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�ere are two important models for data analysis and knowledge system: data cube lattices and concept lattices. �ey both
essentially have lattice structures, which are actually irregular in our real world. However, their structural characteristics and
relationship are not yet clear. To the best of our knowledge, no work has paid enough attention to this challenging issue from the
perspective of graph data, in spite of the importance of structures in lattice data. In this paper, we �rst tackle the structural statistics
of lattice data from three aspects: the degree distribution, clustering coe�cient, and average path length. We demonstrated by
various datasets that data cube lattices and concept lattices share similarities underlying their topology, which are, in general,
di�erent from random networks and complex networks. Speci�cally, lattice data follow the Poisson distribution and have smaller
clustering coe�cient and greater average path length.We further discuss and explain these characteristics intrinsically by building
the analytical model and the generating mechanism.

1. Introduction

�e data cube (lattice) [1] proposed by Gray et al. is a core data
model in data warehousing and online analytical processing
(OLAP) [2]. It plays a more critical role in data online analysis
and processing, especially in the era of big data. It allows data to
be modeled and analyzed intuitively in the context of multiple
analysis dimensions and plays a vital role in business intelli-
gence. Based on data cubes, online analysis operations such as
rolling up, drilling down, slicing, and rotation can be easily
carried out. From a conceptual view, users can analysis the data
along a dimension hierarchy to various coarse-grained levels so
that a large amount of detailed data can be described in a more
concise and summary fashion, which facilitates users to obtain
the general view. On the contrary, they can also specialize data
along a dimension hierarchy to the �ne-grained data.
According to the computational dependence relation of rolling
up and drilling down, the data cube lattice is generated.

�e concept lattice [3] proposed by German mathema-
tician Wile in 1982 is an important model in formal concept

analysis (FCA) and is considered as an essential facility for
data analysis. Formally, the concept lattice takes the triple
(U,A, I) as its formal background, in which U is the object
set, A is the attribute set, and I is the binary relation between
the object set and the attribute set. It derives the formal
concept (X, B), where X is called the concept extent and B is
called the concept intent; each concept in the concept set
forms the concept lattice according to the partial order re-
lation. �e node of concept lattices denotes both the intent
and the extent of the concept, and the relationship between
nodes re¡ects the generalization and specialization of con-
cepts. According to the dependency of the knowledge body in
the intent and the extent, a concept hierarchy model is
established. Concept lattices are widely used in machine
learning, pattern recognition, expert systems, decision anal-
ysis, data mining, information retrieval, computer networks
and software engineering, and many other �elds [4, 5]. For
example, most data mining tasks can generate a large number
of concepts.�e lattice structure as the organizational form of
the concept has many advantages in knowledge discovery. It
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facilitates a deep understanding of the dependencies between
different concepts selected from a data set.

Essentially, the instances of data cube lattices and
concept lattices all belong to lattice structure data. As the
core model, data cube lattices and concept lattices are widely
used in data analysis. From a higher perspective, their al-
gebraic structures are intrinsically lattices, which imply they
share similarities or connections in external characteristics.

Nedjar et al. and Shi [6, 7] demonstrated their relationship
in the generation mechanism. Nedjar et al. [6] pointed out
that, in data warehousing and data mining, the frequent closed
itemset searching, the concise representation of association
rules, or data cube lattices can use the formal concept analysis
for feature depicting, compress representation, and effective
calculation. Furthermore, they put forward Agree Concept
Lattice and Quotient Agree Lattice to point out their close
relationship between them. Shi [7] made a thorough study of
concept lattices and finds that concept lattices are closely
related to data cube lattices. )ey are all based on partial order
relations. When base tables are used as formal backgrounds,
the covering equivalence class of the data cube lattice and the
equivalent feature sets based on formal concept analysis theory
have the same partition results, and then the Aggregate
Concept, Aggregate Concept Lattice (ACL), and Reductive
Aggregate Concept (RAC) were proposed.

)e structural analysis of these two crucial and repre-
sentative models in data analysis under a unified framework
will facilitate the discovery of their essence and design more
generalized algorithms. Strogatz [8] discussed the reason why
network anatomy is so important to characterize is that
structure always affects function. Liu et al. and Zhai et al.
[9, 10] mentioned the application of degree, distance, and
topological statistics in some real networks. Lattice topology
characteristics like the degree distribution of nodes affect the
communication overhead (virtually link numbers) across
various nodes for splitting a lattice in the cloud environment.
)e clustering or partitioning of lattice structures from the
graph data perspective may result in space compression. Until
recently, however, very little attention has been devoted to the
structural characteristics and the relationship between them.

To address the above challenges, this paper explores and
studies the structural characteristics of data cube lattices and
concept lattices in terms of the degree distribution, clustering
coefficient, average path length through the experimental
demonstration, and theoretical analysis. By the analysis of the
graph structure, we can find whether the data cube lattice and
concept lattice share similar structural characteristics, which
are different from other networks like random networks or
complex networks and why. Note that the lattices discussed in
our paper are generated from the real life—they are not
completely regular lattices where all the nodes have the same
degrees, and a plot of the degree distribution contains a single
sharp spike (delta distribution) [11]. As we discovered in
Section 3, the nodes of the real-world lattices have much
broader range of degrees, implying randomnesses are added.

Our main contributions are as follows:

(i) To the best of our knowledge, we first study the
graph structural characteristics (such as the degree

distribution, clustering coefficient, and average path
length) of data cube lattices and concept lattices,
analyze, and demonstrate them based on various
real datasets.

(ii) We present the structure relationship between data
cube lattices and concept lattices. Compared with
random networks and complex networks, real-
world lattices follow the Poisson distribution and
have smaller clustering coefficient and greater av-
erage path length.

(iii) We discuss the analytical model and the generation
mechanism of data cube lattices and concept
lattices.

)is paper is structured as follows. Section 2 introduces
the model of data cube lattices and concept lattices and
relevant definitions. Section 3 presents the structural
characteristics of data cube lattices and concept lattices
through the experimental study and validates the similarity
between data cube lattices and concept lattices on structural
characteristics. Section 4 discusses the analytical model and
the generation mechanism of data cube lattices and concept
lattices. )e last section concludes this paper and describes
some future works.

2. Preliminary

2.1. Data Cube Lattices. Data cube lattices generalize group-
by operators and aggregate each combination of group-by
attributes. Among them, the attributes grouped are called
dimensions D, and the attributes aggregated are called
measurements M; each grouped attribute combination is
called cuboid (also called view). Correspondingly, the cuboid
containing i(0≤ i≤ n) dimensions called is i-dimension
cuboid. )e data cell c � (x1, x2, x3, . . . , xn, M) is a tuple in
the cuboid, where xi is the ith dimension attribute value.

For a d-dimensional data cube lattice, 2d group-by views
(or cuboids) are generated since each combination of group-
by attributes is computed.

Definition 1 (partial order relation). If ∀A ∈ D,
u[A] ≠ALL⟶ u[A] � v[A], then u, v have partial order
relation, denoted by v≺ u or u≽ v. If v≺ u and u≠ v, then it is
denoted as v≺ u or u≻ v. We can say that u generalizes v, or v

specializes u. In other words, u drills down to v or v rolls up
to u. If ∀A ∈ D, u[A] � v[A], then u � v.

Definition 2 (data cube lattice). A data cube is aggregated
from a base table of data warehousing on various combi-
nations of dimension attributes. It contains the data cells. Let
c1 � (x1, x2, x3, . . . , xn, M), c2 � (y1, y2, y3, . . . , yn, M) be
the data cells.)e partial order relation ≺ : c2 ≺ c1 induces the
data cube lattice structure.

Definition 3 (base tuple set). Given a data cell c ∈ C, the base
tuple set of c, BTS(c) � t | t ∈ r and t≺ c{ }, i.e., the set of all
base table tuples that roll up to c.
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Definition 4 (covering equivalence). Suppose that
c1, c2 ∈ Cube, and ≡ cov � < c1, c2 > | c1, c2 ∈􏼈 Cube,BTS
(c1) � BTS(c2)} is defined as the covering equivalence re-
lation. )e covered equivalence classes is the sets
[c] ≡ cov

� x | x ∈ Cube, c ≡ covx􏼈 􏼉.

Definition 5 (upper and lower bounds). Let <A,≺ > be a
partially ordered set. Any element a in A is called an upper
bound (lower bound) of the subsetM of A if for any element
m in M, there is m≺ a(a≺m).

Example 1. Table 1 is a base table of product sales, which has
three dimension attributes of Product, Time, and Store and
one measurement attribute, Sales. )e data cube lattice
generates eight group-by views by aggregation, which form
the cube lattice structure based on the relationship (as shown
by the connection between nodes) between rolling up
(generalization) and drilling down (specialization).

Figure 1 is a data cube lattice generated by aggregation of
the Sum operation on sales in Table 1. Note that ∗ denotes
the dimension attribute value ALL. )e data cells
(P1,∗, S1, 10){ }, (P1, T1, S1, 4){ }, and (P1, T2, S1, 6){ } have
the semantic relations of rolling up and drilling down each
other. )e partial order relationship between them forms a
data cube lattice.

2.2. Concept Lattices

Definition 6 (concept lattice). Let I be a binary relationship
between U and A, where U is the object set and A is the
attribute set. Given that x ∈ U, y ∈ A, when (x, y) ∈ I, we
say the object x owns the attribute y, and the triple tuple
(U, A, I) was called formal background. On a triple tuple
(U, A, I), we take a subset of U and a subset of A and get a
concept set under relation I: L � (A, B) | A ∈ P(U),{

B ∈ P(A), (A, B) is the concept}; among them, A is the ex-
tent of L and B is the intent of L. We define a partial ordering
relation on L: (A1, B1)≺ (A2, B2)⟺A1 ⊆A2 (or B2 ⊆B1).
And then, (L,≺ ) is a complete Galois lattice, called a concept
lattice about formal background (U, A, I).

Definition 7 (equivalent feature set). Let K � (U, A, I) be a
formal background, N⊆U, M⊆A. If M⊆N′ and M′ � N

are satisfied, thenM is an equivalent feature set ofN, denoted
by equ(N) � 􏼈M | M⊆N′, M′ ⊆N􏼉.

Definition 8 (Hasse diagram). A Hasse diagram is a kind of
mathematical diagram used to represent a finite partially
ordered set in the form of a drawing of its transitive re-
duction. Concretely, for a partially ordered set (A,≺ ), one
represents each element of S as a vertex in the plane and
draws a line segment or curve that goes upward from vi to vj

whenever vj covers vi (that is, whenever vi≺vj and there is no
vk such that vi ≺ vk ≺ vj). )ese curves may cross each other
but must not touch any vertices other than their endpoints.
Such a diagram, with labeled vertices, uniquely determines
its partial order.

According to the definition of Concept Lattice, the
concept lattice generated by a formal background given in
Table 2 is shown in Figure 2.

Figure 2 shows a Hasse diagram representation of
concept lattices corresponding to the formal background of
Table 2. Each node in the graph represents a concept, each
concept is identified by its extent and intent, and the order
relationship between concepts is represented by the edges
between nodes. Among them, the concept with the largest
extent (corresponding to the smallest intent) in the concept
lattice is the largest concept in the concept lattice, which is
located at the top of the concept lattice; the concept with the
largest intent (corresponding to the smallest extent) in the
concept lattice is the smallest concept in the concept lattice,
which is located at the bottom of the concept lattice.

3. Lattice Structure Characteristics

Since the three spectacular concepts—the degree distribu-
tion, clustering coefficient, and average path length—play a
more important role in networks than other quantities and
measures [11], we verify them on various real datasets for
lattices, particularly the main representations—data cube
lattices and concept lattices.

3.1. Data Cube Lattices’ Structural Characteristics. We used
the two classic datasets Foodmart andWeather (http://cdiac.
esd.oml.gov/cdiac/ndps/ndp026b.html) for the data cube
lattices. )en, we calculated its topology statistics to analyze
whether the data cube lattices generated by different data sets
have similar structural characteristics.

We randomly extracted 10,000 tuples from Foodmart
and generated a data cube lattice Foodmart-1w by adapting
the data cube construction algorithm [12]. )en, we ran-
domly extracted 10,000 tuples from Weather data and
generated the data cube lattice Weather-1w by the same
lattice structure algorithm. )ey are shown in Table 3.

For the two datasets in Table 3, the structural charac-
teristics of the degree distribution, clustering coefficient, and
average path length are calculated.

Figure 3(a) shows the degree distribution of Foodmart-
1w and Weather-1w. )e horizontal axis represents the
degree value of the node, while the vertical axis represents
the total number of nodes when the degree is that value. By
comparison, it can be found that the two curves in the graph
first jump sharply and then decrease exponentially. )e
average degree of each node of Foodmart-1w is 8.8; the
average degree of each node of Weather-1w is 7.9. It can be
seen that the average of data cube lattices of different data
sets is not very different.

Figure 3(b) shows the clustering coefficient of two data
sets in the data cube lattice. )e horizontal axis represents
the degree value of the node, while the vertical axis repre-
sents the average clustering coefficient of nodes when the
degree is that value. )e average clustering coefficient of
Foodmart-1w and Weather-1w is 0.0231 and 0.0042, re-
spectively. All of them have relatively small average clus-
tering coefficients.
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Figure 3(c) shows the average path length distribution of
two data sets in the data cube lattice. )e horizontal axis
represents the length of the path (hops), and the vertical axis
represents the number of pairs of nodes when the path
length is that value.)e average path length of Foodmart-1w
and Weather-1w is 5.25 and 7.21, respectively. Figure 3(c)
shows the distribution of the average path length is similar
between two structures.

3.2. Concept Lattices’ Structural Characteristics. For the
concept lattices, we used the Mushroom data in the UCI
machine learning library (http://archive.ics.uci.edu/ml/
datasets), which is the common benchmark dataset in cal-
ibrating various concept lattice algorithms.We also analyzed
whether the concept lattices generated by different data sets
have similar structural characteristics.

We randomly selected 600 tuples from the Mushroom
data set of UCI and divided them into two parts, each with
300 tuples. )en, we used In-Close algorithm [13] to gen-
erate concept lattices Mushroom-1 and Mushroom-2 and
used FcaStone (http://fcastone.sourceforge.net) to transform
the concept lattices into the graph structures further,
forming the second group dataset, as shown in Table 4.

)e degree distribution, clustering coefficient, average
path length, and other structural characteristics are calcu-
lated by using the data in Table 4. )e results are shown in
Figures 4(a)–4(c).

Figure 4(a) shows the degree distribution of Mushroom-
1 and Mushroom-2. By comparison, it is an interesting
discovery that the two curves in the graph jump sharply first
and then decrease exponentially. )e average degree of each
node ofMushroom-1 is 8.1, while that of Mushroom-2 is 7.9.
It can be seen that the average degree of concept lattices of
different data sets is not very different.

Figure 4(b) shows the clustering coefficient of the two
data sets in the concept lattice, in which the horizontal axis
represents the degree value of the node, and the vertical axis
represents the average clustering coefficient of nodes when
the degree is the value. )e average clustering coefficient of
Mushroom-1 and Mushroom-2 is 0.1064 and 0.0842, re-
spectively. )ey all have relatively small average clustering
coefficient.

Figure 4(c) shows the average path length distribution of
the two data sets in the concept lattice, in which the hori-
zontal axis represents the path length (hops), and the vertical
axis represents the number of node pairs when path length is
that value. )e average path length of Mushroom-1 and
Mushroom-2 is 6.14 and 5.15, respectively. Both of them
have smaller average path length.

3.3. Relationship between Data Cube Lattices and Concept
Lattices. We used the data cube lattice generated by
Foodmart data in the first group and the concept lattice
generated by Mushroom data in the second group, as shown
in Table 5, to analyze whether they share the similar
structural characteristics.

For the two kinds of lattice structure data in Table 5, the
degree distribution, clustering coefficient, and average path
length are calculated. )e data cube lattice and concept
lattice are abbreviated as CubeLattice and ConceptLattice,
respectively.

Table 1: Base table of product sales.

Product Time Store Sales
1 P1 T1 S1 4
2 P1 T2 S1 6
3 P2 T1 S2 2

(P1, T1, S1, 4) (P1, T2, S1, 6) (P2, T1, S2, 2)

(P1, ∗, S1, 10)

(P1, T1, ∗, 4)

(∗, T1, S1, 4)

(P1, T2, ∗, 6)

(∗, T2, S1, 6)

(P2, ∗, S2, 2)

(P2, T1, ∗, 2)

(∗, T1, S2, 2)

(P1, ∗, ∗, 10)
(∗, ∗, S1, 10)

(∗, T1, ∗, 6)
(∗, T2, ∗, 6)

(∗, ∗, S2, 2)

(P2, ∗, ∗, 2)

(∗, ∗, ∗, 12)

Figure 1: Data cube lattice.

Table 2: A formal background.

Object a b c d
1 1 0 1 1
2 1 1 0 1
3 0 1 1 0
4 0 1 1 0
5 1 0 1 1

(12345, Φ)

(125, ad) (2, abd) (1345, c)

(2, abd)
(34, bc) (15, acd)

(Φ, abcd)

Figure 2: Concept lattice.

Table 3: )e first group dataset.

Data cube lattices Node number Edge number
Foodmart-lw 17,579 31,676
Weather-lw 13,230 53,424

4 Complexity
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Figure 5(a) shows the degree distribution of two different
lattice structure data, CubeLattice and ConceptLattice. )e
degree distributions of both of them rise sharply, reach a
peak value, and then decay exponentially. In the degree
distribution of CubeLattice, when the degree of a node is 5,
the number of nodes reaches a peak value, which is 5,450; in
the degree distribution of ConceptLattice, when the degree
of a node is 7, the number of nodes reaches a peak value,
which is 2,440. By comparison, we have found that the
degree distribution of CubeLattice is similar to that of
ConceptLattice.

Figure 5(b) shows the distribution of the clustering
coefficient for CubeLattice and ConceptLattice. From
Figure 5(b), we can see that both of them rise sharply at first,
then decline slowly after a peak. Although there are fluc-
tuations in amplitude during the decline process, the overall
trend is downward. )e average clustering coefficient of
CubeLattice and ConceptLattice is 0.0231 and 0.1064, re-
spectively. So, the average clustering coefficient of lattice
structure data is relatively small.

Figure 5(c) shows the distribution of the average path
length for the two different lattice structures, CubeLattice
and ConceptLattice. By comparison, it has been found that
the average path length distribution of them increases slowly
at first, reaches a peak value, and then decreases slowly. After
calculation, we found that the average path length of
CubeLattice is 5.25 and that of ConceptLattice is 6.14.
Obviously, the distribution of the average path length about
CubeLattice is similar to that of ConceptLattice.

3.4. Comparison with Other Main Networks. In order to
check whether the lattices’ structural statistics are different

with other main networks such as random networks and
complex networks [8, 11], we first extracted the 10,000 tuples
from Foodmart and generated a data cube lattice. )en, we
generated a random graph based on the ERmodel [14] using
SNAP [15]. For the complex network, the data set is a real
social network Facebook collected in SNAP data sets.

)e comparison results are as follows:

(1) )e degree distribution of lattices is obviously dif-
ferent from that of Facebook but shares certain
similarity with the ER random graph. )e degree
distribution of Facebook generally follows the heavy
tail distribution, which indicates the occurrence of
nodes with a much higher degree than most other
nodes. On the contrary, Lattice and ER follow the
Poisson-like degree distribution (Figure 6).

(2) )e average clustering coefficient of lattices is dif-
ferent from that of complex networks. According to
the calculation, the average clustering coefficient of
Lattice is 0.0231, and the average clustering coeffi-
cient of ER is 0.0011. )ey both have a small clus-
tering coefficient. )e clustering coefficient in ER
random graphs is evenly and randomly distributed.
Different from ER, the nodes with a smaller degree in
Lattice have the larger clustering coefficient in lat-
tices. )e average clustering coefficient of Facebook
is 0.5225, which accords with the large clustering
coefficient of the small-world network. )at is also
different from the average clustering coefficient of
Lattice (Figure 7).

(3) )e average path length of Lattice and ER is 7.21 and
4.26, respectively. Both of them have smaller average
path length. )e longest path between two points in
the lattice structure is related to the number of di-
mensions, while the longest path between two nodes
in the ER random graph is related to the number of
nodes. Facebook’s average path length is 3.7, and the
longest path between two points in the network is 6.
Obviously, the average path length distribution of
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Figure 3:)e structural characteristics of cube lattices on Foodmart-1w andWeather-1w. (a) Degree distribution. (b) Clustering coefficient.
(c) Average path length.

Table 4: )e second group dataset.

Concept lattices Node number Edge number
Mushroom-1 10,486 46,289
Mushroom-2 10,547 60,146
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the lattice structure is different from that of the
Facebook social network (Figure 8).

In summary, on the degree distribution, lattices, and
random networks all follow the Poisson distribution. Be-
sides, lattices and random networks have the smaller clus-
tering coefficient. But, lattices have the rather larger average
path length, while random networks are moderately large in
the average path length. For the typical complex networks,
they have the larger average clustering coefficient and the
smaller average path length, and their degree distribution
satisfies the heavy tail distribution.

4. Some Discussions

4.1. Analytical Model. Data cube lattices have different
structural characteristics from random networks and
complex networks. First, in the process of generating lattice-
structured data, nodes do not connect according to a ran-
dom probability, but there are partial ordering relationships
among some different nodes, which generate edges
according to the partial ordering relationship; secondly,
there is no partial order relationship between data cells in the
same layer, that is, the lattice structure data have a clear
hierarchical structure; finally, the lattice structure has its
unique regular structure, and every two nodes have upper
and lower bounds.

We elaborate the analytical model of data cube lattices
and concept lattices from three aspects.

4.1.1. Degree Distribution. From the above experiments, we
can see that the degree distribution curves of the lattice
structure data first jump sharply, then drop exponentially,
which tends to be similar to the Poisson distribution curve.

In order to prove this point, we use polynomial distribution
and Poisson distribution curves to fit the degree distribution
of the lattice structure data.

Firstly, the degree distribution curve of the data cube
lattice (it has 10,000 base tuples, 15 dimensions, 13,230
nodes, and 53,424 edges.) is fitted by the polynomial curve.
In the process of fitting, when the polynomial is 6th power
and more, the R-square reaches the maximum value. As
shown in Figure 9, the vertical axis represents the probability
of the occurrence of nodes with different degree values, the
diamond points represent the discrete points of the degree
distribution of the data cube lattice, and the triangle curves
represent the fitting polynomial curves of 6th power. At this
time, the value of R-square is about 0.89, which fits the
original degree distribution curve better.

In order to evaluate the accuracy of curve fitting, the
square of the error between the discrete point of the degree
distribution curve and the discrete point of the polynomial
curve is calculated. )e result is about 0.0084.

)en, the Poisson distribution curve is fitted to the
degree distribution curve, and the probability expression of
Poisson distribution is as follows:

P(X) �
ϑx

x!
e

− ϑ
, (1)

where ϑ denotes the expected value. )e degree values of the
nodes in the data cube lattice are multiplied by their cor-
responding probabilities, and then the sum can be calculated
as follows: ϑ � 􏽐 d∗P(d). )en, the Poisson distribution
curve can be drawn, as shown in Figure 10. )e vertical axis
represents the probability of the occurrence of nodes with
different degree values, the curve with diamonds represents
the curve simulating Poisson distribution, the curve with
squares represents the degree distribution curve of the whole
lattice structure data, and the curve with triangles is the
degree distribution curve of the nodes in the eleventh layer
of the lattice structure. It can be seen that both the degree
distribution of the whole structure and the degree part of one
of the layers tightly fit the Poisson distribution curve. Also,
another data cube lattice (it has 10,000 base tuples, 12,088
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Figure 4: )e structural characteristics of concept lattices on the mushroom date set. (a) Degree distribution. (b) Clustering coefficient.
(c) Average path length.

Table 5: )e third group dataset.

Lattices Node number Edge number
Data cube lattice 17,579 31,676
Concept lattice 10,486 46,289
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nodes, and 54,658 edges.) is also fitted with the Poisson
distribution curve. As shown in Figure 11, the degree dis-
tribution of different lattice structure data is tightly fitted
with the Poisson distribution curve.

)e square of the errors of the discrete points of the
degree distribution curve and the Poisson distribution is
calculated. )e result is about 0.0038, and the error is much
smaller than the fitting curve of the polynomial. Combined
with the additivity of Poisson distribution, it is further
confirmed that the degree distribution of the lattice structure
is similar to Poisson distribution.

4.1.2. Clustering Coefficient. If a node i is chosen arbitrarily
in the lattice, and the degree of i is di, then the number of
possible connected edges of the di adjacent nodes of node i is
di(di − 1)/2. If the actual number of edges between the di

adjacent nodes is r, the clustering coefficient of node i is as
follows:

Ci �
r

di di − 1( 􏼁/2
. (2)

)e average clustering coefficient of all nodes in the
whole lattice structure is as follows:

C �
1
N

􏽘

N

i�1
Ci, (3)

where N denotes the total number of nodes in the lattice
structure.

It is assumed that the node i is connected with the node j
and the node k in the same layer, but there is no edge
between j and k, so the value of r is rather smaller.
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Figure 5: )e structural characteristics between cube lattices and concept lattices. (a) Degree distribution. (b) Clustering coefficient.
(c) Average path length.
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Fewer nodes are connected across layers, so there are
fewer edges between the nodes connected with the same
node.

In concept lattices, there are few nodes connected across
layers and few edges between the nodes connected with the
same node.)us, the clustering coefficient of concept lattices
in the graph structure is also very small.

)erefore, combining equations 2 and 3, we can see that
data cube lattice and concept lattice have smaller clustering
coefficients.

4.1.3. Average Path Length. If the dimension number of
nodes in the lattice structure is h, the number of layers is also
h since it rolls up from the bottom cuboid to the top cuboid.

Taking any two nodes i and j, the minimum number of edges
to pass from i to j is called the shortest distance from i to j
and is denoted as li,j. )e average distance of all pairs of
nodes in the data cube lattice is as follows:

l �
2

M(M − 1)
􏽘
i<j

li,j, (4)

where M is the sum-up node of the data cube lattice, and
there must be li,j ≤ h. )erefore, the data cube lattice has a
relatively small average path length.

For concept lattices, the following definitions are given
to facilitate the analysis of their graph structure model:

)e Hasse diagram of an n-layer concept lattice consists
of a triple G � (N, E, m), whereN is the set of nodes, E is the

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

1 4 7 10 13 16 19 22 25 29

Av
er

ag
e c

lu
ste

rin
g 

co
ef

fic
ie

nt

Node degree

Lattice
ER

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1 22 43 64 85 106 128 150 171 192 222

Av
er

ag
e c

lu
ste

rin
g 

co
ef

fic
ie

nt

Node degree

Facebook

(b)

Figure 7: Clustering coefficient of three kinds of network structures. (a) Lattice and ER. (b) Facebook.
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set of edges, and m is the number of layers of the concept
lattice graph. )erefore, in this hierarchical structure, there
are the following properties:

(1) N consists of m nonempty subsets,
N � N1 ∪N2 ∪ · · · ∪Nm and Ni ∪Nj � ∅, where
i≠ j, Ni is the ith layer in the graph

(2) If the edge (x, y) ∈ E, then x ∈ Ni, y ∈ Nj and i≤ j,
then j − i is the span of edge (x, y), that is, the
distance between the node x and the node j

Let lx,y be the distance from the node x to the node y; we
have lx,y ≤m. Combining equation 4, it can be deduced that
the graph structure of the concept lattice also has a relatively
small average path length.

4.2. Generation Mechanism. According to the definition of
data cube lattices in Definition 2 and the definition of
concept lattices in Definition 6, data cube lattices are derived
from base tables in the data warehouse, and concept lattices
are established based on formal background. When the base
table is stored in the relational model, it describes the re-
lationship between attributes and tuples, and formal back-
ground describes the relationship between attributes and
objects. Attributes Product, Time, and Store in Figure 1 can
be mapped to attributes a, b, and c in Figure 2, and the tuple
“1” in Figure 1 can be mapped to the object “1” in Figure 2,
and so on. By this, attributes in the base table can correspond
to attributes and objects in the formal background one by
one. )erefore, the structure of the base table in the data
cube lattice and the formal background in the concept lattice
are the same.

According to [16], when the base table in the data
warehouse is taken as the formal background, there is one-
to-one correspondence between the covering equivalence
class in the data cube lattice and the equivalent feature set in
the concept lattice. )ey both have the same covering tuple
set, and the upper bound of each covering equivalence class
corresponds to the concept contained in the equivalent
feature set. Combined with the definition of equivalent
feature sets in Definition 7, the following theorem holds in
[16].

Theorem 1. When the base table is taken as the formal
background, i.e., K � (U, A, I), where U corresponds to the
tuple set of the base table, A corresponds to the dimension
attribute set of the base table (without measurement attri-
butes). Let N⊆U, c ∈ Cube (N′, N″) be the concept of the
corresponding N, where Cube is a data cube lattice derived
from the base table, and c is a data cell. If BTS(c) � N is

y = 0.0000 x6 – 0.0000 x5 + 0.0003 x4 – 0.0047
x3 + 0.0314 x2 – 0.0596 x + 0.0336

R2 = 0.8857
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satisfied, then [c] ≡ cov
� equ(N) and the upper bound u of

[c] ≡ cov
is the corresponding conceptual intent N′ of N.

Based on Ceorem 1, we have the following corollary:

Corollary 1. Let L � u | u is the upper bound of [c] ≡ cov
􏽮 􏽯 and

L′ � (A, B) | A ∈ P(U), B ∈ P(A), (A, B) is the concept􏼈 􏼉, then
the corresponding data cube lattice (L,≺ ) is equivalent to the
concept lattice (L′,≺ ), denoted by (L,≺ ) ≡ (L′,≺ ).

For example, let L � 1(P1, T1, S1), 2(P1, T2, S1){ }, then
the data cell c may take any value of (P1,∗,∗), (∗,∗, S1),
and (P1,∗, S1) in Figure 1. )e corresponding concept of L
is ((1, 2), (P1, S1)), and (P1,∗, S1) is not only the upper
bound of [c] ≡ cov

but also the intent of the concept
((1, 2), (P1, S1)). Corollary 1 proves that if the base table of
the data warehouse is taken as the formal background, the
concept lattice derived from the base table is the same as the
structure of the data cube lattice which only preserves the
upper bounds in equivalence classes (as shown in Figure 12).

5. Related Work

In order to improve the performance of online analysis and
decision-making of data warehousing, Gray et al. proposed
the data cube operator CUBE [1], which generalizes group-
by, cross-tab and subtotal operators, and preaggregates and
materializes the attributes (i.e., dimensions) of group-bys.

Laks et al. [12] proposed quotient cubes to compress data
cubes efficiently. It uses cover partition to partition data cells
with the same upper bound into classes to preserve the
semantics of the data cube. )e upper and lower bounds of
each class are preserved to achieve data cube compression.
)e closed data cube is proposed in [17], which also im-
plements compression of data cubes through equivalent
classes. )e difference is that the closed data cube only keeps
its upper bound for each class, so it is more efficient to
compress the data cube.

In 1982, German mathematician Wile first proposed the
theory of formal concept analysis based on concepts and
conceptual levels. )e core data model is the concept lattice,
also known as Galois lattice, which is used to discover, sort,
and display concepts [3]. At present, the construction
methods of concept lattices are divided into the batch
processing algorithm [18] and the progressive algorithm
[13]. Zhang et al. [19] studied how to quickly and effectively
adjust the original concept lattice to get the concept lattice of
the new formal background after some attribute reduction of
the formal concept, rather than the reconstruction algorithm
in the traditional way. Sarmah et al. [20] proposed an in-
cremental algorithm to reduce multiple attributes. Com-
pared with the incremental algorithm to reduce single
attributes, the algorithm only needs to be executed once.
With the further improvement and development of the
concept lattice theory and methods, the fields of fuzzy
theory, spatial clustering, granular computing, and other
fields have been intersected and integrated with formal
concept analysis and concept lattices, resulting in new ap-
plications [16, 21].

Until now, none of the above work studies the structural
characteristics of data cube lattices and concept lattices in
view of the importance of structures.

6. Conclusion and Future Work

)is paper analyzes and demonstrates the structural char-
acteristics of data cube lattices and concept lattices based on
the synthetic and real data sets. We found the similarities
between them in the degree distribution, clustering coeffi-
cient, and average path length. We further discuss their
similarity of the analytical model and the generation
mechanism in the intrinsic perspective.

Our results demonstrate initial promise for exploring the
structural characteristics of data cube lattices and concept
lattices in data analysis; however, there are many directions
of future research. Next, we will investigate if data cube
lattices and concept lattices can be unified under the same

(∗, ∗, ∗):12

(P1, ∗, S1):10 (∗, T1, ∗):6

(P2, T1, S2):2 (P1, T1, S1):4 (P1, T2, S1):6

False

(a)

(123, Φ)

(12, P1 S1) (13, T1)

(2, P1 T2 S1) (1, P1 T1 S1) (3, P2 T1 S2)

(Φ, P1 P2 T1 T2 S1 S2)

(b)

Figure 12: Data cube lattice and the corresponding concept lattice.
(a) Data cube lattice. (b) Concept lattice.
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framework since they are externally and intrinsically similar.
)us, some efficient algorithms such as construction, re-
duction, or query in data cube lattices or concept lattices
could be applied to each other or be generalized. Besides, we
intend on utilizing the lattice structural characteristics such
as the degree distribution to facilitate the lattice structure
data partitioning in the distributed cloud environment as the
structure is the key factor in the load balancing and the
communication cost minimizing.
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