.09; when 𝐾c=1.5, the bifurcation point is transferred to𝑅∗0 = 0.0565Ω, and the minimum value of the stable area
of the system decreases from 0.09 to 0.0565. According to
the stable interval corresponding to different𝐾c values, it can
be observed that the stable area of the controlled system is
significantly larger than the original system. And when the

system undergoes different temperatures, the stable area of
the permanent magnet semidirect drive electromechanical
coupling transmission system in coal cutter will expand.

For a better understanding on system’s Hopf bifurcation,
nonlinear analysis is performed on the system to realize the
stability control of the Hopf bifurcation periodic solution
and the amplitude control of the limit cycle. Considering
subcritical bifurcation point 𝑅∗0 = 0.0565Ω and 𝐾c=1.5 as an
instance, let 𝑅 = 𝑅∗0 + 𝜂, 𝜂 is the perturbation amount of the
bifurcation parameter 𝑅∗0 . When the perturbation quantity𝜂 = 0, the eigenvalues of the system Jacobian matrix are𝜆1,2 = ±6.1268𝑖, 𝜆3 = −26.4589, and 𝜆4 = −0.0056, and the
eigenvectors corresponding to the eigenvalue are (u + ki, u −
ki,U1,U2). The system transformation matrix can be written
as T = [u k U1 U2]. The following linear transformation is
performed for (27):

X = TY, Y = [y1 y2 y3 y4]𝑇 (33)

The nonlinear standard equation of the system at the
critical point can be expressed as follows:

Ẏ = JY + ℎ (Y) (34)

𝐽 is the Jordan standard form of the linearization matrix
of the nonlinear rotation system. ℎ(𝑥) is a nonlinear term.

𝐽 = ( 0 𝜔0 0 0−𝜔0 0 0 00 0 −𝛼3 00 0 0 −𝛼4) (35)

ℎ (𝑥) =
(((((((((((((
(

0.0151𝑘𝑛 (−0.0179𝑦1 − 0.0043𝑦2+0.0009𝑦3 − 0.0179𝑦4)3 + 26.8519( 𝜅 + 𝑇𝐿+𝜒 (0.0155𝑦1 + 0.0114𝑦2 − 0.0179𝑦4)2)0.0183𝑘𝑛 (−0.0179𝑦1 − 0.0043𝑦2+0.0009𝑦3 − 0.0179𝑦4)3 + 6.6261( 𝜅 + 𝑇𝐿+𝜒 (0.0155𝑦1 + 0.0114𝑦2 − 0.0179𝑦4)2)0.9587𝑘𝑛 (−0.0179𝑦1 − 0.0043𝑦2+0.0009𝑦3 − 0.0179𝑦4)3 + 1.15396( 𝜅 + 𝑇𝐿+𝜒 (0.0155𝑦1 + 0.0114𝑦2 − 0.0179𝑦4)2)0.0262𝑘𝑛 (−0.0179𝑦1 − 0.0043𝑦2+0.0009𝑦3 − 0.0179𝑦4)3 − 28.3907( 𝜅 + 𝑇𝐿+𝜒 (0.0155𝑦1 + 0.0114𝑦2 − 0.0179𝑦4)2)

)))))))))))))
)

(36)

Equation (34) can be expanded as follows:𝑦̇1 = 𝜔0𝑦2 + ℎ1 (𝑦)𝑦̇2 = −𝜔0𝑦1 + ℎ2 (𝑦) (37)

𝑦̇3 = −𝛼3𝑦3 + ℎ3 (𝑦) (38)𝑦̇4 = −𝛼4𝑦4 + ℎ4 (𝑦) (39)

From (37)∼(39) andon the basis of themethodofmultiple
scales, the normal form of the nonlinear system can be
calculated by introducing the following new variables:𝑇𝑘 = 𝜀𝑘𝑡 k = 0, 1, 2, . . . (40)

That is, 𝑇0 = 𝑡, 𝑇1 = 𝜀𝑡, 𝑇2 = 𝜀2𝑡, . . .. 𝜀 is a small
parameter. So the derivative to 𝑡 becomes an expanded form
of the partial derivative to 𝑇𝑘.



10 Complexity𝑑𝑑𝑡 = 𝑑𝑇0𝑑𝑡 𝜕𝜕𝑇0 + 𝑑𝑇1𝑑𝑡 𝜕𝜕𝑇1 + ⋅ ⋅ ⋅ = 𝐷0 + 𝜀𝐷1 + ⋅ ⋅ ⋅𝑑2𝑑𝑡2 = 𝐷20 + 2𝜀𝐷0𝐷1 + 𝜀2 (𝐷21 + 2𝐷0𝐷2) + ⋅ ⋅ ⋅ (41)

𝐷𝑖 denotes 𝜕/𝜕𝑇𝑖, the solution of the equation can be
expressed as follows,𝑦𝑖 (𝑡, 𝜀) = 𝜀𝑦𝑖1 (𝑇0, 𝑇1, 𝑇2, . . .) + 𝜀2𝑦𝑖2 (𝑇0, 𝑇1, 𝑇2, . . .)+ ⋅ ⋅ ⋅ (42)

Substituting (41) and (42) into (35), according to the
perturbation method, the each order equations of each order
of 𝜀 are established as follows:𝜀1: 𝐷0𝑦11 = 𝜔0𝑦21𝐷0𝑦21 = −𝜔0𝑦11 (43)𝐷0𝑦31 = −𝛼3𝑦31 (44)𝐷0𝑦41 = −𝛼4𝑦41 (45)𝜀2: 𝐷0𝑦12 = 𝜔0𝑦22 − 𝐷1𝑦11 + ℎ12 (𝑦1)𝐷0𝑦22 = −𝜔0𝑦12 − 𝐷1𝑦21 + ℎ22 (𝑦1) (46)

𝐷0𝑦32 = −𝛼3𝑦32 + ℎ32 (𝑦1) (47)𝐷0𝑦42 = −𝛼4𝑦42 + ℎ42 (𝑦1) (48)𝜀3:𝐷0𝑦13 = 𝜔0𝑦23 − 𝐷1𝑦12 − 𝐷2𝑦11 + ℎ13 (𝑦1,2)𝐷0𝑦23 = −𝜔0𝑦23 − 𝐷1𝑦22 − 𝐷2𝑦21 + ℎ23 (𝑦1,2) (49)

𝐷0𝑦33 = −𝛼3𝑦33 + ℎ33 (𝑦1,2) (50)𝐷0𝑦43 = −𝛼4𝑦43 + ℎ43 (𝑦1,2) (51)

In order to obtain the first-order approximate solution of
system (34), according to the relationship between the two
equations in (43), the following can be obtained:𝐷20𝑦11 + 𝜔20𝑦11 = 0 (52)

The first-order approximate solution of 𝑦1 can be solved
as follows:𝑦11 = 𝑟 (𝑇1, 𝑇2, . . .) cos [𝜔0𝑇0 + 𝜑1 (𝑇1, 𝑇2, . . .)]= 𝑅1 (𝑇1, 𝑇2, . . .) 𝑒𝑗𝜔0𝑇0 + 𝑐𝑐 (53)

In (53), 𝑅1(𝑇1, 𝑇2, . . .) = (𝑟(𝑇1, 𝑇2, . . .)/2)𝑒𝑗𝜑(𝑇1 ,𝑇2,...).
r and 𝜑 represent the amplitude and phase of the

first-order approximate periodic solution of 𝑦1, respectively.

Similarly, the first-order approximate solution of 𝑦2 can be
expressed as follows:𝑦21 = −𝑟 (𝑇1, 𝑇2, . . .) sin [𝜔0𝑇0 + 𝜑 (𝑇1, 𝑇2, . . .)] (54)

The asymptotically stable solutions 𝑦𝑗1=0, j=3, 4, which
can be found clearly by (44) and (45) in the 𝜀1 term.

The relationship between the two equations in (46) is used
to develop the second-order approximate solution for 𝑦 as
follows:𝐷20𝑦12 + 𝜔20𝑦12 = −𝐷0𝐷1𝑦11 − 𝜔0𝐷1𝑦21 + 𝐷0ℎ12+ 𝜔0ℎ22 (55)

The second-order approximate solution of y can be
expressed as follows:𝑦𝑖2 = 2∑

𝑛=0

[𝐸𝑖 cos (𝑛𝜃) + 𝐹𝑖 sin (𝑛𝜃)] (56)

Substituting 𝑦𝑖1 and 𝑦𝑖2 into (55), n=1,2, the expressions
for the trigonometric functions cos(𝑛𝜃) and sin(𝑛𝜃), n=1,2,3,
can be obtained. Eliminating system secular terms, the
second-order approximate solution of𝑦 and the𝐷1𝑟,𝐷1𝜑 can
be obtained.

Similarly, according to the relationship between the two
equations in (49), the equation can be rewritten as follows:𝐷20𝑦13 + 𝜔20𝑦13 = −𝐷0𝐷2𝑦11 − 𝜔0𝐷2𝑦21 − 𝐷0𝐷1𝑦12− 𝜔0𝐷1𝑦22 + 𝐷0ℎ13 (𝑦1,2)+ 𝜔0ℎ23 (𝑦1,2) (57)

Similarly, the third-order approximate solution of 𝑦 can
be expressed as follows:𝑦𝑖3 = 3∑

𝑛=0

[𝑃𝑖 cos (𝑛𝜃) + 𝑄𝑖 sin (𝑛𝜃)] (58)

The third-order approximate solution of 𝑦 and the 𝐷2𝑟,𝐷2𝜑 can be achieved through the harmonic balance method.
According to 𝐷0 𝑟, 𝐷1 𝑟, 𝐷2 𝑟 and 𝐷0𝜑, 𝐷1𝜑, 𝐷2𝜑

obtained from the synthesis of nonlinear vibration theory, the
third-order normal form in the polar coordinate of system
can be obtained.̇𝑟 = 𝐷0𝑟 + 𝐷1𝑟 + 𝐷2𝑟= −3.3722𝜂𝑟 + (−0.3277𝐾𝑛 + 0.0029) 𝑟3𝜃̇ = 𝜔𝑐 + 𝐷0𝜑 + 𝐷1𝜑 + 𝐷2𝜑= 6.1268 + 4.0868𝜂 + (0.2001𝐾𝑛 + 0.00059) 𝑟2

(59)

The opening item in (59) is shown as follows:𝛿𝑟 = 12 ( 𝜕2𝑦̇1𝜕𝑦1𝜕𝜂 + 𝜕2𝑦̇2𝜕𝑦2𝜕𝜂) = −3.3722
𝛿𝜃 = 12 ( 𝜕2𝑦̇1𝜕𝑦2𝜕𝜂 − 𝜕2𝑦̇2𝜕𝑦1𝜕𝜂) = 4.0868 (60)
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Figure 7: When 𝑅 = 0.085Ω,𝐾c=1.5, and𝐾n=0, initial value = [0.1 0.1 0.1 0.1], system motion status: (a) time history diagram; (b) phase
diagram.
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Figure 8:When 𝑅 = 0.0566Ω,𝐾c=1.5, and𝐾n=0, initial value = [0.1 0.1 0.1 0.1], systemmotion status: (a) time history diagram; (b) phase
diagram.

The necessary and sufficient condition for the occurrence
of supercritical Hopf bifurcation in the system is listed as
follows: −0.3277𝐾𝑛 + 0.0029 < 0 (61)

That is, 𝐾𝑛 > 0.0088 (62)𝑟 = √ −3.3722𝜂0.3277𝐾𝑛 − 0.0029 (63)

The numerical simulation for the limit cycle which is pro-
duced in the neighborhood of the Hopf bifurcation point of
the controlled system verifies the effectiveness of the designed
linear feedback controller and nonlinear controller on the
Hopf bifurcation transmission, the limit cycle stability, and
amplitude adjustment. Taking the linear controller control
parameter 𝐾c=1.5 and the bifurcation parameter R=0.085Ω

as an example, the system time history diagram and phase
diagram are drawn as follows when there is no nonlinear
feedback controller installed.

Comparing Figure 6 with Figure 7, it can be found
that, after adding the linear controller and the drive motor
resistanceR=0.085, the original system runs fromchaotic into
a smooth state at the equilibrium point, supporting the idea
that the linear controller could effectively expand the stable
interval in the system.

When the nonlinear controller is not added, the subcriti-
cal Hopf bifurcation still occurs near the bifurcation point of
the original system. Taking R=0.0566Ω as an example, when
the initial value takes the smaller value [0.1 0.1 0.1 0.1],
the system works in steady state. With other parameters
unchanged, Hopf bifurcation occurs in the system when the
initial value is increased to [0.7 0.7 0.7 0.7]. The results of
the numerical simulation are shown in Figures 8 and 9.

Without adding a nonlinear controller, the system sub-
critical Hopf bifurcation still occurs at the point of bifur-
cation. The system will produce instability and oscillation,
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Figure 9:When R = 0.0566Ω,𝐾c=1.5, and𝐾n=0, initial value = [0.7 0.7 0.7 0.7], systemmotion status: (a) time history diagram; (b) phase
diagram.
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Figure 10: When R = 0.0566Ω, 𝐾c=1.5, and 𝐾n=0.5, initial value = [0.7 0.7 0.7 0.7], system motion status: (a) time history diagram; (b)
phase diagram.
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Figure 11: When R = 0.05Ω,𝐾c=1.5, and𝐾n=0.5, initial value = [0.1 0.1 0.1 0.1], systemmotion status: (a) time history diagram; (b) phase
diagram.

which will damage the system, affect the system work effi-
ciency, and even cause security accidents. Therefore, it is
necessary to install nonlinear controller. Taking nonlinear
controller parameter 𝐾n=0.5, motor resistance R=0.0566Ω,

and initial value = [0.7 0.7 0.7 0.7], numerical simulation
results are shown in Figure 10.

From Figure 10, it is suggested that, with the nonlinear
controller installed, the system operates from unstable state
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Figure 12: When R = 0.05Ω,𝐾c=1.5, and𝐾n=10, initial value = [0.1 0.1 0.1 0.1], systemmotion status: (a) time history diagram; (b) phase
diagram.

into a stable state when motor resistance R=0.0566Ω and ini-
tial value = [0.7 0.7 0.7 0.7], indicating that the designed
nonlinear controller has a sound control effect.

When the nonlinear controller is added to the controlled
system, the system supercritical Hopf bifurcation is generated
at the neighborhood of the Hopf bifurcation point 𝑅∗0 . When
the bifurcation parameter R=0.05Ω < 𝑅∗0 , the stable limit
cycle is generated near the equilibrium point, as shown in
Figures 11 and 12. It effectively avoids the more harmful
subcritical destabilizing oscillationswith greater harm.When
R is the same, the amplitude of the stable limit cycle can
be controlled by changing the parameter𝐾n. Comparing
Figure 11 with Figure 12, we can see that when 𝐾n=10, the
system limit cycle amplitude is obviously smaller than it when𝐾n=0.05. Also as the 𝐾n increases, the limit cycle amplitude
of the system decreases. Although there is a certain error
between the limit cycle amplitude obtained by numerical
simulation and the analytical calculation in Figures 11 and 12,
the variation trend of the limit cycle amplitude is consistent.
Therefore, the amplitude of the system oscillation can be
reduced by increasing the feedback coefficient 𝐾n. The
damage degree of the torsional vibration of the semidirect
drive transmission system in coal cutter is reduced.

5. Conclusions

As the three-phase asynchronous motor has been replaced
by the PMSM, in which the intermediate drive devices are
shortened, the permanent magnet semidirect drive cutting
transmission system of coal cutters has been composed,
minimizing the breakdown rate and improving the system
stable performance greatly.When the temperature changes or
the working conditions become worse, its unstable vibration
may appear caused by resistance value of PMSM. On the
basis of this and with its complex electromechanical coupling
characteristics combined, the dynamics equation of nonlin-
ear torsional vibration system is set up, analyzing the Hopf
bifurcation both qualitatively and quantitatively. In addition,
given the q-axis as the controlling variable, the nonlinear

speed feedback controller is presented, eliminating the tor-
sional vibration effectively. The results are demonstrated as
follows:

(1) Coal cutters perform in a relatively adverse environ-
ment, which may bring a change in electrical parameters. As
a result, subcritical Hopf bifurcation may occur in the main
driving system, causing the system extremely vibrationwhich
may exert a negative effect on the system performance.

(2)The control effect of the nonlinear controller is verified
by numerical simulation. On the one hand, the linear part
can expand the stable region of the system. On the other
hand, the nonlinear part can reduce subcritical bifurcation
phenomenon as well as the limit cycle amplitudes.

(3) The amplitudes of a stable limit cycle decrease along
with the increase of the nonlinear parameters. Since the
proposed controller may implement effective control on the
torsional vibration in the scraper conveyor of main power
system electrically, a safe and reliable guarantee is provided
for the application of high-power permanent magnet syn-
chronous motors, an expectation of the utilizing in the area
of large-scale mechanical equipment.
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