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A novel adaptive tracking control scheme is proposed for a class of uncertain nonlinear switched systems with perturbations in
this paper.  e common Lyapunov function method is introduced to handle the switched system in the design process of the
desired adaptive controller. In addition, a dynamic surface control method is proposed by employing a nonlinear �lter such that
the “explosion of complexity” problem existing in the conventional backstepping design can be overcome. Under the presented
adaptive controller, all the closed-loop signals are semiglobally bounded, and especially the output signal of the controlled system
can follow the given reference signal asymptotically. To show the availability of the presented control scheme, a simulation is given
in this paper.

1. Introduction

Switched systems, as a typical class of hybrid systems, have
attracted many researchers’ sights in the past decades (e.g.,
see [1–14]) since many physical systems can be mathe-
matically modeled by the switched systems. Owing to the
large-scale applications, the research on switched systems
never stops and great achievements have beenmade (e.g., see
[1–6]).  e stabilization problem for a class of slowly
switched systems based on unstable subsystems is studied in
[6].  e optimal control scheme of the switching positive
system is presented in [7].  e stabilization problem of
switched linear systems with mode-dependent average dwell
time is addressed in [8]. Most signi�cant issues on switched
systems have been acquired for multitudinous switched
systems under arbitrary switching or constraint switching
(e.g., see [8–11]), and references therein.

Adaptive control of uncertain nonlinear systems has
achieved signi�cant research results (e.g., see [15–25])

including adaptive feedback linearization [15], adaptive
backstepping [16], immersion and invariance adaptive
control [17], and adaptive neural network/fuzzy-logic
control [21, 25]. Very recently, some novel adaptive control
schemes have been established for uncertain systems with
the unknown control directions or the parameter estimator
triggering [26–28]. However, the “explosion of complexity”
problem exists in the repeated di¤erentiations of virtual
control variables [18, 19] in the backstepping approach.
 us, with the system order increasing, the computation of
the backstepping controller will be more complicate.

To overcome the “explosion of complexity” problem in
the backstepping design process, for uncertain strict-feed-
back/nonstrict-feedback nonlinear systems, the dynamic
surface control (DSC) technique is established (e.g., see
[29–38]). In literature studies [29, 30], a virtual control law is
designed in each design step by using a low-pass �lter, thus it
can avoid the derivative of the virtual controllers. Another
advantage of the DSC approach is that it can reduce the
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requirement on the smoothness of plant functions and
desired signal obviously. ,erefore, the DSC technique has a
large-scale application in the process of designing simplified
adaptive controllers for uncertain nonlinear systems. ,e
adaptive robust DSC with composite adaptation laws is
designed for the uncertain system with the semistrict
feedback form in [31]. Based onmultiple models, the result is
applied to enhance the transient response of an adaptive
DSC system in [32]. An adaptive DSC scheme is presented
by using composite learning to ensure parameter conver-
gence without the persistent excitation condition in [33].
Various adaptive backstepping schemes using neural net-
works (NNs) or fuzzy logic systems as approximators are
proposed to deal with the time delays, dynamic un-
certainties, and output dead zone for stochastic large-scale
nonlinear systems in [34–37]. Very recently, a novel DSC
method with the nonlinear filter is proposed for a class of
uncertain systems, and the asymptotic tracking control
performance is achieved in [38].

In the above discussions, some adaptive DSC schemes
have been developed for uncertain switched systems. Nev-
ertheless, these control schemes can just guarantee the
semiglobal boundedness for the controlled systems, and the
asymptotic stability cannot be achieved since the stability
analysis cannot be completed by the conventional DSC
technique with a linear low-pass filter. In this paper, we try to
address this issue by employing the DSC method with a
nonlinear filter. ,e main contributions of this work are
summarized as following.

(i) As far as we know now, this is the first work to
address the asymptotic tracking control problem for
uncertain switched systems by using the DSC
method to solve the “explosion of complexity”
problem existing in the conventional backstepping
design.

(ii) By introducing the DSC method with a nonlinear
filter proposed in [38], the desired controller is
developed based on the common Lyapunov func-
tion, and then the stability analysis of the closed-loop
switching control system is completed according to
Barbalat’s lemma.

,is paper is organized as follows. ,e problem state-
ment and some preliminaries are introduced and adaptive
DSC scheme with a detailed stability analysis are presented
in Section 2. ,en, a simulation example is given in Section
3. A conclusion is drawn in Section 4.

2. Problem Statement and Main Result

2.1. Problem Statement and Some Preliminaries. Taking the
following class of uncertain strict-feedback nonlinear
switched systems into account,

_xi � xi+1 + θifi,9(t) xi(  + di(t), i � 1, . . . , n − 1,

_xn � u + θnfn,9(t) xn(  + dn(t),

y � x1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where xi � [x1, . . . , xi]
T ∈ Ri, i � 1, . . . , n are the states of

the system, u ∈ R is the control input, and y ∈ R is the
system output. For i � 1, . . . , n, θi are the unknown con-
stants, di(t) are the perturbations, and fi(·) : Rn⟶ R are
the known continuously differentiable functions.
9(t) : [0,∞) is the switching signal, and p denotes the
number of subsystems in the switched system.

,e control objective of this paper for system (1) is to
design an adaptive DSC law u such that the output y(t)

asymptotically tracks a desired trajectory yr(t), and the
boundedness of all the signals in the closed-loop system is
guaranteed.

Assumption 1. ,e desired trajectory yr(t) and its de-
rivatives _yr(t) and €yr(t) are bounded and available.

Assumption 2. ,e perturbations di(t), i � 1, . . . , n are
bounded, i.e., |di(t)|≤Wi with the constants Wi > 0.

Lemma 1 (see [39]). For any ε> 0 and z ∈ R, the following
inequality can be obtained:

0≤ |z| −
z2

������
z2 + ε2

√ < ε. (2)

2.2.AdaptiveControllerDesign. ,e presented adaptive DSC
scheme is similar to the backstepping technique, and it
contains n steps as follows. Define the estimate error
∗ � ∗ − ∗̂, where ∗̂ is the estimate of ∗̂. Let
εi � |θi|, i � 1, . . . , n.

Step 1. ,e first surface error is defined as z1 � x1 − yr, and
the time derivative of z1 is

_z1 � _x1 − _yr � x2 + θ1f1,9(t) x1(  + d1(t) − _yr. (3)

,en, the Lyapunov function candidate V1 is defined as

V1 �
1
2
z
2
1 +

1
2c1

ε21 +
1
2β1

W
2
1, (4)

where c1 and β1 are positive design parameters.
Considering equations (1)–(4), the following equation

can be obtained:

_V1 � z1 x2 + θ1f1,9(t) x1(  + d1(t) − _yr  −
1
c1

ε1 _ε −
1
β1

W1
_̂

W 1

� z1 x2 + θ1f1,9(t) x1(  + d1(t) − _yr + α1 − α1  −
1
c1

ε1 _̂ε

−
1
β1

W1
_̂

W 1.

(5)

On the basis of fi,9(t), we can obtain the following
inequality:
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fi,9(t)



≤

������



p

j�1
f2

i,j




. (6)

,e above inequality is introduced to design the desired
controller by employing the common Lyapunov function
method. In order to develop an adaptive controller without
the switching signal 9(t), the subsystem function fi,9(t) is
bounded by an upper bound function which is without the
switching signals.

Let Di �
�������


p

j�1f
2
i,j


. ,e following inequality can be

obtained:

z1θ1f1,9(t) ≤ z1


 θ1


 fi,9(t)





≤ z1


 θ1


D1

≤ ε1
z2
1D

2
1�����������

z2
1D

2
1 + σ(t)2

 + ε1σ(t),

(7)

and the following inequality can be obtained by using As-
sumption 2

z1d1(t)≤ z1


 d1(t)


≤ z1


W1 � z1


 Ŵ1 + Ŵ1 

≤
z2
1Ŵ

2
1�����������

z2
1Ŵ

2
1 + σ(t)2

 + σ(t) + z1


 W1.
(8)

On designing the virtual control law α1 as

α1 � − k1z1 + _yr − ε̂1
z1D

2
1�����������

z2
1D

2
1 + σ(t)2

 −
z1Ŵ

2
1�����������

z2
1Ŵ

2
1 + σ(t)2

 ,

(9)

the update laws of ε̂1 and Ŵ1 can be designed as

_̂ε 1 � c1
z2
1D

2
1�����������

z2
1D

2
1 + σ(t)2

 , (10)

_̂
W 1 � β1 z1


. (11)

In view of (5)–(11), one has

_V1 � z1
⎛⎝x2 + θ1f1,9(t) x1(  + d1(t) − _yr + ⎛⎝ − k1z1 + _yr

− ε̂1
z1D

2
1�����������

z2
1D

2
1 + σ(t)2

 −
z1

W
2
1�����������

z2
1

W
2
1 + σ(t)2

 ⎞⎠ − α1⎞⎠

−
1
c1

ε1 c1
z2
1D

2
1�����������

z2
1D

2
1 + σ(t)2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ −
1
β1

Ŵ1 β1 z1


 

≤ − k1z
2
1 + x2 − α1( z1 + 1 + ε1( σ(t).

(12)
Design the second error signal in the backstepping as

x2 − α1 such that it can avoid the “explosion of complexity”

problem. Let α1 pass through the following novel nonlinear
filter to obtain a filtered virtual controller s1:

τ1 _s1 � − e1 −
τ1 M

2
1e1�����������

M
2
1e

2
1 + σ2(t)

 − τ1z1,

s1(0) � α1(0),

(13)

where e1 � s1 − α1 is the first boundary layer error, τ1 > 0 is a
design parameter, M1 is the estimate of M1 and it will be
clarified later, and σ(t) is any positive uniform continuous
and bounded function, which satisfies

lim
t⟶∞


 t

0
σ(τ)dτ ≤ σ1 < +∞,

| _σ(t)|≤ σ2 < +∞,

(14)

where σ1 and σ2 are any positive constants.

Remark 1. In this paper, the nonlinear filter (13) is in-
troduced to construct the desired controller. Compared with
the reported results on adaptive DSC with a linear low-pass
filter (e.g., see [30–37]), the advantage of our deign is that the
asymptotic tracking control performance can be guaranteed,
and the stability analysis can be completed successfully
under the proposed controller.

Step i (i � 2, . . . , n − 1). ,e ith surface error is designed as
zi � xi − si− 1; then, we get the following equation:

_zi � xi+1 + θifi,9(t) + di(t) +
M

2
i− 1ei− 1�������������

M
2
i− 1e

2
i− 1 + σ2(t)

 + zi− 1 +
ei− 1

τi− 1
.

(15)

Design the virtual control law αi and the update laws εi

and Wi as follows:

αi � − kizi − 2zi− 1 − ε̂i

ziD
2
i�����������

z2
i D2

i + σ2(t)



−
ziŴ

2
i�����������

z2
i Ŵ2

i + σ2(t)

 −
M̂2

i− 1ei− 1�������������

M̂2
i− 1e

2
i− 1 + σ2(t)

 −
ei− 1

τi− 1
,

(16)

_̂ε 1 � ci

z2
i D2

i�����������

z2
i D2

i + σ2(t)

 ,

(17)

_̂
W 1 � βi zi


,

(18)

where ki, ci, and βi are the positive design parameters.
Design the Lyapunov function candidate Vi as

Vi � Vi− 1 +
1
2
z
2
i +

1
2ci

ε2i +
1
2βi

W
2
i , (19)

where ci and βi are the positive design parameters.
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In view of equations (15)–(19), consider the time de-
rivative of Vi as

_Vi � _Vi− 1 + zi _zi −
1
ci

εi
_εi −

1
βi

Wi
_̂

W i

≤ − 
i

j�1
kjz

2
j + 

i− 1

j�1
zjej + xi+1 − αi( zi + i + 

i

j�1
εj

⎛⎝ ⎞⎠σ(t).

(20)

Let αi pass through the following nonlinear filter to
obtain a filtered virtual controller si

τi _si � − ei −
τiM̂

2
i ei�����������

M̂2
i e2i + σ2(t)

 − τizi,

si(0) � αi(0),

(21)

and define

ei � si − αi, (22)

where ei means the ith boundary layer error and τi is a filter
time constant.

Step n. Considering the nth surface error as zn � xn − sn− 1,
one has

_zn � u + θnfn,9(t) + dn(t) +
M

2
n− 1en− 1��������������

M
2
n− 1e

2
n− 1 + σ2(t)

 + zn− 1 +
en− 1

τn− 1
.

(23)

Design the actual control law u as

u � − knzn − 2zn− 1 − ε̂n

znD2
n�����������

z2
nD2

n + σ2(t)



−
znŴ2

n�����������

z2
nŴ2

n + σ2(t)

 −
M̂2

n− 1en− 1��������������

M̂2
n− 1e

2
n− 1 + σ2(t)

 −
en− 1

τn− 1
,

(24)

and consider the update laws for εi and Wn as follows:

_̂ε n � cn

z2
nD2

n�����������

z2
nD2

n + σ2(t)

 , (25)

_̂
W n � βn zn


, (26)

where kn, βn, and cn are the positive design parameters.
Design the Lyapunov function candidate Vn as follows:

Vn � Vn− 1 +
1
2
z
2
n +

1
2cn

ε2n +
1
2βn

W
2
n, (27)

where cn and βn are the positive design parameters.
,en, considering equations (23)–(27), we have

_Vn � _Vn− 1 + zn _zn −
1
cn

εn
_εn −

1
βn

Wn
_̂

W n

≤ − 
n

j�1
kjz

2
j + 

n− 1

j�1
zjej + n + 

n

j�1
εj

⎛⎝ ⎞⎠σ(t).

(28)

2.3. Stability Analysis. Based on inequality (28), the main
result of this paper is presented by the following theorem.

Theorem 1. Consider the closed-loop system consisting of the
plant (1), the nonlinear filters (13), (22), the actual controller
(24), and the adaptive laws (10), (11), (17), (18), (25), and(26).
Suppose that Assumptions 1-2 hold, for any initial conditions
satisfying V(0)≤ q, where q is a given constant, there exit
design parameters ki, βi, ci, i � 1, . . . , n, τj, and ηj,
j � 1, . . . , n − 1, such that the following statements hold:

(i) All the resulting closed-loop signals are semiglobally
bounded

(ii) )e tracking error z1 � y − yr converges to zero
asymptotically

Proof. ,e compact sets are defined as

Ω1 � yr, _yr, €yr 
T

: y
2
r + _y

2
r + €y

2
r ≤B0 ,

Ω2 � V(t)≤ q ,
(29)

where B0 is a known positive constant. Note that setΩ1 ×Ω2
is also a compact in R4n+1. σ(t) and _σ(t) are the bounded
functions.

Differentiating the boundary layer errors ei � si − αi

yields

_ei �
− ei

τi

−
M̂2

i ei�����������

M̂2
i e2i + σ2(t)

 − zi + Bi( z1, . . . , zi+1, e1, . . . ,

ei, ε̂1, . . . , ε̂i, M̂1, . . . , M̂i, Ŵ1, . . . , Ŵi, yr, €yr, €yr, σ(t),

_σ(t), i � 1, . . . , n − 1,

(30)
where
B1(·) � − _α1

� −
zα1
zx1

_x1 −
zα1
zε1

_̂ε 1 −
zα1
zyr

_yr −
zα1
z _yr

€yr −
zα1
z W1

_̂
W 1,

Bi(·) � − _αi

� − 
i

j�1

zαi

zxj

_xj −
zαi

z εj

_̂ε j −
zαi

zei− 1
_ei− 1

−
zαi

z Mi− 1

_̂
M i− 1 −

zαi

z Wi

_̂
W i −

zαi

zyr

_yr −
zαi

z _yr

€yr −
zαi

zσ(t)
_σ(t),

(31)
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are the continuous functions on Ω1 ×Ω2. As a consequence,
a positive constant Mi can be obtained such that |Bi(·)|≤Mi,
where Mi > 0 is an unknown constant.

We consider the Lyapunov function candidate as
follows:

V � Vn + 
n− 1

i�1

1
2
e
2
i + 

n− 1

i�1

1
2ηi

M
2
i , (32)

where ηi, i � 1, . . . , n − 1 are the positive design parameters.
,e time derivative of V is

_V � _Vn + 
n− 1

i�1
ei _ei − 

n− 1

i�1

1
ηi

Mi
_̂

M i

≤ − 
n

i�1
kiz

2
i − 

n− 1

i�1

e2i
τi

− 
n− 1

i�1

M̂2
i ei�����������

M̂2
i e2i + σ2(t)



+ 

n− 1

i�1
Mi ei


 − 

n− 1

i�1

1
ηi

Mi
_̂

M i + n + 

n

j�1
εj

⎛⎝ ⎞⎠σ(t).

(33)

We can obtain the following inequality in view of Lemma
1:

Mi ei


 � M̂i ei


 + M̂i ei




≤
M̂2

i e2i�����������

M̂2
i e2i + σ2(t)

 + σ(t) + Mi ei


,

(34)

and then, we have

_V≤ − 
n

i�1
kiz

2
i − 

n− 1

i�1

e2i
τi

− 
n− 1

i�1

1
ηi

Mi
_̂

M i − βi ei


  + ϖσ(t),

(35)

where ϖ ≔ 2n + 
n
j�1εj − 1 is a constant.

Consider the update laws for Mi as
_̂

M i � ηi ei


, i � 1, . . . , n − 1. (36)

From equation (35), the following inequality can be
obtained:

_V≤ − 
n

i�1
kiz

2
i − 

n− 1

i�1

e2i
τi

+ ϖσ(t). (37)

Integrating inequality (37) over [0, t] yields

V(t)≤V(0) − 
t

0


n

i�1
kiz

2
i (κ) + 

n

i�1

e2i (κ)

τi

⎛⎝ ⎞⎠dκ + ϖ
t

0
σ(κ)dκ

≤V(0) + ϖσ1,
(38)

which means that zi, zn, εi, εn, Wi, Wn, ei, and Mi

,i � 1, . . . , n − 1 are bounded. ,erefore, we also conclude
that xi, xn, si, αi, and u, i � 1, . . . , n − 1 are bounded. From
inequality (38), we can obtain the following inequality:


t

0


n

i�1
kiz

2
i (κ)dκ ≤V(0) + ϖσ1. (39)

By applying Barbalat’s lemma [40, 41] to inequality (39),
it is concluded that

lim
t⟶∞

z1 � 0, (40)

that is to say, the asymptotic stability is accomplished.

Remark 2. For uncertain switched systems (e.g., see [21–
23]), lots of adaptive control schemes have been developed
by the conventional backstepping method. ,is paper

y
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Figure 1: ,e reference signal yr and the output signal y.
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introduces the adaptive DSC method to solve the “explosion
of complexity” problem existing in the aforementioned
literature studies, and the asymptotic tracking performance
has been achieved under the developed adaptive controller.

Remark 3. Recently, some novel adaptive control schemes
have been proposed for uncertain systems with time-varying
performance bounds and actuator failures in [42, 43], where
the “explosion of complexity” problem cannot be well solved
and the asymptotic tracking performance is not achieved. Of
course, this paper does not consider the actuator failure

phenomenon of the controlled system, which is the further
study program in the future.

3. Simulation Example

Consider the following nonlinear switched system:

_x1 � x2 + θ1f1,9(t) x1(  + d1(t),

_x2 � u + θ2f2,9(t) x2(  + d2(t),

y � x1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(41)

0 10 15 20 25 30 35 405
Time (sec)

–5

0

5

10

u

Figure 2: ,e control signal u.
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M⌃1
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0

0.5

1
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2

2.5

Figure 3: Adaptive parameters |θ1|, |θ2|, and M1.
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where θ1 and θ2 are the unknown parameters; d1(t) � cos(t)

and d2(t) � sin(t); 9(t) ∈ 1, 2{ }; and the switched functions
are designed as follows: f1,1 � x1e

− 0.5x1 , f1,2 � sin(x1),
f2,1 � sin(x1x2), and f2,2 � x1x

2
2. When the output y sat-

isfies y> 0, fi,σ(t) � fi,1, i � 1, 2. Otherwise,
fi,σ(t) � fi,2, i � 1, 2. For simulation purpose, it is assumed
that θ1 � 1 and θ2 � 2.5. ,e objective of control is that the
output y(t) asymptotically tracks the desired trajectory
yr(t) � sin(t) via the proposed adaptive controller u.

,e design parameters are selected as k1 � 1.2, k2 � 2,
c1 � 1.12, c2 � 1.02, β1 � β2 � 3, η1 � 0.25, τ1 � 1, and

σ(t) � 3e− 0.0001t. ,e initial conditions of this switched
system are chosen as [x1(0), x2(0)]T � [0, 0]T, ε̂1(0) � 0.1,
ε2(0) � 1, Ŵ1(0) � Ŵ2(0) � 0, and M̂1(0) � 0. ,e simu-
lation results are displayed in Figures 1–5. Figure 1 shows the
output tracking performance under the presented DSC
scheme, from which it can be analyzed that the asymptotic
output tracking has been achieved. Figure 2 shows the
control signal u. Figures 3 and 4 show the adaptive pa-
rameters. ,e state x2 is shown in Figure 5. ,e switching
signal is presented in Figure 6. All these simulation results
show that the closed-loop signals are bounded.

0 10 15 20 25 30 35 405
Time (sec)

–2

0

2

4

6

8

10

12

W⌃
1, 
W⌃

2

W⌃1
W⌃2

Figure 4: Adaptive parameters W1 and W2.
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0
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Figure 5: State x2.
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4. Conclusions

,is paper studies the adaptive tracking control problem for
a class of uncertain nonlinear systems with perturbations
and switching signal. To deal with the switched signals of the
considered system, the common Lyapunov function method
is employed to deign the desired controller. Furthermore,
according to a nonlinear filter, a DSCmethod is presented to
overcome the “explosion of complexity” problem. Under the
proposed controller, it has been expressed that all the closed-
loop signals remain semiglobally bounded, and the tracking
error converges to zero asymptotically. In the end of this
paper, to checkout the validity of the control scheme, a
simulation example is presented.
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