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A novel identi�cation algorithm for the correlation analysis-based multiple-input single-output (MISO) neurofuzzy Wiener
model with noise is proposed. Firstly, several sets of Gaussian signals are utilized to realize the decoupling between the dynamic
linear blocks and the static nonlinear blocks of a MISO Wiener system. �en, the correlation analysis is adopted to identify the
parameters of the linear parts, and the problem that the output of static nonlinear block is immeasurable can be solved. As a result,
it can circumvent the problem of initialization and convergence of the model parameters encountered by the existing iterative
approach used for the identi�cation of the Wiener model. Next, the least-squares algorithm is employed to estimate the
consequent parameters of the nonlinear blocks which can avoid the in�uence of noise. Finally, examples are used to illustrate the
performance of the proposed method.

1. Introduction

Wiener model consists of the cascade of a dynamic linear
block followed by a static nonlinear block which can ap-
proximate a lot of industry processes, such as PH neutral-
ization [1], continuous stirred tank reactor (CSTR) [2], heat
exchanger [3], and distillation columns [4]. �us, block-
oriented models have gained wide attention in the system
identi�cation and automatic control �elds [5–8].

Up to now, plenty of methodologies have been used to
identify block-oriented models. In general, the identi�cation
approaches based on input-output signals for block-oriented
models can be divided into two parts: the synchronous
method and the separate step algorithm. �e synchronous
method identi�es the block-oriented system by directly
constructing the hybrid model of the dynamic linear block
and the static nonlinear block [9], such as the direct iden-
ti�cation method [10], the subspace algorithm [11], the
overparameterization approach [12], and the hierarchical
identi�cation methods [13]. �e separate step algorithm
decomposes the block-oriented model into the dynamic

linear block and the static nonlinear block, such as the
correlation method [14], the iterative algorithm [15], the
blind approach [16], and stochastic technique [17].

Few papers concentrated on the MISO Wiener model.
Guo and Papanicolaou transformed the MISO Wiener
model into a pseudolinear system, and then, the adaptive
recursive pseudolinear regressions and the smoothing
technique were employed to estimate the intermediate
variables so that the parameters of the MISO Wiener model
were estimated [18]. Tiels et al. [19] formulated the dy-
namical linear part of the MISO Wiener–Schetzen model
with a set of orthonormal basis functions, and the system
poles were estimated by the best linear approximation al-
gorithm. Feroldi, Gomez, and Roda introduced a MISO
Wiener model identi�cation method based on support
vector (SV) regression which is used to estimate a nonlinear
dynamical model for the air supply system of laboratory
polymer electrolyte membrane fuel cells [20]. However, the
abovementioned methods assume that the static nonlinear
block is of the polynomial model, which has a lot of limi-
tations. If the nonlinearity is discontinuous or not in the

Hindawi
Complexity
Volume 2019, Article ID 9650254, 13 pages
https://doi.org/10.1155/2019/9650254

mailto:jiali@staff.shu.edu.cn
https://orcid.org/0000-0002-5566-9209
https://orcid.org/0000-0002-4647-4178
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/9650254


polynomial form, the algorithms do not converge. More-
over, high-degree polynomials have oscillatory behaviour.
Zhou et al. developed a gradient-based iterative identifica-
tion approach for the MISO Wiener model which can ap-
proximate the glutamate fermentation process [21]. In 2011,
a prediction error identification principle for the MISO
Wiener model was proposed by Silva to solve the problem in
anesthesia [22]. A hybrid genetic and swarming intelligence-
based hierarchical cultural algorithm was applied to identify
the MISO Wiener model in [23]. But the aforementioned
results considered the identification of the MISO Wiener
model without output noise, which is not the case in the real
industrial processes.

A useful theorem which is summarized in Bussgang’s
classic principle (see [24]) about Gaussian signal presents
that Rvu(τ) � b0Ru(τ) holds for an arbitrary static non-
linearity if the input signal is separable, where Rvu(τ) �

E(v(k)u(k − τ)) is the cross-correlation between the input
signal u(t) and the output signal v(t), Ru(τ) � E(u(k)u(k −

τ)) is the autocorrelation of the input signal, and
b0 � E(f′(u(k))), where f′(·) is the first-order derivative of
f(·). Nuttall generalized this theorem to a larger kind of
separable signals, such as sine signals, random binary sig-
nals, and several kinds of modulated signals [25]. Enqvist
and Ljung further proposed a principle: the process is
separable if and only if the condition expectation of the
signal u(k) satisfies E(u(k − τ) | u(k)) � a(τ)u(k), where
a(τ) � Ru(τ)/Ru(0) [26]. Greblicki and Pawlak studied the
white noise incentive signal-based identification algorithm
for the Hammerstein model in [27]. Goethals et al. gener-
alized the linear subspace method and combined correlation
analysis with least squares support vector machines (LS-
SVM) regression to estimate the parameters of the dynamics
and nonlinearity representation of the Hammerstein–
Wiener model [28]. In our previous works, Jia et al. extended
Bussgang’s theorem to Hammerstein model [29–31], and the
correlation analysis algorithm was applied to the SISO
Wiener model in [32]. However, most of the real industry
processes [33–35] are inherently multivariable systems
which can describe the relationships among different vari-
ables more accurately. *us, multivariable nonlinear iden-
tification techniques are required. In addition, according to
[36–38], sometimes for reason of making the system as close
as possible to the real one, MISO block-orientedmodels with
distributed dynamic linear blocks are chosen to represent
some nonlinear industry processes. *erefore, motivated by
our previous works, a novel identification algorithm for
correlation analysis algorithm-based MISO-distributed
Wiener model with noise is presented. *e nonlinearities of
the MISO Wiener model are approximated by neurofuzzy
models, which can avoid the inevitable restrictions on static
nonlinearities encountered by using the polynomial models.
Gaussian signals are adopted to separate the dynamic linear
blocks and the static nonlinear blocks. *en, the correlation
analysis is employed for the identification of the dynamic
linear parts so as to obtain the intermediate variables in-
directly. At last, least squares approach is used to identify the
nonlinearity and the estimation is proved to be unbiased.

*e rest of the paper is organized as follows. *e
identification problem of the MISO neurofuzzy Wiener
model with noise is described in Section 2. A correlation
analysis-based identification approach is presented in detail
in Section 3. Section 4 gives the simulation examples, fol-
lowed by the conclusion given in Section 5.

2. MISO Wiener Neurofuzzy Model with Noise

Consider a MISO Wiener model (see [18]) with noise which
consists of the dynamic linear blocks and the static nonlinear
blocks as shown in Figure 1 as given by

vi(t) �
Bi(q)

Ai(q)
ui(t),

yi(t) � fi vi(t)( 􏼁,

y(t) � 􏽘
m

i�1
yi(t) + η(t), i � 1, 2, . . . , m,

Ai(q) � 1 + ai1q
− 1

+ ai2q
− 2

+ · · · + aina
q

− na ,

Bi(q) � 1 + bi1q
− 1

+ bi2q
− 2

+ · · · + binb
q

− nb ,

(1)

where ui(t)(i � 1, 2, . . . , m) and y(t) which can be mea-
sured represent the input and output processes at the t-th
sampling time, respectively. i denotes the i-th branch of the
MISO Wiener model, i � 1, 2, . . . , m. vi(t)(i � 1, 2, . . . , m)

corresponds to the intermediate variable;
fi(vi(t))(i � 1, 2, . . . , m) is the static nonlinearity of the i-th
branch of the MISO Wiener model. yi(t)(i � 1, 2, . . . , m)

which cannot be measured is the output of the nonlinear
block. η(t) denotes the white noise, q− 1 is the backward shift,
and nia and nib are integers concerned with the model order.

In this paper, the target of the proposed identification
approach is to obtain a MISO Wiener model such that the
following cost function E is made acceptable small, that is,

E( 􏽢A1,
􏽢A2, . . . , 􏽢Am, 􏽢B1, 􏽢B2, . . . , 􏽢Bm, 􏽢f1 􏽢v1(t)( 􏼁,

􏽢f2 􏽢v2(t)( 􏼁, . . . , 􏽢fm 􏽢vm(t)( 􏼁􏼁

�
1

2NP

􏽘

NP

t�1
(􏽢y(t) − y(t))

2 ≤ ε,

(2)

s.t.

􏽢vi(t) �
􏽢Bi(q)

􏽢Ai(q)
ui(t),

􏽢yi(t) � 􏽢fi 􏽢vi(t)( 􏼁, i � 1, 2, . . . , m,

􏽢y(t) � 􏽘
m

i�1
􏽢yi(t) + e(t),

(3)

where ε is a given tolerance, 􏽢f(·) is the estimated nonlinear
function, 􏽢y(t) is the estimated output of the MISO Wiener
model, 􏽢vi(t) is the estimated intermediate variable of i-th
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branch, NP is the number of the input and output data, and
“∧” represents “model”.

As shown in Figure 2, the nonlinear function of each
branch of the MISO Wiener model is represented by a four-
layer neurofuzzy system which integrates the Takagi–Sugeno
fuzzy system and radial basis function-based feed-forward
network into a connection structure. *e first layer is the
input layer in which the nodes just transmit the input signal
to the next layer. *e second layer is the membership layer
where the membership function of the input variable is
calculated. *e third layer is the fuzzy rule layer, and the
number of the nodes in this layer denotes the fuzzy rules.*e
last layer is the output layer. *e output of the i-th neu-
rofuzzy model is given by

􏽢yi(t) � 􏽘

Ni

j�1
ϕij 􏽢vi(t)( 􏼁wij, i � 1, 2, . . . , m, (4)

where

ϕil 􏽢vi(t)( 􏼁 �
exp − 􏽢vi(t) − cil( 􏼁

2/σ2il􏼐 􏼑􏼐 􏼑

􏽐
Ni

l�1 exp − 􏽢vi(t) − cil( 􏼁
2/σ2il􏼐 􏼑􏼐 􏼑

, (5)

where cil and σil denote the center and width of the
membership function, respectively, wil is the consequent
parameters of the neurofuzzy model, and Ni represents the
fuzzy rule of the nonlinear block of the i-th branch.

3. Identification of Correlation Analysis-Based
MISO Wiener Model

Gaussian signals with independent and identical distribution
are adopted to separate the linear blocks from the nonlinear
blocks by this proposed algorithm so that the immeasurable

intermediate variable vi(t)(i � 1, 2, . . . , m) is obtained
indirectly.

Assume that the input and output of the model are zero
initial state and the input signals are Gaussian sequences
with independent and identical distribution, i.e., ui(t) ∼
(0, σ2ui

)(i � 1, 2, . . . , m). And presume that the cross-cor-
relations between different input signals are zero. *en, the
intermediate variable vi(t) of the MISO Wiener model can
be written as follows:

vi(1) � 0,

vi(2) � bi1ui(1),

vi(3) � − ai1vi(2) − ai2vi(1) + bi1ui(2) + bi2ui(1),

i � 1, 2, . . . , m,

� − ai1bi1 + bi2( 􏼁ui(1) + bi1ui(2)

· · ·

vi(t) � 􏽘
t− 1

k�1
hi,t(k)ui(t − k),

(6)

where hi,t(k) denotes the coefficient of ui(t − k) of the i-th
branch at t-th time.

*en, the conditional expectation of vi(t) can be
deduced:

E vi(t − τ) vi

􏼌􏼌􏼌􏼌 ( t)􏼐 􏼑 � 􏽘
t− τ− 1

k�1
hi,t− τ(k)E ui(t − τ − k) | 􏽘

t− 1

ξ�1
hi,t(ξ)ui(t − ξ)⎛⎝ ⎞⎠

� 􏽘
t− τ− 1

k�1
hi,t− τ(k)E ui(t − τ − k)

􏼌􏼌􏼌􏼌 hi,t(τ + k)ui(t − τ − k) + 􏽘
t− 1

ξ�1
hi,t(ξ)ui(t − ξ), ξ ≠ τ + k⎛⎝ ⎞⎠

� 􏽘
t− τ− 1

k�1
hi,t− τ(k)E Ui,t− τ− k

􏼌􏼌􏼌􏼌 Xi,t− τ− k + Yi,t􏼐 􏼑,

(7)

yi(t)vi(t)

Layer1 Layer2 Layer3 Layer4

Fuzzifier Inferrence Defuzzifier

Figure 2: *e structure of the neurofuzzy model.
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Figure 1: *e structure of the MISO Wiener model.
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where Ui,t− τ− k � ui(t − τ − k), Xi,t− τ− k � hi,t(τ + k)ui(t −

τ − k), and Yi,t � 􏽐
t− 1
ξ�1hi,t(ξ)ui(t − ξ), ξ ≠ τ + k. Assume that

the input signals are Gaussian signals with independent and
identical distribution, a linear combination of a finite
number of Gaussian signal is necessarily also Gaussian
signal; thus, vi(t) subjects to normal distribution with zero
means and variance σ2vi

� σ2ui
􏽐

t− 1
k�1h

2
i,t(k), i.e., vi(t) ∼ (0, σ2vi

).

Yi,t subjects to normal distribution with zero means and
variance σYi

� σ2ui
􏽐

t− 1
ξ�1h

2
i,t(ξ), ξ ≠ τ + k, i.e., Yi,t ∼ (0, σ2Yi

).
As can be seen from (7), Ui,t− τ− k and Xi,t− τ− k are in-

dependent of Yi,t, respectively. Moreover, we can get
Ui,t− τ− k � Xi,t− τ− k/hi,t(τ + k). And assume that
Vi,t � vi(t) � Xi,t− τ− k + Yi,t, and thus, the joint probability
density function of Ui,t− τ− k and Vi,t is as follows:

g Ui,t− τ− k,Vi,t( ) ui, vi( 􏼁 � g Xi,t− τ− k,Yi,t( ) hi,t(τ + k)ui, vi − hi,t(τ + k)ui􏼐 􏼑 ×|Jac|− 1

� gXi,t− τ− k
hi,t(τ + k)ui􏼐 􏼑 × gYi,t

vi − hi,t(τ + k)ui􏼐 􏼑 ×|Jac|− 1

�
1

���
2π

√
hi,t(τ + k)σui

× e
− ( hi,t(τ+k)ui( )

2/2( hi,t(τ+k)σui
􏼁
2
􏼁

×
1

���
2π

√
σYi

× e
− vi − hi,t(τ+k)ui( )

2/2σ2
Yi

􏼐 􏼑
× hi,t(τ + k)

�
1

2πσui
σYi

e
− u2

i
σ2

Yi
+ vi− hi,t(τ+k)ui( )

2σ2ui
/2σ2ui

σ2
Yi

􏼐 􏼑
,

(8)

where Jac is the Jacobian determinant, that is (see [39]),

Jac �
z Ui,t− τ− k, Vi,t􏼐 􏼑

z Xi,t− τ− k, Yi,t􏼐 􏼑
�

zUi,t− τ− k

zXi,t− τ− k

zUi,t− τ− k

zYi,t

zVi,t

zXi,t− τ− k

zVi,t

zYi,t

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�
1

hi,t(τ + k)
.

(9)

*us, the conditional probability density function of
Ui,t− τ− k is given by

gUi,t− τ− k | Vi,t�C ui

􏼌􏼌􏼌􏼌 vi � c􏼐 􏼑 �
g Ui,t− τ− k,Vi,t( ) ui, c( 􏼁

gVi,t
(c)

�
σvi���

2π
√

σui
σYi

× e
c2/2σ2vi

􏼐 􏼑− u2
i
σ2

Yi
+ vi − hi,t(τ+k)ui( )

2σ2ui
􏼐 􏼑/2σ2ui

σ2
Yi

􏼐 􏼑

� kce
− kau2

i
− 2kbcui( )/2σ2ui

σ2
Yi

􏼐 􏼑

� kde
− ka ui− kbc/ka( )

2/2σ2ui
σ2

Yi
􏼐 􏼑

,

(10)

where the coefficients are defined in the following equation
and the constant c is the value of vi(t):

ka � σ2Yi
+ σ2ui

hi,t(τ + k)
2

􏼐 􏼑,

kb � σ2u1
hi,t(τ + k),

kc �
σvi���

2π
√

σui
σYi

e
σ2

Yi
− σ2vi

􏼐 􏼑c2/2σ2vi
σ2

Yi ,

kd � kc · e
k2bc2/2kaσ2ui

σ2
Yi .

(11)

As a result, the conditional expectation of ui(t − τ − k) is
given by

E ui(t − τ − k) | 􏽘
t− 1

ξ�1
hi,t(ξ)ui(t − ξ) � c⎛⎝ ⎞⎠ �

kb

ka

c, (12)

From (7) and (12), we can obtain the following equation:

E vi(t − τ)
􏼌􏼌􏼌􏼌 vi(t)􏼐 􏼑 �

kb

ka

· c · 􏽘
t− τ− 1

k�1
hi,t− τ(k) � ai(τ) · c, (13)
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where ai(τ) � (kb/ka) · 􏽐
t− τ− 1
k�1 hi,t− τ(k), i � 1, 2, . . . , m is a

constant. In conclusion, according to [26], the intermediate
variable vi(t) satisfies the separability of the process.

Theorem 1. For a MISOWiener model as expressed in (1), if
the input signals are Gaussian signals with independent
identical distribution and the expectations of inputs satisfy
E(ui(t)) � 0 (i � 1, 2, . . . , m), the following equation holds:

Ryu � BRu, (14)

where Ryu � [Ryu1
, Ryu2

, . . . , Ryum
]T, B � diag(b01L1,

b02L2, . . . , b0mLm), and Ru � [Ru1
, Ru2

, . . . , Rum
]T, and

Ryui
(τ) denotes the cross-correlation function between y(t)

and the i-th input ui(t), Rui
(τ) represents the autocorrelation

of ui(t), Li(q) is the linear part, i.e.,Li(q) � Bi(q)/Ai(q), and
b0i � E(yi(t)vi(t))/E(vi(t)vi(t)) is a constant.

Proof. As can be seen from (13), when the input is Gaussian
signal, the output vi(t) of the dynamic of the i-th branch
satisfies the separability of the process. *us, for a MISO
Wiener model, we can get the following equation:

Ryvi
(τ) � E y(t)vi(t − τ)( 􏼁

� E y1(t) + y2(t) + · · · + ym(t) + η(t)( 􏼁vi(t − τ)( 􏼁

� E y1(t)vi(t − τ)( 􏼁 + E y2(t)vi(t − τ)( 􏼁

+ · · · + E ym(t)vi(t − τ)( 􏼁

+ E η(t)vi(t − τ)( 􏼁, i � 1, 2, . . . , m

� E yi(t)vi(t − τ)( 􏼁

� E yi(t)E vi(t − τ)
􏼌􏼌􏼌􏼌 vi(t)􏼐 􏼑􏼐 􏼑

� b(τ)E yi(t)vi(t)( 􏼁.

(15)

From (15), we know that the cross-correlation function
between vi(t) and the immeasurable variable yi(t) can be
replaced by the cross-correlation function between vi(t) and
y(t):

Rvi
(τ) � E vi(t)vi(t − τ)( 􏼁

� E vi(t)E vi(t − τ) | vi(t)( 􏼁( 􏼁

� b(τ)E vi(t)vi(t)( 􏼁.

(16)

According to (15) and (16), the following equation holds:

Ryvi
(τ) �

E yi(t)vi(t)( 􏼁

E vi(t)vi(t)( 􏼁
Rvi

(τ) � b0iRvi
(τ). (17)

According to [40], for a stable and time-invariant linear
system, its impulse response can be represented by

Li(q) � 􏽘
∞

k�1
li(k)q

− k
. (18)

*us, the output of the dynamic linear block of i-th
branch can be written as

vi(t) � Li(q)ui(t) � 􏽘
∞

k�1
li(k)q

− k
· ui(t) � 􏽘

∞

k�1
li(k)ui(t − k).

(19)

And (15) and (16) can be rewritten as follows:

Ryvi
(τ) � E y(t)vi(t − τ)( 􏼁

� E y(t) 􏽘
∞

k�1
li(k)ui(t − τ − k)⎛⎝ ⎞⎠

� 􏽘
∞

k�1
li(k)Ryui

(τ + k)

� 􏽘
∞

k�1
li(k)q

k
· Ryui

(τ),

(20)

Rvi
(τ) � E vi(t)vi(t − τ)( 􏼁

� E 􏽘
∞

k�1
li(k)ui(t − k) 􏽘

∞

ς�1
li(ς)ui(t − τ − ς)⎛⎝ ⎞⎠

� 􏽘
∞

k�1
􏽘

∞

ς�1
li(k)Rui

(τ + ς − k)l
T
i (ς)

� 􏽘

∞

ς�1
li(ς)q

ξ
· Rui

(τ) · 􏽘

∞

k�1
li(k)q

− k
.

(21)

*en, by substituting (20) and (21) into (17), we can get
the following equation:

􏽘

∞

k�1
li(k)q

k
· Ryui

(τ) � b0i 􏽘

∞

ς�1
li(ς)q

ξ
· Rui

(τ) · 􏽘
∞

k�1
li(k)q

− k
,

(22)

where 􏽐
∞
k�1gi(k)qk on the left side of (22) is equivalent to

􏽐
∞
ς�1gi(ς)qξ on the right side of (22).
*us, we have

Ryui
(τ) � b0iRui

(τ) · 􏽘
∞

k�1
li(k)q

− k

� b0iLi(q) · Rui
(τ).

(23)

*en, (14) holds. *is completes the proof.

Remark 1. In this paper, the MISO-distributed block-ori-
ented nonlinear Wiener model which is consistent with the
model in [18] is mainly considered. *e content before
*eorem 1 has proved that vi(t) satisfies the separability of
the process when the input signals ui(t) are Gaussian signals.
*us, Ryivi

(τ) � b0iRvi
(τ) holds according to Bussgang’s

classic theorem. However, as shown in Figure 1,
v1, v2, . . . , vm and y1, y2, . . . , ym are immeasurable variables,
and Ryivi

(τ) � b0iRvi
(τ) cannot be used to identify the pa-

rameters of the proposed Wiener model directly. *erefore,
*eorem 1 is proposed to solve this problem. *e input and
output relationship of the MISO Wiener model, that is
Ryui

(τ) � b0iLi(q) · Rui
(τ), is deduced so that themeasurable
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variables u1, u2, . . . , um and y can be utilized to estimate the
parameters of dynamic linear blocks.

3.1. Identification of the Dynamic Linear Blocks.
Correlation analysis is adopted to identify the linear blocks
of the MISO Wiener model with noise.

According to *eorem 1 and (23), we have

Ryui
(τ) � − 􏽘

nai

n�1
ainRyui

(τ − n)

+ b0i 􏽘

nbi

j�1
bijRui

(τ − j), i � 1, 2, . . . , m,

� − 􏽘

nai

n�1
ainRyui

(τ − n) + 􏽘

nbi

j�1

􏽥bijRui
(τ − j)

� Φiθi,

(24)

where 􏽥bij � b0ibij.
*en, the following equation holds:

Ryu � Φθ. (25)

*us, the parameters of dynamic linear block can be
estimated by least squares algorithm:

θ � ΦTΦ􏼐 􏼑
− 1
ΦRyu, (26)

where Ryu � [Ryu1
, Ryu2

, . . . , Ryum
]T, Ryui

� [Ryui
(1), Ryui

(2), . . . , Ryui
(P)]T ∈ RP×1, θ � [θ1, θ2, . . . , θm]T, 􏽢θi � (􏽢ai1,

􏽢ai2, . . . , 􏽢ainai
,
􏽢􏽥bi1,

􏽢􏽥bi1,, . . . ,
􏽢􏽥binbi

)T ∈ R(nai
+nbi

)×1, τ � 1, 2, . . . ,

P (P≥ nai
+ nbi

), Φ � diag(Φ1,Φ2, . . . ,Φm), and

Φi �

− Ryui
(0) − Ryui

(1) − Ryui
(2) · · · − Ryui

(P − 1)

0 − Ryui
(0) − Ryui

(1) · · · − Ryui
(P − 2)

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 · · · − Ryui
P − na( 􏼁

Rui
(0) Rui

(1) Rui
(2) · · · Rui

(P − 1)

0 Rui
(0) Rui

(1) · · · Rui
(P − 2)

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 · · · Rui
P − nb( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

∈ R
P× nai

+nbi
􏼐 􏼑

,

(27)

where Ryui
(τ) and Rui

(τ) are as follows:

􏽢Ryui
(τ) �

1
N

􏽘

N

t�1
y(t)ui(t − τ), (28)

􏽢Rui
(τ) �

1
N

􏽘

N

t�1
ui(t)ui(t − τ). (29)

3.2. Identification of the Static Nonlinear Blocks. After the
linear blocks have been identified, the intermediate variable
􏽢vi(t) can be further estimated according to the input signal
ui(t) and the estimated parameter 􏽢θi. Next, the clustering
approach used in [41, 42] is employed to identify the an-
tecedent parameters of static nonlinear blocks. And the
proposed algorithm focuses on the consequent parameters
wij. From (1) and (4), we have

y(t) � Wψ(t) + η(t), (30)

where W � [W1, W2, . . . , Wm] ∈ R1×L, L � 􏽐
m
i�1Li, Wi �

[wi1, wi2, . . . , wiLi
] ∈ R1×Li (i � 1, 2, . . . , m) and ψ(t) � [ψ1

(t),ψ2(t), . . . ,ψm(t)]T ∈ RL×1, ψi(t) � [ϕi1(􏽢vi(t)), ϕi2(􏽢vi

(t)), . . . , ϕiLi
(􏽢vi(t))]T ∈ RLi×1. Li is the clustering number of

nonlinear block of the i-th branch.
As a result, the estimation ofW can be obtained by using

least squares approach:

WLS � 􏽘
N

t�1
y(t)ψT

(t)⎡⎣ ⎤⎦ 􏽘

N

t�1
ψ(t)ψT

(t)⎡⎣ ⎤⎦

− 1

. (31)

According to (30), substitute y(t) with Wψ(t) + η(t),
and then (31) can be rewritten as

WLS � 􏽘
N

t�1
(Wψ(t) + η(t))ψT

(t)⎡⎣ ⎤⎦ 􏽘

N

t�1
ψ(t)ψT

(t)⎡⎣ ⎤⎦

− 1

� W 􏽘
N

t�1
ψ(t)ψT

(t)⎡⎣ ⎤⎦ 􏽘

N

t�1
ψ(t)ψT

(t)⎡⎣ ⎤⎦

− 1

+ 􏽘
N

t�1
η(t)ψT

(t)⎡⎣ ⎤⎦ 􏽘

N

t�1
ψ(t)ψT

(t)⎡⎣ ⎤⎦

− 1

� W + 􏽘
N

t�1
η(t)ψT

(t)⎡⎣ ⎤⎦ 􏽘

N

t�1
ψ(t)ψT

(t)⎡⎣ ⎤⎦

− 1

.

(32)

As the noise is the white noise with zero means, thus we
have

E WLS( 􏼁 � E(W) + E 􏽘
N

t�1
e(t)ψT

(t)⎡⎣ ⎤⎦ 􏽘

N

t�1
ψ(t)ψT

(t)⎡⎣ ⎤⎦

− 1

⎛⎝ ⎞⎠

� W + 􏽘
N

t�1
E(η(t))ψT

(t)⎡⎣ ⎤⎦ 􏽘

N

t�1
ψ(t)ψT

(t)⎡⎣ ⎤⎦

− 1

� W.

(33)

In conclusion, WLS is the unbiased estimation of W.
*e identification algorithm for the correlation analysis-

based MISO Wiener model is concluded as follows:

Step 1. *e parameters aij and bij of the dynamic linear
blocks of the MISO Wiener model are estimated
according to (26)–(29) in Section 3.1
Step 2. *e antecedent parameters cil and σil are ob-
tained by using the clustering approach [41, 42]
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Step 3. *e consequent parameter W of each static
nonlinear block is identified according to (30) and (31)
in Section 3.2

4. Examples

4.1. Example 1. Consider the following TISO (two-input
single-output) Wiener model which has two branches (see
[18] which is a classical MISO-distributed Wiener model):

v1(t) �
0.04308q− 1 + 0.0315q− 2

1 − 1.3139q− 1 + 0.3886q− 2u1(t),

y1(t) � 2 tanh v1(t)( 􏼁 − 2 exp 0.1v1(t)( 􏼁 + 2,

v2(t) �
0.0305q− 1 + 0.0254q− 2

1 − 1.5218q− 1 + 0.5778q− 2u2(t),

y2(t) �

v2(t), v2(t)≤ 1.5,

1.5 exp v2(t) − 1.5( 􏼁, v2(t)> 1.5,

⎧⎪⎨

⎪⎩

y(t) � y1(t) + y2(t) + η(t),

(34)

where the white noise with zero means η(t) is dependent on
u1(t) and u2(t), respectively.

Define the noise-to-signal ratios as δns �����������������������
var(e(t))/var(y(t) − e(t))

􏽰
× 100% and the estimation er-

ror δ � ‖􏽢θ − θ‖/‖θ‖ of the linear block.
In order to identify the above TISO Wiener model, the

following signals as shown in Figure 3 are adopted: (1)
Gaussian signal u1(t) with zero means and variance 4; (2)
Gaussian signal u2(t) with zero means and variance 4; and
(3) the corresponding output signal y(t).

At first, u1(t), u2(t), and y(t) are employed to estimate
the parameters of linear blocks of two branches according to
(25) and (29) in Section 3.1. And the modifying coefficients
are b01 � E(y(t)v(t))/E(v(t)v(t)) � 0.4517 and
b02 � E(y(t)v(t))/E(v(t)v(t)) � 0.3643, respectively. Ta-
bles 1 and 2 give the results of identifying the linear parts of
two branches by the proposed algorithm and the method in
[18] under different noise-to-signal ratios. *e estimation
errors of two linear blocks are illustrated in Figures 4 and 5,
respectively. It is obvious that the proposed algorithm results
in a better approximation of the linear blocks than the
method in [18] according to Tables 1 and 2 as well as
Figures 4 and 5.

Next, the intermediate variables 􏽢v1(t) and 􏽢v2(t) are
estimated by using the input signals u1(t) and u2(t) and the
estimated parameters of linear blocks. *en, the antecedent
parameters of two nonlinear blocks are identified by using
the clustering algorithm according to the following design
parameters [41, 42]: S01 � 0.98, ρ1 � 1.61, λ1 � 0.02 and
S02 � 0.988, ρ2 � 1.05, λ2 � 0.1, which result in two neu-
rofuzzy models whose rules are 6 and 80, respectively.
Moreover, the consequent parameters W1 and W2 of two
nonlinear blocks are obtained according to (30) and (31).
*e polynomial method described in [18] is also constructed
by using the identical data to identify the nonlinear blocks.

*e comparisons between the proposed algorithm and the
method in [18] are shown in Figures 6 and 7. *e MSEs of
two neurofuzzy models are 3.5 × 10− 3 and 2.0 × 10− 3, re-
spectively, while the MSEs of two polynomial functions are
2.1 × 10− 2 and 4.1 × 10− 2, respectively. As illustrated in
Figures 6 and 7, the proposed algorithm has better identi-
fication accuracy for the nonlinearity of the actual process.

4.2. Example 2. To further verify the performance of the
proposed algorithm, this example considers a TISO Wiener
model whose nonlinearities are two more complicated
discontinuous segment nonlinear functions:

v1(t) �
0.4q− 1

1 + 0.8q− 1u1(t),

y1(t) �
2 − cos 3v1(t)( 􏼁 − exp − v1(t)( 􏼁, v1(t)≤ 1,

− 1, v1(t)> 1,

⎧⎪⎨

⎪⎩

v2(t) �
0.6q− 1

1 + 0.3q− 1u2(t),

y2(t) � x(t) �

tanh 2v2(t)( 􏼁, v2(t)≤ 1.5,

−
exp v2(t) − 1( 􏼁

exp v2(t) + 1( 􏼁
, v2(t)> 1.5,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y(t) � y1(t) + y2(t) + η(t).

(35)

In order to identify the above TISO Wiener model, the
following signals as shown in Figure 8 are adopted: (1)
Gaussian signal u1(t) with zero means and variance 1.5; (2)
Gaussian signal u2(t) with zero means and variance 1.9; and
(3) the corresponding output signal y(t).

Firstly, correlation analysis theorem in Section 3.1 is
employed to identify the linear blocks, so the estimated
linear blocks are 􏽢v1(t) � − 0.8052􏽢v1(t − 1) + 0.3840u1(t − 1)

0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200

–10
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5

y
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Sample time

Figure 3: Part of the training data used in Example 1.
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Table 1: Identification results of the linear block in the first branch under different δns.

t
*e proposed method *e method in [18]

􏽢a11 􏽢a12
􏽢b11/b01 􏽢b12/b01 δ1 􏽢a11 􏽢a12

􏽢b11/b01 􏽢b12/b01 δ1
δns � 5.24%
1000 1.2829 − 0.3333 0.04046 0.0312 0.0463 1.2206 − 0.2576 0.03881 0.0294 0.1204
1500 1.2937 − 0.3465 0.04243 0.0319 0.0341 1.2310 − 0.2660 0.04077 0.0307 0.1080
2000 1.3044 − 0.3668 0.04270 0.0318 0.0174 1.2508 − 0.2892 0.03945 0.0292 0.0859
2500 1.3108 − 0.37960.04317 0.0321 0.0069 1.2497 − 0.3004 0.03994 0.0306 0.0795
3000 1.3051 − 0.3837 0.04537 0.0329 0.0076 1.2452 − 0.2948 0.04043 0.0309 0.0848
3500 1.3106 − 0.3886 0.04387 0.0326 0.0026 1.2519 − 0.3050 0.03951 0.0296 0.0760
4000 1.3088 − 0.3874 0.04428 0.0325 0.0040 1.2653 − 0.3211 0.03799 0.0290 0.0608
True 1.3139 − 0.3886 0.04308 0.0315 0 1.3139 − 0.3886 0.04308 0.0315 0
δns � 16.25%
1000 1.3571 − 0.4624 0.04853 0.0332 0.0625 1.2116 − 0.2357 0.04010 0.0355 0.1372
1500 1.3879 − 0.4842 0.04813 0.0291 0.0564 1.2484 − 0.3041 0.04230 0.0356 0.0781
2000 1.3657 − 0.4458 0.04578 0.0284 0.0564 1.2484 − 0.3041 0.04230 0.0356 0.0781
2500 1.3526 − 0.4311 0.04367 0.0292 0.0419 1.2645 − 0.3127 0.04389 0.0348 0.0661
3000 1.3376 − 0.4124 0.04375 0.0299 0.0245 1.2572 − 0.2923 0.04404 0.0336 0.0815
3500 1.3205 − 0.3900 0.04372 0.0307 0.0049 1.2643 − 0.3020 0.04445 0.0339 0.0728
4000 1.3215 − 0.3931 0.04462 0.0319 0.0066 1.2598 − 0.2947 0.04617 0.0342 0.0791
True 1.3139 − 0.3886 0.04308 0.0315 0 1.3139 − 0.3886 0.04308 0.0315 0
δns � 35.68%
1000 1.3992 − 0.5185 0.04740 0.0281 0.1135 1.1806 − 0.2297 0.04310 0.0360 0.1503
1500 1.3538 − 0.4715 0.04400 0.0315 0.0671 1.2033 − 0.2523 0.04599 0.0379 0.1208
2000 1.3469 − 0.4702 0.04385 0.0320 0.0642 1.2176 − 0.2774 0.04675 0.0379 0.1208
2500 1.3384 − 0.4488 0.04311 0.0330 0.0474 1.2041 − 0.2608 0.04882 0.0376 0.1230
3000 1.3001 − 0.3976 0.04310 0.0339 0.0121 1.2190 − 0.2733 0.05037 0.0374 0.1091
3500 1.3077 − 0.4069 0.04492 0.0336 0.0142 1.2457 − 0.3086 0.04919 0.0358 0.0769
4000 1.3081 − 0.3999 0.04468 0.0336 0.0095 1.2304 − 0.2865 0.04844 0.0368 0.0963
True 1.3139 − 0.3886 0.04308 0.0315 0 1.3139 − 0.3886 0.04308 0.0315 0

Table 2: Identification results of the linear block in the second branch under different δns.

t
*e proposed method *e method in [18]

􏽢a21 􏽢a22
􏽢b21/b02 􏽢b22/b02 δ2 􏽢a21 􏽢a22

􏽢b21/b02 􏽢b22/b02 δ2
δns � 5.24%
1000 1.5968 − 0.6984 0.0269 0.0230 0.0872 1.6151 − 0.7697 0.0399 0.0236 0.1312
1500 1.4904 − 0.4911 0.0322 0.0247 0.0566 1.6166 − 0.7531 0.0384 0.0242 0.1225
2000 1.5532 − 0.6055 0.0384 0.0235 0.0262 1.6164 − 0.7662 0.0428 0.0204 0.1374
2500 1.5523 − 0.6090 0.0359 0.0220 0.0271 1.6270 − 0.7668 0.0453 0.0219 0.1332
3000 1.5546 − 0.6151 0.0364 0.0228 0.0308 1.6070 − 0.7248 0.0424 0.0227 0.1046
3500 1.5092 − 0.5639 0.0370 0.0248 0.0122 1.6120 − 0.7092 0.0381 0.0226 0.0980
4000 1.5136 − 0.5715 0.0352 0.0245 0.0070 1.5787 − 0.6453 0.0359 0.0240 0.0543
True 1.5218 − 0.5778 0.0305 0.0254 0 1.5218 − 0.5778 0.0305 0.0254 0
δns � 16.25%
1000 1.4821 − 0.5452 0.0313 0.0296 0.0316 1.5969 − 0.7754 0.0406 0.0271 0.1400
1500 1.5003 − 0.5707 0.0298 0.0274 0.0140 1.5781 − 0.7581 0.0408 0.0289 0.1162
2000 1.4947 − 0.5452 0.0282 0.0257 0.0261 1.5701 − 0.7379 0.0397 0.0292 0.1029
2500 1.5278 − 0.5978 0.0291 0.0259 0.0128 1.5695 − 0.7046 0.0399 0.0296 0.0853
3000 1.5312 − 0.6073 0.0300 0.0265 0.0190 1.5422 − 0.6779 0.0410 0.0263 0.0631
3500 1.5381 − 0.6077 0.0270 0.0262 0.0210 1.5503 − 0.7009 0.0421 0.0253 0.0779
4000 1.5444 − 0.6136 0.0259 0.0244 0.0262 1.5477 − 0.7011 0.0414 0.0261 0.0777
True 1.5218 − 0.5778 0.0305 0.0254 0 1.5218 − 0.5778 0.0305 0.0254 0
δns � 35.68%
1000 1.4290 − 0.4060 0.0328 0.0267 0.1199 1.6486 − 0.7773 0.0259 0.0202 0.1520
1500 1.4438 − 0.4203 0.0304 0.0273 0.1080 1.6435 − 0.7560 0.0261 0.0210 0.1327
2000 1.4701 − 0.4830 0.0306 0.0282 0.0663 1.6275 − 0.7539 0.0279 0.0222 0.1262
2500 1.4441 − 0.4681 0.0275 0.0272 0.0826 1.6128 − 0.7248 0.0269 0.0223 0.1062
3000 1.4605 − 0.4875 0.0291 0.0279 0.0671 1.6134 − 0.7176 0.0229 0.0217 0.1028
3500 1.4787 − 0.5369 0.0324 0.0274 0.0365 1.6137 − 0.7232 0.0236 0.0219 0.1057
4000 1.4846 − 0.5424 0.0318 0.0273 0.0316 1.6224 − 0.7396 0.0261 0.0212 0.1171
True 1.5218 − 0.5778 0.0305 0.0254 0 1.5218 − 0.5778 0.0305 0.0254 0
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and 􏽢v2(t) � − 0.2859􏽢v2(t − 1) + 0.5980u2(t − 1), and the
modifying coefficients are b01 � E(y(t)v(t))/E(v(t)v(t)) �

0.9536 and b02 � E(y(t)v(t))/E(v(t)v(t)) � 0.5680, re-
spectively. *e estimation errors of two linear blocks are
3.66 × 10− 2 and 2.18 × 10− 2, respectively.

Next, the design parameters are set as: S01 � 0.9991,
ρ1 � 1.991, λ1 � 0 and S02 � 0.995, ρ1 � 1.85, λ1 � 0,
resulting in two neurofuzzy models whose rules are 113
and 55, respectively. *en, the weights W1 and W2 of two
neurofuzzy models are obtained by using (30) and (31).

�e proposed method
�e method in [18]
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Figure 4: *e parameter estimation errors of the linear block in the first branch under different δns: (a) δns � 7.33%; (b) δns � 14.13%;
(c) δns � 22.64%; (d) δns � 31.47%.
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Figure 5: *e parameter estimation errors of the linear block in the second branch under different δns: (a) δns � 7.33%; (b) δns � 14.13%;
(c) δns � 22.64%; (d) δns � 31.47%.
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Figure 8: Part of the training data used in Example 2.

10 Complexity



For comparison purpose, the polynomial-based TISO
Wiener model is constructed by using the identical
training data. Table 3 shows the MSEs for different
polynomials based models in two branches; the models
with orders of 19 and 32 are chosen to be the best models
of two subsystems, respectively. *e MSEs of the pro-
posed TISO Wiener model based on different fuzzy rules
are summarized in Table 4, and the two neurofuzzy
models with fuzzy rules of 113 and 55 are proved to be the

best models. Table 5 compares the MSEs for both training
and validation data obtained by the best neurofuzzy-
based model and the best polynomial-based model, re-
spectively. Figures 9 and 10 show the approximation
results of the nonlinearities of two branches. As described
in Tables 3–5 as well as Figures 9 and 10, the neurofuzzy-
based TISO Wiener model can achieve better approxi-
mation of nonlinearities than the polynomial-based TISO
Wiener model.

Table 3: MSEs of various polynomial-based TISO Wiener models.

*e nonlinear block in the first branch *e nonlinear block in the second branch
Order MSE (training) MSE (validation) Order MSE (training) MSE (validation)
7 6.01× 10− 2 7.12×10− 2 8 6.79×10− 1 7.56×10− 1

12 4.31× 10− 2 6.78×10− 2 17 5.98×10− 1 6.23×10− 1

16 3.31× 10− 2 5.34×10− 2 24 4.03×10− 1 6.02×10− 1

19 1.24×10− 2 3.80×10− 2 32 2.10×10− 1 4.15×10− 1

Table 4: MSEs of the proposed TISO Wiener model with different fuzzy rules.

*e nonlinear block in the first branch *e nonlinear block in the second branch
*e number of fuzzy rules MSE (training) MSE (validation) *e number of fuzzy rules MSE (training) MSE (validation)
45 5.80×10− 3 8.20×10− 3 20 2.96×10− 3 7.30×10− 3

90 4.03×10− 3 3.80×10− 2 33 3.70×10− 3 8.60×10− 2

113 3.79×10− 3 4.90×10− 3 45 1.80×10− 3 4.30×10− 3

122 5.40×10− 3 6.30×10− 3 55 1.09×10− 3 2.70×10− 3

Table 5: MSEs of the best polynomial-based and the proposed TISO Wiener model.

*e nonlinear block in the first branch *e nonlinear block in the second branch
Model MSE (training) MSE (validation) Model MSE (training) MSE (validation)
Neurofuzzy 3.79×10− 3 4.90×10− 3 Neurofuzzy 1.09×10− 3 2.70×10− 3

Polynomial 1.24×10− 2 3.80×10− 2 Polynomial 2.10×10− 1 4.15×10− 1

Actual process
The proposed method
Polynomial method
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Figure 9: *e static nonlinear block in the first branch.

Actual process
The proposed method
Polynomial method
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Figure 10: *e static nonlinear block in the second branch.
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5. Conclusion

*is paper extends Bussgang’s classic theorem to a MISO
Wiener system and proposes a novel identification method
for the correlation analysis algorithm-based MISO Wiener
model with noise. At first, several sets of Gaussian signals are
adopted to identify the MISOWiener model, resulting in the
identification problem of the dynamic linear blocks sepa-
rated from that of the static nonlinear blocks. Next, cor-
relation analysis is employed to estimate the parameters of
the linear blocks. Finally, least squares algorithm-based
identification method of static nonlinear block is presented
for the MISO Wiener model. *e proposed approach can
not only avoid the influence caused by white noise but also
solve the problem of initialization and convergence of the
model parameters discussed in the existing iterative method
used for the identification of the MISO Wiener model.
Examples demonstrate the effectiveness of the proposed
algorithm.
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