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Dealing with the fixed-time flocking issue is one of the most challenging problems for a Cucker–Smale-type self-propelled particle
model. In this article, the fixed-time flocking is established by employing a fixed-time stability theorem when the communication
weight function has a positive infimum. Compared with the initial condition-based finite-time stability, an upper bound of the
settling time in this paper is merely dependent on the design parameters. Moreover, the size of the final flocking can be estimated
by the number of particles and the initial states of the system. In addition, a sufficient condition is formulated to guarantee that all
particles do not collide during the process of the flocking. 1ese results can give a reasonable explanation to some flocking
phenomena such as bird flocks, fish schools, or human group behaviors. Finally, three numerical examples are granted to display
the performance of the obtained results.

1. Introduction

In the last few years, the cooperative control of self-propelled
agent systems has attracted considerable attention, mainly
due to its broad range of potential applications including
formation control [1], attitude alignment [2], and target
tracking [3]. Such coordinative motion is typically inspired
by the emergent collective behaviors observed in nature.
Flocking, as an important emergent collective behavior, has
been studied with great attention. Readers are referred to
[4–15] and references therein for more details.

Let us point out that most aforementioned works mainly
addressed the asymptotical behaviors, which mean that the
flocking can only occur as time approaches to infinity.
However, in our real life, phenomena in which particles
reach to flock in a short time are ubiquitously observed. Take
bird flocks, for example, individuals can form a new flock
after adjusting their states in a short time when they are
disturbed by the external environment. Although we do not
know deeply about the traits intrinsic that why birds can
occur as flocks in a very short time, this common phe-
nomenon has inspired us to focus on the finite-time control
problems. In 1986, Haimo firstly investigated the finite-time

control problem in the pioneer work [16]. Based on the
results of the benchmark works of Bhat and Bernstein [17],
the issue of the finite-time cooperative control for multi-
agent systems has developed dramatically. Accordingly,
there is a large body of the literature on the research in this
field, which is impossible to cite here. Instead, we refer to
several recent works as representatives. For multiagent
systems with unknown inherent nonlinear dynamics, Cao
and Ren [18] demonstrated that the consensus can be
achieved in a finite-time by using graph theory and a finite-
time theorem. For multiagent systems with discontinuous
inherent dynamics, Ning et al. [19] considered the finite-
time and fixed-time leader-following consensus by com-
bining graph theory and discontinuous analysis. For dis-
continuous complex networks, Ji et al. [20] studied the finite-
time and fixed-time synchronization by establishing a new
finite-time and fixed-time theorems. For another relative
interesting results on finite-time problems, we refer to
[21–31] and therein references. As far as we observe there are
a lot of works on the finite-time consensus problem for
multiagent systems, but few results on finite-time flocking
for multiagent systems available in the literature [32, 33].
More precisely, the results of [32] show the finite-time
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flocking of a Cucker–Smale-type self-propelled particle
model can be achieved when the communication weight
function has a positive infimum. In [33], the results dem-
onstrate that the finite-time flocking occurs when the
communication weight function under long-range
interactions.

It is worth pointing out that the estimation of settling
time function for finite-time stability is heavily depending
on the initial states of systems [16]. 1erefore, from a
practical point of view, this restrict limits especially the
practical applications, since the initial states of the systems
are unavailable in advance. To overcome this shortcoming,
an extension of the finite-time stability and fixed-time
stability is discovered [34, 35]. 1e fixed-time stability ex-
hibits an elegant property in some applications. We refer to
two review works for an overview by [36, 37] and some
interesting results in fixed-time consensus [19, 27, 29, 37],
fixed-time synchronization [38], and fixed-time bipartite
flocking [39]. Note however, there are no papers addressing
the fixed-time flocking with collision avoidance and the final
size of the group, which will be the subject of this paper.
Naturally, in the present paper, we will consider the fol-
lowing problems:

(1) Under what conditions can the flocking emerge in a
fixed time?

(2) If the flocking occurs in a fixed-time, can the di-
ameter of the final group be estimated?

(3) Under what conditions could particles be ensured
not to collide with each other?

To solve the abovementioned problems (1)–(3), we first
propose a continuous non-Lipschitz type model (since the
finite-time flocking cannot occur in the Lipschitz model
[16, 32, 33]) and then carry out the fixed-time stability
analysis which shows that if the communication weight
function satisfies a lower bound condition then flocking can
occur within a fixed-time. Consequently, the novelty of the
present paper lies in the following aspects. Firstly, the right
term of our model does not satisfy the Lipschitz condition,
which is different from the classical Cucker–Smale model
[18, 40, 41], where the flocking only occurs asymptotically. In
addition, it is not necessary to require that the communi-
cation weight function is a nonincreasing function but only
has a positive infimum. By using a fixed-time stability
theorem, the fixed-time flocking result is obtained in this
present paper. Secondly, unlike the results in [32, 33], in
which flocking is achieved in a finite-time which is
depending on the initial states of network agents, we in-
vestigate the fixed-time flocking and estimate the upper
bound of the settling time which is merely depending on
parameters.1is provides additional options for designers in
practical scenarios where initial conditions are unavailable.
1irdly, the results in [32, 33] show that the particles may
collide in the process of flocking. However, a new sufficient
condition is presented in this article to guarantee that
particles do not collide during the process of flocking. Fi-
nally, the largest diameter of final flocking group can be
estimated by the initial states and the parameters.

1e rest of this paper is organized as follows. In Section
2, some necessary lemmas and a fixed-time stability theorem
are presented, which are the main tools to study the fixed-
time flocking problem. In Section 3, a fixed-time flocking
with collision avoidance theorem for the Cucker–Smale-type
self-propelled particle model is established. Meanwhile, the
size of the final flocking can be estimated by the initial data
and parameters in this section. 1ree illustrative simulated
examples are presented to demonstrate the theorem analysis
in Section 4. Finally, a brief conclusion is presented in
Section 5.

2. Preliminaries and Problem Formulation

2.1. Preliminaries. Consider the following dynamical
system:

_x(t) � g(t, x(t)), x t0( 􏼁 � x0, (1)

where x ∈ Rd, g : R+ × Rd⟶ Rd is a nonlinear function
which may be discontinuous, then the solutions of (1) are
understood in the sense of Filippov and Arscott [42]. As-
sume that the origin is an equilibrium point of (1). Hereafter,
without loss of generality, it is assumed t0 � 0.

Definition 1 (see [35]). 1e origin of (1) is said to be globally
finite-time stable if it is globally asymptotically stable and
any solution x(t, x0) of (1) reaches the equilibrium at some
finite moment, i.e.,

x t, x0( 􏼁 ≡ 0, ∀t≥T x0( 􏼁, (2)

where T: Rd⟶ R+ ∪ 0{ } is the setting-time function.

Definition 2 (see [35]). 1e origin of (1) is said to be globally
fixed-time stable if it is globally finite-time stable and the
settling time function T(x0) is bounded, namely, there exists
Tmax > 0 such that T(x0)≤Tmax for all x0 ∈ Rd.

Lemma 1 (see [43])

(i) If ai > 0, i � 1, . . . , N, and p> r> 0, then

N
(1/p)− (1/r)

􏽘

N

i�1
a

r
i

⎛⎝ ⎞⎠

(1/r)

≤ 􏽘
N

i�1
a

p

i
⎛⎝ ⎞⎠

(1/p)

≤ 􏽘
N

i�1
a

r
i

⎛⎝ ⎞⎠

(1/r)

.

(3)

(ii) If a1, a2, . . . , an ≥ 0 and 0<p≤ 1, then the following
inequality holds:

􏽘

n

i�1
ai

⎛⎝ ⎞⎠

p

≤ 􏽘
n

i�1
a

p

i . (4)

Lemma 2 (see [27]). If a1, a2, . . . , an ≥ 0 and p> 1, then the
following inequality holds:

2 Complexity



n
1− p

􏽘

n

i�1
ai

⎛⎝ ⎞⎠

p

≤ 􏽘
n

i�1
a

p
i . (5)

Lemma 3 (see [38]). If there exists a regular, positive,
definite, and radially unbounded function V(x) : Rn⟶ R

such that any solution x(t) of (1) satisfies the inequality
d
dt

V(x(t))≤ − aV
δ
(x(t)) − bV

θ
(x(t)), x(t) ∈ Rn⧹ 0{ },

(6)

where a> 0, b> 0, δ > 1, and 0≤ θ< 1, then the origin of
system (1) is fixed-time stable, and the settling time function T

is estimated by

T≤Tmax ≔
1
b

b

a
􏼠 􏼡

((1− θ)/(δ− θ)) 1
1 − θ

+
1

δ − 1
􏼒 􏼓. (7)

2.2. Problem Formulation. To research the flocking of birds,
Cucker and Smale [44] in 2007 introduced the following
model (short for C-S model):

xi

.
� vi, i � 1, . . . , N, t> 0,

vi

.
�

1
N

􏽘

N

j�1,j≠i
ψ xi − xj

�����

�����􏼒 􏼓 vj − vi􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

where xi and vi denote the position and velocity of the ith
particle, and the communication rate ψ is assumed to be
satisfied:

ψ(s) �
K

1 + s2( )
β, K> 0, β≥ 0. (9)

1e results in [44] show that the global unconditional
flocking occurs as t⟶∞ for β< (1/2), while the condi-
tional flocking appears under some restricted conditions on
the initial positions and velocities as t⟶∞ for β< (1/2).
Motivated by the C-S model, in order to study the finite-time
flocking of the self-propelled particle model, Han et al. [32]
purposed the following Cucker–Smale-type self-propelled
particle model:

xi

.
� vi, i � 1, . . . , N, t> 0,

vi

.
� 􏽘

N

j�1,j≠i
ψ xi − xj

�����

�����􏼒 􏼓sig vj − vi􏼐 􏼑
θ
,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(10)

where ψ denotes the communication weight function be-
tween agents i and j satisfying

inf
s≥0

ψ(s)≥ψ∗ > 0. (11)

Hereinafter, ‖·‖ denotes the l2-norm and

sig vj − vi􏼐 􏼑
θ

� sgn vj1 − vi1􏼐 􏼑 vj1 − vi1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
θ
, . . . , sgn vjd − vid􏼐 􏼑 vjd − vid

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
θ

􏼚 􏼛
T

, (12)

with θ ∈ (0, +∞) and sgn(·) : R↦ − 1, 0, 1{ } as the signum
function. By using a finite-time stability theorem, the au-
thors [32] proved that, for 0< θ< 1, the flocking can occur in
a finite-time (the upper bound of it is heavily depends on the
initial data of the systems). Unfortunately, the author did not
indicate that whether the particles collide or not during the
process of the flocking.

Motivated by [32], the main goal of this paper is to
investigate the noncollision fixed-time flocking and estimate
the size of it. To this end, according to the results of
[16, 32, 33] that the finite-time stability cannot take place in
Lipschitz continuous system, we consider an interacting
particle system consisting of N identical autonomous par-
ticles with a new non-Lipschitz type given by the following
system:

xi

.
� vi, i � 1, . . . , N, t> 0,

vi

.
�

1
N

􏽘

N

j�1,j≠i
ψ xi − xj

�����

�����􏼒 􏼓 􏽘
κ� − 1,1{ }

Kκsig vj − vi􏼐 􏼑
1+2κα⎛⎝ ⎞⎠,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(13)

subject to the initial data

xi, vi( 􏼁(0)≕ xi0, vi0( 􏼁, i � 1, . . . , N, (14)

where 0< α< (1/2), xi � (xi1, xi2, . . . , xi d) ∈ Rd and vi �

(vi1, vi2, . . . , vi d) ∈ Rd denote the position and velocity of
ith particle at time t, respectively, N is the number of
particles, while Kκ(κ � − 1, 1) are positive constants mea-
suring the coupling strength and the functions ψ and sig are
defined in (11) and (12), respectively.

For vectors xi, vi ∈ Rd, the Euclidean norm and the inner
product are given by

xi

����
���� ≔ 􏽘

d

k�1
xik

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2⎛⎝ ⎞⎠

(1/2)

,

〈xi, vi〉 ≔ 􏽘
d

k�1
xikvik,

(15)

where xik and vik are the ith components of xi and vi, re-
spectively. Similarly to [32, 45], we set the center of mass
system (x, v) as follows:
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x ≔
1
N

􏽘

N

i�1
xi,

v ≔
1
N

􏽘

N

i�1
vi.

(16)

It follows from the definition of sig(·) that

sig vj − vi􏼐 􏼑
θ

� − sig vi − vj􏼐 􏼑
θ
, ∀θ> 0. (17)

Furthermore,

􏽘

N

i,j�1
ψ xi − xj

�����

�����􏼒 􏼓 sig vj − vi􏼐 􏼑
θ

� 0, ∀θ> 0. (18)

1us, from (13), we obtain

dx

dt
� v,

dv

dt
� 0,

(19)

which admit the explicit solution x(t) � x(0) + v(0)t and
v(t) � v(0) for t≥ 0. Hence, we may assume, without loss of
generality that the center of mass coordinate of the system in
phase space at time t is fixed at zero, i.e.,

x(t) � 0,

v(t) � 0,
(20)

which implies that

􏽘

N

i�1
xi(t) � 0,

􏽘

N

i�1
vi(t) � 0,

t≥ 0.

(21)

Let (􏽢xi, 􏽢vi) ≔ (xi − x, vi − v) be the fluctuations around
the center of the mass system. It is easy to see that 􏽢xc �

1/N􏽐
N
i�1􏽢xi � 0 and 􏽢vc � 1/N􏽐

N
i�1􏽢vi � 0. 1en, system (13)

can be written as

􏽢xi

.

� 􏽢vi, i � 1, . . . , N, t> 0,

􏽢vi

.

�
1
N

􏽘

N

j�1,j≠i
ψ 􏽢xi − 􏽢xj

�����

�����􏼒 􏼓 􏽘
κ� − 1,1{ }

Kκsig 􏽢vj − 􏽢vi􏼐 􏼑
1+2κα⎛⎝ ⎞⎠,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(22)

which means that the new variable (􏽢xi, 􏽢vi) satisfies
equation (13) and(􏽢xc, 􏽢vc) ≡ (0, 0). For simplicity, we drop
the hat notion in the microscopic variables and replace
(􏽢xi, 􏽢vi) with (xi, vi) in the present paper. 1at is, the

dynamics behaviors of system (22) equate to the dynamics
behaviors of system (13).

Remark 1. 1e right-hand side of the second equation (i.e.,
controller) in (13) or (22) is consisting of two different terms
since considering two scenarios in the system. 1at is, for
0< α< 1/2, if the difference in velocity between any two
particles is smaller than one unit, the term
K− 1sig(􏽢vj − 􏽢vi)

1− 2α (i.e., κ � − 1) plays a leading role in
promoting the speed to converge. Conversely, if the dif-
ference in velocity between any two particles is larger than
one unit, then the term K1sig(􏽢vj − 􏽢vi)

1+2α (i.e., κ � 1) plays
the dominant role in driving the speed to converge. Unlike
system (7), this controller can guarantee the flocking occurs
in a fixed time, which can be estimated merely by the
parameters.

Remark 2. In our model (13) or (22), the communication
weight function ψ defined in (11) means that all the particles
in the systems exchange information with each other. In this
sense, the communication function ψ is well defined in (11).
However, different from (6), it cannot adequately charac-
terize the relationship between the intensity of information
and the distance between particles.

3. Main Results

1e objective in this section is to study the fixed-time
flocking of system (13). Motivated by [4, 11, 25, 45], the
particles in this paper are viewed as the points without
physical sizes as well. Now, we present the definition of
noncollision fixed-time flocking as follows:

Definition 3. We say that system (13) has a fixed-time
flocking if there exist a time T≥ 0 and a constant C> 0 such
that

lim
t⟶T

vi(t) − vj(t)
�����

����� � 0,

vi(t) − vj(t)
�����

����� � 0,

up
0≤t<∞

xi(t) − xj(t)
�����

�����≤C,

∀t≥T,

(23)

where T is called the settling time and the upper bound of it
can be estimated as a fixed Tmax that is independent of initial
states of system (13). Furthermore, if system (13) has a fixed-
time flocking and

min
i≠j

xi(t) − xj(t)
�����

�����> 0, t≥ 0, (24)

then we say that system (13) has a noncollision fixed-time
flocking.

Now, we state the main results of this section as follows.

Theorem 1. For 0< α< (1/2), if Kκ > 0, κ � − 1, 1{ }, and (11)
holds, then system (13) has a fixed-time flocking. Moreover,
the settling time can be estimated by
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T≤Tmax �
2N

αψ∗K− 1(2N)1− 2α

������
dαK− 1

22αK1

􏽳

, (25)

and the size of the final flocking can be estimated by

max
j≠i

xi(t) − xj(t)
�����

�����≤
���
2N

√
􏽘

N

i�1
xi0

����
����
2⎛⎝ ⎞⎠

(1/2)

⎡⎢⎢⎢⎢⎢⎣

+ 􏽘

N

i�1
vi0

����
����
2⎛⎝ ⎞⎠

(1/2)

Tmax
⎤⎥⎥⎥⎥⎥⎦.

(26)

Proof. Let x(t) � (x1(t), x2(t), . . . , xN(t)) ∈ Rd×N and
v(t) � (v1(t), v2(t), . . . , vN(t)) ∈ Rd×N. Take the candidate
Lyapunov functions:

V(t) ≔􏽘
N

i�1
vi(t)

����
����
2
,

X(t) ≔􏽘

N

i�1
xi(t)

����
����
2
.

(27)

1en, a direct calculation from the definition of norm
(15) and (21) yields that

􏽘

N

i,j�1
vi(t) − vj(t)

�����

�����
2

� 2NV(t),

􏽘

N

i,j�1
xi(t) − xj(t)

�����

�����
2

� 2NX(t).

(28)

It is easy to see from Definition 3 and (28) that function
V(t) tends to 0 in a fixed-time which means that the dif-
ference of all individuals’ velocities will tend to zero in fixed
time. In the following, we firstly show that V(t) tends to zero
in a fixed time. For j≠ i, a simple calculation from the
derivative of V(t) along the second equation of (13) gives
that

d
dt

V(t) � 2􏽘
N

i�1
〈vi(t),

d
dt

vi(t)〉

�
2K− 1

N
􏽘

N

i,j�1
ψ xi − xj

�����

�����􏼒 􏼓〈vi(t), sig vj − vi􏼐 􏼑
1− 2α
〉

+
2K1

N
􏽘

N

i,j�1
ψ xi − xj

�����

�����􏼒 􏼓〈vi(t), sig vj − vi􏼐 􏼑
1+2α
〉.

(29)

1en, a direct calculation yields

2
N

􏽘

N

i,j�1
ψ xi − xj

�����

�����􏼒 􏼓〈vi(t), sig vj − vi􏼐 􏼑
1− 2α
〉

�
2
N

􏽘

N

i,j�1
ψ xi − xj

�����

�����􏼒 􏼓〈vi(t) − vj(t), sig vj − vi􏼐 􏼑
1− 2α
〉

+
2
N

􏽘

N

i,j�1
ψ xi − xj

�����

�����􏼒 􏼓〈vj(t), sig vj − vi􏼐 􏼑
1− 2α
〉

� −
2
N

􏽘

N

i,j�1
ψ xi − xj

�����

�����􏼒 􏼓〈vj(t) − vi(t), sig vj − vi􏼐 􏼑
1− 2α
〉

−
2
N

􏽘

N

i,j�1
ψ xi − xj

�����

�����􏼒 􏼓〈vj(t), sig vi − vj􏼐 􏼑
1− 2α
〉,

(30)

which implies that

2
N

􏽘

N

i,j�1
ψ xi − xj

�����

�����􏼒 􏼓〈vi(t), sig vj − vi􏼐 􏼑
1− 2α
〉

−
1
N

􏽘

N

i,j�1
ψ xi − xj

�����

�����􏼒 􏼓〈vj(t) − vi(t), sig vj − vi􏼐 􏼑
1− 2α
〉

−
1
N

􏽘

N

i,j�1
ψ xi − xj

�����

�����􏼒 􏼓􏽘

d

k�1
vjk(t) − vik(t)

�����

�����
2− 2α

.

(31)

Employing Lemma 1 (i), one can easily obtain that

􏽘

d

k�1
vjk(t) − vik(t)

�����

�����
2− 2α

⎛⎝ ⎞⎠

(1/(2− 2α))

≥ 􏽘
d

k�1
vjk(t) − vik(t)

�����

�����
2

⎛⎝ ⎞⎠

(1/2)

� vj(t) − vi(t)
�����

�����,

(32)

which means

􏽘

d

k�1
vjk(t) − vik(t)

�����

�����
2− 2α
≥ vj(t) − vi(t)

�����

�����
2− 2α

. (33)

On the contrary, the same procedure of (31) may be
easily adapted to obtain

2
N

􏽘

N

i,j�1
ψ xi − xj

�����

�����􏼒 􏼓〈vi(t), sig vj − vi􏼐 􏼑
1+2α
〉

� −
K1

N
􏽘

N

i,j�1
ψ xi − xj

�����

�����􏼒 􏼓􏽘

d

k�1
vjk(t) − vik(t)

�����

�����
2+2α

.

(34)

1en, it follows from Lemma 1 (i) that
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􏽘

d

k�1
vjk(t) − vik(t)

�����

�����
2+2α

⎛⎝ ⎞⎠

(1/(2+2α))

≥ d
1/2+2α− 1/2

􏽘

d

k�1
vjk(t) − vik(t)

�����

�����
2

⎛⎝ ⎞⎠

(1/2)

� d
(1/(2+2α))− (1/2)

vj(t) − vi(t)
�����

�����,

(35)

which implies that

􏽘

d

k�1
vjk(t) − vik(t)

�����

�����
2+2α

⎛⎝ ⎞⎠≥d
− α

vj(t) − vi(t)
�����

�����
2+2α

.

(36)

Note that inf s≥0ψ(s)≥ψ∗ > 0; then, combining the
abovementioned analysis gives that

d
dt

V(t)≤ −
ψ∗K− 1

N
􏽘

N

i,j�1
vj(t) − vi(t)

�����

�����
2− 2α

−
ψ∗K1

N
d

− α
􏽘

N

i,j�1
vj(t) − vi(t)

�����

�����
2+2α

.

(37)

By Lemma 1 (ii) and (28), for 0< α< (1/2), we have

􏽘

N

i,j�1
vj(t) − vi(t)

�����

�����
2− 2α
≥ 􏽘

N

i,j�1
vj(t) − vi(t)

�����

�����
2

⎛⎝ ⎞⎠

1− α

� (2N)1− α[V(t)]1− α.

(38)

From Lemma 2, for 0< α< (1/2), we obtain

􏽘

N

i,j�1
vj(t) − vi(t)

�����

�����
2+2α
≥N

− 2α
􏽘

N

i,j�1
vj(t) − vi(t)

�����

�����
2

⎛⎝ ⎞⎠

1+α

� 21+αN1− α[V(t)]1+α.

(39)

For simplicity, we denote V ≔ V(t). 1en, combining
the abovementioned inequalities with (37) yields that

d
dt

V≤ −
ψ∗K− 1

N
(2N)

1− α
V

1− α
−
ψ∗K1

N
d− α21+α

N
1− α

V
1+α

,

(40)

which combining with Lemma 3 yields that

V(t) ≡ 0, for t≥Tmax, (41)

which means that

vi(t) ≡ vj(t), for t≥Tmax, (42)

where Tmax is estimated by

Tmax �
2N

αψ∗K− 1(2N)1− 2α

������
dαK− 1

22αK1

􏽳

. (43)

It follows from (40) that V(t) is a nonincreasing function
with respect to t, i.e.,

V(0)≥V(t), for t≥ 0. (44)

By a simple calculation from (27) and Cauchy–Schwartz
inequality finds that

d
dt

X(t) � 2􏽘
N

i�1
〈xi(t), vi(t)〉 ≤ 2􏽘

N

i�1
xi(t)

����
���� vi(t)
����

����

≤ 2X(1/2)(t)V(1/2)(t).

(45)

Integrating the differential inequality (45) from 0 to t, we
obtain

X
1/2

(t)≤X
1/2

(0) + 􏽚
t

0
V

1/2
(s)ds for t≥ 0. (46)

If t≤Tmax, then it deduces from (44) that

X
1/2

(t)≤X
1/2

(0) + 􏽚
Tmax

0
V

1/2
(s)ds≤X

1/2
(0) + V

1/2
(0)Tmax <∞.

(47)

If t>Tmax, then from (41), (44), and (46), we have

X
1/2

(t)≤X
1/2

(0) + 􏽚
Tmax

0
V

1/2
(s)ds + 􏽚

t

Tmax

V
1/2

(s)ds

� X
1/2

(0) + 􏽚
Tmax

0
V

1/2
(s)ds

≤X
1/2

(0) + V
1/2

(0)Tmax ≤C.

(48)

1us, combining the processing inequality with (28)
implies that

max
i≠j

xi(t) − xj(t)
�����

�����≤
���
2N

√
X

1/2
(0) + V

1/2
(0)Tmax􏼐 􏼑

�
���
2N

√
􏽘

N

i�1
xi0

����
����
2⎛⎝ ⎞⎠

1/2

+ 􏽘
N

i�1
vi0

����
����
2⎛⎝ ⎞⎠

1/2

Tmax
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

(49)

1erefore,

sup
0≤t≤∞

xi(t) − xj(t)
�����

�����
2
≤C, (50)

which combining with (42) indicates that all the conditions
of Definition 3 are satisfied. 1erefore, system (13) has a
fixed-time flocking. 1e proof is completed. □

Remark 3. Equation (49) means that the size of the final
flocking can be estimated by the initial states of systems, the
number of the particles, and the parameters of the systems. It
also shows that the size of final flocking is proportional to the
number of particles, which is in accordance with the fact.

Remark 4. 1eorem 1 shows that the flocking can be
established in a fixed-time which is independent of the initial
states but merely of the parameters of the systems. 1is is
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quite different from 1eorem 1 of [32] despite that we use
the same communication function (11). Simultaneously,
there is a big difference in1eorem 1 and the main results of
[33], in which the author investigated the finite-time
flocking.

Theorem 2. If all the conditions in 8eorem 1 hold and
suppose furthermore that the initial states of system (13)
satisfy

min
i≠j

xi0 − xj0

�����

�����> 2 v0
����

����Tmax, (51)

then system (13) has a noncollision fixed-time flocking, where
Tmax is defined in (25).

Proof. For i≠ j and i, j ∈ 1, 2, . . . , N{ }, we make the fol-
lowing handy notations:

Xij(t) ≔ xi(t) − xj(t)
�����

�����,

Vij(t) ≔ vi(t) − vj(t)
�����

�����.

(52)

1eorem 1 shows that system (13) has a fixed-time
flocking. So, it is sufficient to prove that all particles do not
collide during the process of flocking. 1at is, Xij(t)> 0, for
all t≥ 0. For this, similar to (37), we have

d
dt

‖v(t)‖
2 ≤ − C1‖v(t)‖

2− 2α
− C2‖v(t)‖

2+2α
. (53)

Furthermore,
d
dt

‖v(t)‖≤ − C1‖v(t)‖
1− 2α

− C2‖v(t)‖
1+2α

, (54)

which implies that

‖v(t)‖≤ v0
����

����, (55)

where Ci denotes the positive constants, whose value may
vary from line to line. Hence, by the definition of Vij(t), one
can easily obtain

Vij(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � vi(t) − vj(t)
�����

�����≤ 2‖v‖≤ 2 v0
����

����. (56)

On the contrary, a standard calculation shows that

d
dt

X
2
ij(t) � 2〈xi − xj, vi − vj〉 ≤ 2 xi − xj

�����

����� vi − vj

�����

����� � 2XijVij.

(57)

Furthermore,
d
dt

Xij(t)≤Vij. (58)

Note that Vij � 0 for t≥Tmax. So, combining (56) with
(58) yields that

Xij(t) − Xij(0)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 􏽚
t

0

dXij(s)

ds
ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ 􏽚

Tmax

0
Vij(s)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds≤ 2 v0
����

����Tmax.

(59)

1en, by the triangle inequality and (51), we obtain

Xij(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ Xij(0)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − Xij(t) − Xij(0)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ min
i≠j

Xij(0)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − 2 v0
����

����Tmax > 0.

(60)

1e proof is completed. □

Remark 5. It is worth pointing out that to study the problem
of collision for the particles, the usually method is to treat the
particles as points without considering their actual sizes, for
examples, see [4, 11, 25, 45]. 1erefore, the main contri-
bution of 1eorem 2 is providing a sufficient condition to
guarantee the particles do not collide during the process of
flocking and giving the rigorous mathematical arguments.
However, it leads a gap that how about the particles with
physical sizes, which will guide our further works.

4. Simulation Examples

To show the effectiveness of the theoretical analysis, three
simulated examples are given in this part for illustration.
Note that, in our model, 0< α< (1/2) and d≥ 1 are required.
So, for simplicity, we take ψ∗ � (1/2), α � (1/4), and d � 1
to simulate.

Example 1. We choose N � 4, K− 1 � 1, and K1 � 2(1/2). By
(25), one can easily calculate that Tmax � 16.0000. Moreover,
the initial states are set by x0 � [2, 0, − 2, − 4] and
v0 � [1, 2, 3, 4]. 1en, all the conditions of 1eorem 2 are
satisfied and the following simulation results (Figures 1–3)
are obtained by Matlab.

From Figure 1, we see that the velocities of all particles
are convergent to the same value after approximately t � 1.
Figure 2 indicates that the diameter of flocking occurs
fluctuation before t � 1. However, this fluctuation phe-
nomenon vanishes after t � 1 and the final diameter remains
about 5.87. Meanwhile, Figure 3 shows that the least distance
among all particles occurs fluctuation before t � 1 and it is
greater than zero. Moreover, the least distance maintains the
value about 1.84 after t � 1. Hence, Figure 3 shows up clearly
that all particles do not collide all the time. Such fluctuation
phenomenon reasonably clarifies the intrinsic characteristics
of the flocking.1erefore, these simulation results effectively
demonstrate that the system has a noncollision fixed-time
flocking.

Example 2. Take N � 10, K− 1 � 1, and K1 � 2(1/2). From
(25), we have Tmax � 25.2980. 1e initial states are set by
x0 � [8, 6, 4, 2, 0, − 2, − 4, − 6, − 8, − 10] and v0 � [1, 2, 3, 4, 5
, 6, 7, 8, 9, 10]. 1en, all conditions of1eorem 2 are satisfied.
By applying Matlab, we get the following simulation results
(Figures 4–6).

It can be clearly seen from Figure 4 that the velocities of
all particles tend to the convergent speed after about t � 0.5.
We can observe from Figure 5 that the diameter of the
flocking fluctuates frequently before about t � 0.5 and it
verges to stability and remains about 17.98 after t � 0.5.
Meanwhile, Figure 6 also shows that the least distance
among particles occurs fluctuation before about t � 0.5.
However, it does not vibrate anymore after t � 0.5 and the
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final value is about 1.973, which means that any two agents
do not collide. 1erefore, these simulation results effectively
demonstrate that the system has a noncollision fixed-time
flocking.

To better illustrate the theoretical analysis of the main
results, in the following Example 3, we add the number of
particles to 25, i.e., N � 25, to simulate. In addition, the
initial data in Example 3 are generated randomly since the
initial data of Examples 1 and 2 are all set by man.

Example 3. Take N � 25, K− 1 � 1, and K1 � 2(1/2). 1e
initial values of velocities and positions of all particles are
generated randomly at the interval (0, 50) and (− 80, 80),
respectively. 1en, all conditions of 1eorem 2 are satisfied.
1en, from (25), we have Tmax � 40.0000, and by applying
Matlab, we get the following simulation results
(Figures 7–9).

Similar to the analysis of Examples 1 and 2, one can see
that the velocities of all particles tend to the convergent
speed after about t � 1.5 in Figure 7. Figure 8 shows that the
diameter of the flocking oscillates at high frequencies be-
fore about t � 0.1, but it verges to stability and remains
about 260 after t � 1.5. 1is means that the size of the final
flocking is about 260. At the same time, Figure 9 dem-
onstrates clearly that the least distance among particles
occurs fluctuation before about t � 0.1. However, it does
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not vibrate anymore after t � 1.5 and the final value of it is
about 6.32. No matter what, the least distance is greater
than zero all the time, which means that any two particles
do not collide. 1erefore, these simulation results effec-
tively illustrate that the system has a noncollision fixed-
time flocking.

Additionally, we can see that the settling time in the
abovementioned three examples is less than Tmax, respec-
tively. 1e fluctuational phenomena of the least distance and
the diameter of the systems reasonably clarify the intrinsic
characteristics and the dynamic process of the flocking.
1erefore, these simulation results sufficiently show that the
flocking occurs in a fixed-time without collision and they
effectively illustrate the theoretical analysis of 1eorems 1
and 2.

5. Conclusion

1e fixed-time flocking with collision avoidance problem
for the Cucker–Smale-type self-propelled particle model
is investigated in this paper. By using a fixed-time stability

theorem, the fixed-time flocking is received when the
communication function has a positive infimum. Based on
this result, a sufficient condition is given in the present
paper to guarantee that any two particles do not collide
during the process of the flocking. 1e theoretical analysis
shows that the bound of the settling time does not depend
on the initial states but merely on the design parameters.
1is distinctive feature ensures to reduce the calculation
cost while achieving the agreement. Moreover, the di-
ameter of the final flocking group can be estimated by the
initial states and the number of the particles. It is worth
emphasizing that the diameter of final flocking group is in
proportion to the number of particles, which is in com-
pliance with the fact. Finally, three numerical examples
are provided to illustrate the effectiveness and validity of
the theoretical results. Both the theoretical and numerical
results provide a reasonable explanation for the birds that
can flock in a short time. However, in this paper, we just
consider the case that all the particles in the group ex-
change the information. In fact, the in-depth analytical
work on the fixed-time flocking mechanism is still on the
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way, particularly the collision avoidance case. In the fu-
ture, it will be important to focus on more detailed sce-
narios, such as the communication function with a
switching protocol, time delays, or channel noises, to see
whether the collision avoidance flocking takes place
within a fixed time.
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