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Robustness of a supply network highly depends on its structure. Although structural design methods have been proposed to create
supply networks with optimal robustness, a real-life supply network can be quite different from these optimal structural designs.
Meanwhile, real cases such as *ailand floods and Tohoku earthquake demonstrate the vulnerability of supply networks in real
life. Obviously, it is urgent to enhance the robustness of existing real-life supply networks. *us, in this paper, a supply network
reconfiguration method based on adaptive variable neighborhood search (AVNS) is proposed to enhance the structural ro-
bustness of supply networks facing both random and target disruptions. Firstly, a supply network model considering the
heterogeneous roles of entities is introduced. Based on the model, two robustness metrics, Rr and Rt, are proposed to describe the
tolerance of supply networks facing random and target disruptions, respectively. *en, the problem of reconfiguration-based
supply network robustness enhancement is described. To solve the problem effectively and efficiently, a new heuristic based on
general variable neighborhood search, namely, AVNS, is proposed. Finally, a case study based on three real-life supply networks is
presented to verify the applicability and effectiveness of the proposed robustness enhancing method.

1. Introduction

A supply network is created when two or more entities are
connected by resource flows, such as product flows, material
flows, or information flows, to fulfill the demands of
downstream customers [1]. With the development of in-
ternational trade and lean manufacture, a modern supply
network can be large-scale and extremely complex [2].
*ousands of entities such as suppliers, manufacturers, and
retailers are interconnected to form a complex system.

At the same time, disruptions often descend upon supply
networks, especially for the global and large-scale ones [3–5].
A related survey indicates that nearly 75% of companies
experience at least one supply network disruption a year [6].
*ese supply network disruptions can mainly be classified
into two categories: random disruptions and target dis-
ruptions [7–9]. Usually, random disruptions refer to dis-
ruptions caused by unintentional destruction, such as
natural disasters or accidental events. Target disruptions
denote disruptions caused by intentional attacks, like

terrorist or military attacks. In a supply network, a dis-
ruption may damage only one or a very few number of
entities at first, but its impact may propagate through the
interconnected entities and even cause massive loss to the
entire network [10]. In 2011, *ailand floods damaged
several hard disc suppliers, leading multiple computer
manufacturers depending on them unable to continue the
production [7]. Around the same year, Tohoku earthquake
affected almost all major automobile manufacturers globally,
because several Japanese suppliers were damaged severely in
the earthquake [11]. In 2018, the main plant of an auto-
mobile supplier, Meridian Magnesium, caught fire. *is
incident also forced multiple automobile manufacturers to
stop production including BMW, Mercedes-Benz, General
Motors, Fiat Chrysler Automobiles, and Ford Motor Co.
[12]. *ere are also real cases of man-made supply network
disruptions. In 2016, the production of three plants of
Volkswagen in German was halted due to supply disruptions
[5]. *ese production halts were caused by a legal dispute
with a supplier which belonged to a prevent group.
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*erefore, the robustness of a supply network against dis-
ruptions is critically important, and it has gained much
attention from supply network managers and researchers in
the past decades.

Traditionally, supply network disruptions are investi-
gated from the perspective of risk management. *ese
studies mainly focus on identifying, assessing, and miti-
gating of risks [13, 14]. Recently, the investigation of supply
network disruptions has been expanded to network level
[15–18]. From the perspective of network, a supply network
can be described as a complex network composed by entities
(e.g., manufacturers and suppliers) and inter-entity relations
(e.g., product transmitting relations). Using the complex
network modeling and analysis methods, it has been
revealed that the structural characters of a supply network,
such as random and scale-free, affect its robustness greatly
[19–23]. To find an optimal structure of supply networks
which can withstand both random and target disruptions,
supply network structural designs based on various complex
network models have been proposed in the past decades
[8, 9, 24, 25]. In spite of these proposed optimal structural
designs, efforts on structural robustness optimization for
existing real-life supply networks are very limited. In reality,
the construction of a supply network is the result of various
processes, which may be not correlated with the robustness
against disruptions. *us, a real-life supply network can be
quite different from these optimal designs. For example,
according to the research of Shi et al., supply networks whose
degree distribution obeys Poisson distribution are robust to
both random and targeted disruptions [25]. However,
empirical studies found that degree of many real-life supply
networks exhibits power-law distribution [26, 27]. In ad-
dition, real cases also reveal the vulnerability of real-life
supply networks. One possible method to deal with such a
problem is designing an entirely new supply network, which
can be costly and time-consuming. It seems more realistic to
take the existing structure into consideration and recon-
figure the existing supply network. For example, after the
great loss in 2011 Tohoku earthquake, Toyota realized the
fragility of its supply network [28]. *en, Toyota decided to
exam and redesign the current supply network, rather than
designing an entirely new supply network to replace the
existing one.

Based on these previous works, this study adopts the
complex-network view of supply networks and proposes a
supply network reconfiguration method based on adaptive
variable neighborhood search (AVNS) for robustness en-
hancement. Firstly, a supply network model considering
different roles of entities like manufacturers, suppliers, and
retailers is introduced. Based on the model, two metrics are
proposed to evaluate the robustness of a supply network
facing random and target disruptions, respectively. *en, an
AVSN-based supply network reconfiguration method is
presented for robustness enhancement. Finally, a case study
based on real-life supply networks is presented. *e out-
performance of the AVSN-based reconfiguration method is
validated by comparative experiments.

*e remainder of this paper is listed as following. *e
related works are expounded in Section 2. Section 3 presents

the supply network model and robustness evaluation. Sec-
tion 4 shows the AVNS-based supply network reconfigu-
ration method. Section 5 presents the case study. Section 6
gives a brief conclusion.

2. Related Works

2.1. Supply Network Disruptions and Robustness. Supply
network disruptions are unpredictable, unavoidable, and
varied, which can be caused by both natural and man-made
disasters [29–31]. It has been observed that supply network
disruptions occur more frequently and incur more severe
damages in the past decades. According to a report of the
Centre for Research on the Epidemiology of Disasters, it has
been observed that disasters including both natural and
man-made disasters have increased exponentially all over
the world in the past decades [32]. Considering the varied
nature and the severe impacts of supply network disrup-
tions, it is critically important to analyze and enhance the
robustness of supply networks facing disruptions.

In the context of supply networks, robustness refers to
the ability to maintain the basic function under various
situations, including disruptions [33, 34]. A robust supply
network should be capable of absorbing disruptions to
minimize the negative impact on its performance. In the past
years, robustness and several other similar concepts, like
resilience and reliability, have been defined broadly
[22, 23, 33, 35, 36]. *e definitions are varied from author to
author. For example, resilience has been defined as the
capacity of a supply network to recover from disruptions
[37]. A supply network is reliable when it can maintain its
basic operation under a minimum service level [35].

To analyze supply network robustness from the view of
complex network structure, the robustness of a supply
network is defined as its ability to keep the basic function
and connectivity under the loss of some structures or
functions due to natural and man-made disasters, as it is
indicated by Zhao et al. [8, 9, 24].

2.2. Robustness Analysis of Supply Networks from the Per-
spective of Complex Network. Due to the capability to reveal
the inherent laws of complex systems, complex network
theory provides an effective tool to analyze complex systems
in real life. Along with the wide application of complex
network theory in many areas like ecological system [38],
communication network [39], and vehicle routing [40],
supply network managers and researchers also consider to
apply complex network theory into supply network
researches.

From the perspective of complex network, a supply
network can be described as a set of nodes and edges, which
represent entities such as manufacturers and suppliers and
inter-entity relations like product transmitting relations,
respectively. Using complex network modeling and analysis
methods, researchers try to analyze the correlation between
supply network structure and robustness so as to find an
optimal structure of supply networks, which can withstand
both random and target disruptions [22, 23, 25, 41]. As a
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pioneer, *adakamalla et al. firstly introduced complex
network theory into supply network robustness analysis
[36]. Based on the growth models of complex network, they
proposed a supply network model based on a hybrid growth
mechanism of preferential attachment [42] and random
attachment [43]. In addition, they also introduced standard
network connectivity measurements, average length in the
largest connected component (LCC), and the size of LCC
(SLCC) to analyze the tolerance of supply networks facing
both random and target disruptions. To analyze the impact
of structural characters on supply network robustness, Nair
and Vidal constructed twenty supply networks based on
agent-based modeling, which includes ten supply networks
generated using preferential attachment and ten networks
generated using random attachment [22]. SLCC was also
adopted to evaluate supply network robustness. *ey found
that the average length of paths connecting nodes in a supply
network is negatively correlated with its robustness. Kim
et al. also analyzed the robustness of four basic supply
network structures to find the optimal supply network
structure [20]. *ey found that scale-free supply network is
most robust facing random disruptions. Most of these
previous researches describe a supply network as a unipartite
network, neglecting the heterogeneous roles of entities in a
supply network. Such simplification is extremely unrealistic
and also limits the analysis of supply network robustness
[23]. Due to the unipartite modeling method, robustness
evaluation of supply networks has to use standard network
connectivity measurements, such as SLCC. Several re-
searchers have begun to consider the role differences of
entities in a supply network, when describing supply net-
works using complex network models [8, 25, 44, 45]. Zhao
et al. proposed a supply network model considering the roles
of demanding and supplying nodes [8, 9, 24]. Based on the
model, largest functional subnetwork (LFSN) is defined as
the largest connected component containing at least one
node of supplying nodes and demanding nodes. *en,
LFSN-based measurements were used as performance
metrics to verify the effectiveness of proposed supply net-
work modeling method. However, in the supply network
model proposed by Zhao et al., only two types of nodes are
taken into consideration. In reality, a supply network can
include multiple types of entities. Based on the study by Shi
et al., we proposed a supply network model considering
multiple types of entities [25]. Based on the model, they gave
the definition of largest all-role connected component
(LACC). LACC is defined as a LCC in which all role types of
nodes exist. Based on the definition of LACC, size of LACC
(SLACC) was introduced as a performance metric to verify
the effectiveness of proposed grow-mature-decline (GMD)
supply network model.

In spite of these proposed optimal structural designs,
efforts on structural robustness optimization for existing
real-life supply networks are very limited. Recently, with the
emergent of third-party supply network information plat-
forms, empirical studies of supply network structures have
been proposed. It is revealed that supply networks in real life
can be quite different from these optimal designs [46, 47]. In
addition, real cases also present the vulnerability of supply

networks in real life. Clearly, it is urgent to develop methods
for enhancing the robustness of supply networks in real life.
*us, this study contributes to propose a supply network
reconfiguration method based on AVNS for robustness
enhancement and the effectiveness of it is validated using
supply networks in real life.

3. Supply Network Model and
Robustness Evaluation

3.1. SupplyNetworkModel. In this study, a supply network is
modeled as a network G� (V, E), where V � v1, v2, . . . v|v| 

is the node set, representing the entities in the supply
network. |V| represents the total number of nodes. E is the
edge set, representing product transmitting relations.
E � ( vi, vj ), where (vi, vj ∈ E), if there is a product
transmitting relation between node vi and vj.

Since entities in a supply network can play various roles
like manufacturers, suppliers, and retailers, node type is
introduced as a node attribute to describe the specific roles
nodes playing. Node type is presented as Role � role(vi) ,
where role(vi) ∈ type1, type2, . . . , typeM  denotes the spe-
cific role of node vi in the supply network G and M is the
total number of node types in the network.

Figure 1 presents an example to illustrate the modeling
method. *e supply network presented in Figure 1 is
composed of 3 different types of entities, namely, retailers,
manufacturers, and suppliers. *e three types of entities are
represented by green, red, and yellow nodes, respectively.
Edges connecting these entities represent product trans-
mitting relations between them. It is observed that edges
exist not only between different types of nodes but also same
types of nodes in the network. *e main reason is that, with
technological developments, the inter-entity relations can be
various and complex in a supply network. Product trans-
mitting relation can exist between different types of entities
as well as same types of entities [8, 25].

3.2. Robustness Evaluation. *e robustness of a supply
network is defined as its ability to keep the basic function
and connectivity under the loss of some structures or
functions due to natural and man-made disasters [8, 9, 24].
When evaluating the robustness of a supply network, two
aspects need to be considered: disruption models for sim-
ulating the risk scenarios and evaluation metrics to measure
the network’s ability to withstand disruptions. *us, in this
section, two commonly used disruption models, random
and target disruption models, are introduced. *en, the
robustness evaluation metrics corresponding to the two
disruption models are also proposed.

3.2.1. DisruptionModels. When evaluating the robustness of
a supply network, most current studies consider two typical
disruption models: random disruption model and target
disruption model. *ey are corresponding to two risk sce-
narios: unintentional destruction and intentional attack
[8, 36, 37]. Based on these previous works, the two types of
disruption model are adopted in this study.
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Before introducing the disruption models, the following
assumptions are made.

Assumption 1. *e disruption of a node in a supply network
is treated as the complete damage of it. *at is to say, once a
node is disrupted, it will lose all the functions of it and it will
not recover anymore. *us, the disruption of a node is
modeled as the removal of it.

Assumption 2. *e adaptive behaviour of nodes, such as
making temporary connections with alternative nodes and
so on, is not considered in this study.

(1) Random disruption model. Random disruptions refer to
unintentional destruction, such as natural disasters (e.g.,
earthquakes and floods), unexpected economic events (e.g.,
recessions and bankruptcy), and accidents (e.g., power
blackout and fire). For such disruptions, the places where
disruptions descend upon are usually unpredictable. In
general, random disruptions are modeled using random
node removals, where each node has an equal probability to
be disrupted. *e procedure of simulating random dis-
ruptions can be described as follows:

(a) Ranking nodes randomly.

(b) Nodes are removed from the network progressively
following the random ranking calculated in step a.
When a node is removed, all of its links in the
network are also removed.

(c) *e process is iterated until all nodes in the network
have been removed.

(2) Target Disruption Model. On the other hand, target
disruptions refer to intentional attacks, like terrorist and
military attacks, which are aimed at maximizing the damage
to the entire supply network by targeting nodes in the
network believed to be “important.” Usually, the node
“importance” is measured by degree, namely, the number of
edges attached to it [48]. *e procedure of simulating target
disruptions is listed as follows:

(a) Ranking nodes according to degree centrality in the
descending order. *e degree of a given node vi is
presented using the following equation:

ki � φi


, (1)

where φi represents the node set connected to node vi

and |φi| represents the number of nodes in φi.
(b) Nodes are removed progressively following the de-

gree-based ranking. When a node is removed, all of
its links in the network are also removed.

(c) *e process is iterated until all the nodes in the
network have been removed.

3.2.2. Evaluation Metrics. Based on the two disruption
models used in this study, two robustness metrics are
proposed to evaluate supply networks’ tolerance of random
and target disruptions, respectively.

Traditionally, network robustness evaluations are mainly
based on LCC. Since nodes can play heterogeneous roles in a
supply network, the definition of LCC has been extended
into the context of supply networks bymany previous works.
In this study, we will use the definition of LACC and SLACC
proposed by Shi et al. to measure the performance of a
supply network facing disruptions [25].

Definition 1. LCC is defined as the largest subnetwork in
which any pair of nodes can be connected. *e expression of
LCC is presented using the following equation:

Gcc(V, E) � G(V, E)| ∀ vi ∈ V, ∀vj ∈ V, ∃ path connecting vi and vj , (2)

GLCC(V, E) � GCC(V, E)|∀G(V, E) ∈ Gcc(V, E), |G(V, E)|<� GCC(V, E)


 , (3)

where equation (2) denotes the connected component set,
which is composed of subnetworks in which any pair of

nodes can be connected and equation (3) denotes the set of
LCC.
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Figure 1: Illustration of the supply network model.
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Definition 2. LACC is defined as a LCC that includes at least
one node of each role type. *e expression of LACC is
presented using the following equation:

GA(V, E) � Gcc(V, E)|∃vi1 ∈ V, role vi1(  � type1∧ · · ·∧∃viM ∈ V, role viM(  � typeM , (4)

GLACC(V, E) � GA(V, E)|∀G(V, E) ∈ GA(V, E), |G(V, E)|<� GA(V, E)


 , (5)

where equation (4) denotes the all role connected compo-
nent set, which is composed of subnetworks, in which any
pair of nodes can be connected and contain all role types and
equation (5) denotes the set of LACC.

Based on the definition of LACC, SLACC of a given
supply network G is defined as the number of nodes in
LACC. *e expression is presented using the following
equation:

SLACC(G) � GLACC(V, E)


, (6)

where |GLACC (V, E)| represents the number of nodes in
LACC.

*e illustration of LACC and SLACC is presented in
Figure 2. Figures 2(a) and 2(b) present a supply network
before disruption and after disruption, respectively. As
presented in Figure 2(a), all 13 nodes form a connected
component which contains all types of nodes. *us,
SLACC of the network in Figure 2(a) is 13. As presented in
Figure 2(b), due to the disruption of node 6, the supply
network presented in Figure 2(a) is divided into three
connected components. Component 1 contains nodes 1, 2,
5, 8, 9, and 10. Component 2 is composed of nodes 11 and
12. Component 3 contains nodes 3, 4, 7, and 13. Among all
three connected components, Component 1 and Com-
ponent 3 contain all types of nodes, so they can maintain
the basic function. *e sizes of Component 1 and
Component 3 are 6 and 4, respectively. *us, the size of
Component 1 is larger than that of Component 3. So,
LACC of the network presented in Figure 2(b) is Com-
ponent 1 and SLACC of it is 6.

After introducing the definition of SLACC, two ro-
bustness metrics Rr and Rt are proposed to measure the
tolerance of a supply network facing random and target
disruptions, respectively.

Based on the definition of SLACC and random dis-
ruption model, the robustness of supply network G against
random disruptions is given as follows:

Rr(G) �
1

|V|


|V|

j�1

SLACCr(j)

SLACC0
, (7)

where j� 1, 2, . . ., |V| represents the times of random dis-
ruptions on the supply network G, |V| is the number of
nodes in the original network G, SLACC0 represents the
SLACC of original network G SLACCr, (j) represents the
SLACC of network G after the jth random disruption,

namely, removing the jth nodes under random disruptions,
and SLACCr (j)/SLACC0 is the normalized SLACC of
network G after the jth random disruption.,

In the same way, the robustness of supply network G
against target disruptions is defined as

Rt(G) �
1

|V|


|V|

j�1

SLACCt(j)

SLACC0
, (8)

where j� 1, 2, . . ., |V| represents the times of target dis-
ruptions on the network G, |V| is the number of nodes in the
original network G, SLACC0 represents the SLACC of
original network G. SLACCt (j) represents the SLACC of
network G after the jth target disruption, namely, removing
the jth node under target disruptions, and SLACCt (j)/
SLACC0 is the normalized SLACC of network G after the jth
target disruption.

4. Adaptive Variable Neighborhood Search-
Based Supply Network Reconfiguration for
Robustness Enhancement

In this section, an AVNS-based reconfiguration method is
presented for robustness enhancement. Firstly, the problem
description of supply network reconfiguration-based ro-
bustness enhancement is given. *en, an AVNS algorithm is
proposed to solve the problem.

4.1. Problem Description. To enhance the robustness of a
supply network, the network structure will be reconfig-
ured by introducing a limited number of new product
transmitting relations between existing entities. *is is a
commonly used supply network reconfiguration ap-
proach. In this study, a supply network is modeled as
G � (V, E), where V and E represent entities and product
transmitting relations between entities. Based on the
model, two robustness evaluation metrics, Rr and Rt, are
proposed to describe the tolerance of a supply network
facing random and target disruptions, respectively. *us,
the network reconfiguration-based robustness enhance-
ment of a given supply network G is a typical optimization
problem, which is aimed at finding a limited subset of
edges S whose addition can maximize both Rr and Rt of the
reconfigured network G∪ S. *e problem is described as
follows:
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maxSH(S), (9)

s.t. |S| � K, (10)

S∩E � ∅, (11)

H(S) � αRr(G∪ S) +(1 − α)Rt(G∪ S), (12)

where S represents any possible subset of edges to be added
into network G, |S| denotes the number of edges in S, K is a
predefined number of edges to be added in to G, and G∪ S

represents the reconfigured supply network G after adding
edge set S. Constrain (10) denotes the number of added edges
should be equal to the predefined number. Constrain (11)
denotes the added edges cannot be edges which already exist
in the network. Rr (G∪ S) and Rt (G∪ S) denote the tolerances
of reconfigured network facing random and target disrup-
tions, respectively. α ∈ [0, 1] is a weighting parameter. If
0≤ α< 0.5, the network’s robustness mainly depends on its
tolerance of random disruptions. If 0.5<α≤ 1, then the
network’s robustness mainly depends on its tolerance of
target disruptions. In this study, the tolerances of random and
target disruptions are considered to be equally important.
*us, the value of α is set to be 0.5. In the following text,H (S)
will be used as the objective function, namely, the fitness
function in the proposed AVNS algorithm.

4.2. Adaptive Variable Neighborhood Search. Variable
neighborhood search (VNS) is a type of heuristic algorithm,
which is based on the idea of neighborhood change to avoid
trapping in local optimums [49–51]. Due to the efficiency
and effectiveness of it, it has been applied in many areas and
achieved high performance. *us, an improved VNS algo-
rithm, namely, AVNS is proposed to solve the problem of
supply network reconfiguration-based robustness

enhancement. To solve the problem effectively and effi-
ciently, an adaptive search-based solution improvement is
proposed, which contains a local neighborhood search based
on community closeness, a global neighborhood search and
an adaptive neighborhood determination scheme.

4.2.1. Solution Representation and Fitness Evaluation. In the
AVNS, each possible reconfiguration solution is coded
using the string coding method. A solution can be repre-
sented as S � [p1, p2, . . . , pK], where pi � (vx, vy) is the ith
element of the solution, representing an edge to be added
into G and K is the predefined number of edges to be added.
Figure 3 presents an example to illustrate the string-based
coding. In the Figure 3, the red dotted lines represent edges
to be added into the network.

In terms of searching for the optimal reconfiguration
solution, operations are performed to search for the optimal
edge subset whose addition will improve both robustness
metrics Rr and Rt most greatly. *us, each solution will be
evaluated using a fitness value; those solutions with bigger
fitness values are considered to be better ones. *us, the
fitness values are calculated using equation (12).

4.2.2. General Scheme of Adaptive Variable Neighborhood
Search. As presented in Algorithm 1 and Figure 4, the
proposed AVNS algorithm is mainly composed of a solution
initialization procedure and an adaptive search-based solu-
tion improvement. *e adaptive search-based solution im-
provement includes two neighborhood search methods and
an adaptive neighborhood determination scheme. *e two
neighborhood search methods are community closeness-
based local neighborhood search and global neighborhood
search. To realize the adaptive neighborhood determination, a
rating is associated to each neighborhood search, where PL

and PG represent the ratings for local and global search,
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Figure 2: Illustration of LACC and SLACC. (a) Original supply network. (b) Supply network after the disruption of node 6.
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Solution representation

(6, 7) (6, 13) (10, 11)

Figure 3: Illustration of string-based solution coding.

Input: G� (V, E), Role, K, Ninitial, PL, PG, p1, p2,threshold
Output: S
S⟵ Solution initialization (G, K, Ninitial)
while (end condition is not met) do
if PL/(PL +PG)> a random number δ ∈ (0, 1)

S∗⟵Community closeness-based local neighbourhood search (G, S)
if fitness (S∗)> fitness (S)
S⟵ S∗;
PL � PL − p1;

else
PL � PL − p2;

end if
if PL <*reshold

PL �*reshold
end if

else
S∗⟵Global neighborhood search (G, S)
if fitness (S∗)> fitness (S)
S⟵ S∗;

PG � PG +p1
else

PG � PG +p2;
end if
if PG <*reshold

PG �*reshold;
end if

end if
end while
Return S

ALGORITHM 1: Adaptive variable neighborhood search.
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respectively. *e rating is correlated with the possibility to
perform each search method. *e probability of performing
local search is PL/(PL +PG), while the probability of per-
forming global search is PG/(PL +PG). *us, search method
with a higher rating indicates a higher chance to be per-
formed. *ese ratings are dynamically updated according to
results encountered during the iterations. *e search method
leading to new optimal solutions is enhanced by increasing its
rating, while the search method unable to improve solutions
will be weakened by decreasing its rating.

4.2.3. Solution Initialization. *e quality of an initial so-
lution not only affects the accuracy of an algorithm but also
the converging speed. An initial solution with high quality is

vitally important.*us, a random search algorithm is used to
find an initial solution with high quality. Firstly, the random
solution generation procedure allows solutions in the entire
solution space to be obtained. Subsequently, best solution is
selected from the randomly generated solutions. *e solu-
tion initialization procedure is presented in Algorithm 2.

4.2.4. Community Closeness-Based Local Neighborhood
Search. To ensure an effective and efficient improvement of
solutions, a local neighborhood search method based on
community closeness is proposed in this study. As presented
in Algorithm 3, the proposed community closeness-based
local neighborhood search is composed of three steps:
community closeness-based neighborhood determination,

S S∗,
PL = PL + p1

S S∗,
PG = PG + p1

Yes

NoYes

Yes

No

Start

Initialization
generate initial optimal solution S

Generate a random number
δ ∈ (0,1)

PL/(PL + PG) > δ

Community closeness-based
local neighborhood search,

generate S∗

Global neighborhood search,
generate S∗

fitness (S∗) > fitness (S) fitness (S∗) > fitness (S)

PL = PL – p2 PG = PG – p2

PL < Threshold

PL = Threshold

PG < Threshold

PG = Threshold

Output the optimal solution S

Termination
condition ?

End

YesYes

No

NoNo

Yes

No

Figure 4: Flowchart of the proposed AVNS.
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degree weighting-based candidate identification, and ran-
dom swap strategy

(1) Community Closeness-Based Local Neighborhood Deter-
mination. Neighborhood refers to the solution space for
candidate solutions. *e performance of a local search
highly depends on its neighborhood structure. *us, a
community closeness-based neighborhood determination
is designed in this study, which is both smaller in size and
more focused in terms of the optimization objective. In this
study, performance of a supply network is measured by
SLACC, which is also a network connectivity metric.
Community in a network refers to groups of nodes within
which connections are dense, but between which con-
nections are sparser. Intuitively, adding edges between two
unconnected communities will help to increase the con-
nectivity. It may benefit the enhancement of supply net-
work robustness. As a result, when swapping an edge
(vx, vy) ∈ S with a candidate edge (vx1, vy1), it may be more
preferable to consider an edge connecting two unconnected
communities. Based on such consideration, a local
neighborhood determination method based on community
closeness is proposed. As presented in Algorithm 4, the
method is composed of the following steps:

(a) Community detection for G∗ � G∪ S. Due to the
accuracy and efficiency, Louvin algorithm is adopted
in this study for community detection. *e details of
the algorithm are presented in [52].

(b) Calculate closeness for each pair of community.
Closeness of a pair of communities is defined as the
number of edges connecting the pair of
communities.

(c) Based on the closeness of community pairs, com-
munity pair with minimal closeness is selected.

(d) Based on the community pair with minimal value of
closeness, the neighborhood for generating candi-
date solutions is determined

(2) Degree Weighting-Based Candidate Identification. After
determination of the community pair with minimal close-
ness, a connection will be built between them to increase
network connectivity. Previous studies indicate that low
degree-based edge addition can increase network robustness
more effectively [53]. *us, adding edges between less
connected nodes is considered to be more satisfactory. *e
procedure of degree weighting-based candidate identifica-
tion is presented in Algorithm 5.

4.2.5. Global Neighborhood Search. Solution improvement
based on a single neighborhood search could easily lead to
local optimums. To avoid trapping in local optimums, global
neighborhood search is also adopted in this study. *e
procedure of global neighborhood search is presented in
Algorithm 6.

4.3. Computational Complexity of AVNS. To analyze the
computational complexity of the proposed AVNS, we
consider the main steps in one generation in the main loop
of Algorithm 1.

As displayed in Algorithm 1, each generation of AVNS
performs four subroutines: determination of search method,
neighborhood search, optimal solution update, and rating
update. *e determination of search method takes time O
(1). In the neighborhood search procedure, the time com-
plexity of global neighborhood is O [|V|3]. *e time com-
plexity of community closeness-based local neighborhood
search procedure is O [2 (|V|+|E|) +K+ (n)∗ (n− 1)/2 + |V|
3], where n denotes the current community number de-
termined by Louvin algorithm. *us, the time complexity of
neighborhood search is bounded by O [2 (|V| + |
E|) +K+ (n)∗ (n− 1)/2 + |V|3]. *e optimal solution update
and rating update take time O (1). Hence, for each gener-
ation, the total complexity of AVNS is O [2 (|V| + |
E|) +K+ (n)∗ (n− 1)/2 + |V|3].

Input: G� (V, E), Role, K and Ninitial
Output: S
POP�∅;
for i� 1: Ninitial

Si⟵Generate a solution randomly;
if Si is different from any solutions in POP;
Add Si into POP;

else
Modify Si and add it into POP;

end if
end for
evaluate solution Si according to fitness function;
//Identify the best solution Sb in the POP;
b � argmaxi∈(1, 2,. . .,Ninitial) fitness (Si);
S⟵ Sb;
return S

ALGORITHM 2: Solution initialization.
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Input: G� (V, E), S and K
Output: S∗

Neighborhood⟵Community closeness-based neighborhood determination (G, S);
candidate⟵Degree weighting-based candidate search (G, S, Neighborhood);
//Random swap
Generate a random integer c ∈ {1, 2,. . .,K};
S∗⟵ S;
S∗⟵S∗ − {pc};
S∗⟵ S∗ ∪ candidate;

return S∗

ALGORITHM 3: Community closeness-based local neighborhood search.

Input: G�(V, E), K and S
Output: Neighborhood

G∗ � G∪ S;
//Community detection
{C1,C2,. . .,Cn}⟵ Louvin-based community detection (G∗)

//Calculate closeness for each pair of communities
for each pair (Ce, Cf ) do
Closeness (Ce, Cf )� 0;
for each node vx ∈Ce do
for each node vy ∈Cf do
if (vx, vy) ∈E∪ S do
Closeness (Ce, Cf)�Closeness (Ce, Cf ) + 1;

end if
end for

end for
end for
//Neighborhood determination
(φ1, φ2)⟵ find the pair of community with the minimal closeness;
Neighborhood⟵∅
for each vx ∈φ1 do
for each vy ∈φ2 do
if (vx, vy) ∉E∪ S do
Neighborhood⟵Neighborhood∪ (vx,vy);

end if
end for

end for
return Neighborhood

ALGORITHM 4: Community closeness-based neighborhood determination.

Input: G� (V, E), S and Neighborhood
Output: candidate

G∗ � G∪ S;
for each pair (vx, vy) ∈Neighborhood do
d (vx)⟵Number of nodes connected to vx in G∗;
d (vy)⟵Number of nodes connected to vy in G∗;
D_score (vx, vy)⟵ d (vx)× d (vy);

end for
candidate⟵ Identify the node pair (vx1, vy1) with the minimal value of D_score;
return candidate

ALGORITHM 5: Desgree weighting-based candidate identification.
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5. Case Study

To verify the effectiveness of proposed AVNS-based supply
network reconfigurationmethod, a case study based on three
real-life supply networks is carried out. Firstly, the general
characteristics of empirical supply networks are analyzed.
*en, comparative experiments are performed based on the
supply networks.

5.1. Aree Real-Life Supply Networks. *ree real-life supply
networks used in this study, Chain 14, Chain 21, and Chain
25 are from an existing set of real-life cases [54]. Chain 14
describes a logistic supply network. Chain 21 presents a
supply network of toilet preparations. Chain 25 is a supply
network of farm machinery and equipment. *e general
characters of the three supply networks are presented in
Table 1. All of them are composed of multiple types of
entities, and the number of each type is varied. For example,
in the Chain 14, the number of distributors is only 5, while
the number of retailers is 66. Since the degree distribution of
a supply network has been considered as a main factor
affecting its robustness, the degree distributions of these
networks are analyzed. It is found that all degree distribu-
tions can be fitted by truncated power-law [55]. *e ob-
served distributions and fitting curves are presented in
Figure 5. Such character indicates that in these real-life
supply networks, only a few nodes are intensively connected,
while many others only have a few number of connections.
According to the previous studies [8, 36], such a hetero-
geneous supply network can be robust against random
disruptions but is vulnerable when entities with high degrees
are damaged. In addition, the average degree [48] and H
metric [56] of each network are also analyzed. *e average
degree can reflect the density of networks; the expression of
it is presented by equation (13). *e H metric is used to
define the structural heterogeneity in a network; the defi-
nition of it is presented by equation (14). As presented in
Table 1, Chain 25 is the most dense and heterogeneous
network. Comparing with Chain 21 and Chain 25, Chain 14
is sparser and less heterogeneous:

〈k〉 �
1
N



|V|

i

ki, (13)

where |V| is denotes the total number of nodes in network
and ki is the degree value of node vi:

H �
〈k2〉
〈k〉

2. (14)

where 〈k〉 denotes the average degree of a network, H re-
flects the level of the structural heterogeneity in a network,
and the larger H, the more heterogeneous the network
exhibits. From the definition, it is obvious that, in a ho-
mogeneous network, H is equal to one.

5.2. Evaluation of AVNS-Based Supply Network Reconfigu-
ration Method. To verify the effectiveness of AVNS-based
supply network reconfiguration method, comparison with
other edge addition-based network reconfiguration methods
is made, specifically low degree-based reconfiguration
method (LD) [53], low betweenness-based reconfiguration
method (LB) [57], and simulated anneal-based reconfigu-
ration method (SA) [58].

*e performances of AVNS-based and SA-basedmethod
can be influenced by several important parameters. In this
study, the parameters of AVNS are set as follows: termi-
nation condition is 250 generations, Ninitial � 50, PL � 0.7,
PG � 0.3, p1 � 0.1, p2 � 0.01, and Areshold� 0.1. *e pa-
rameters of SA are set as follows: initial temperature T�100,
iteration time n� 5, cooling factor θ� 0.95, and low tem-
perature T0 � 0.01. *ese parameters are set based on the
trial-and-error method, which has been widely used to select
the parameter values for heuristic algorithms in many
previous works [59].

Considering the number of added edges may affect the
performance of reconfigurationmethods, experiments based
on the different fraction of added edges were performed.
Fraction of added edge (fa) is defined as the fraction of the
number of edges of original network before edge addition.
*e expression of fa is presented using equation (15). To
achieve statistically significant results, each experiment was
repeated 20 times. *e final experimental results are cal-
culated based on the 20 independent experiments. All ex-
periments were performed using MATLAB R2014a and run
on a PC equipped with an Intel Core i7 and 16GB of
memory, running Windows 7.

Input: G� (V, E),
Output: S∗

(vx, vy)⟵ Select a pair nodes from V × V − (E∪ S) randomly;
while vx �� vy do
(vx, vy)⟵ Select a pair nodes from V × V − (E∪ S) randomly;

end while
Generate a random integer c ∈ {1, 2, . . ., K);
S∗⟵ S;
S∗⟵ S∗ − pc ;
S∗⟵ S∗ ∪ (vx, vy)

return S∗

ALGORITHM 6: Global neighborhood search.
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fa �
|S|

|E|
, (15)

where E denote the edges in the original network, S rep-
resents the added edges, and |E| and |S| represent the
number of edges in set E and S, respectively.

5.2.1. Experimental Results Based on Chain 14. Figures 6 and
7 illustrate the robustness of Chain 14 and the reconfigured
ones facing random disruptions and target disruptions,
respectively. Figures 6(a)–6(c) show the responses of five
supply networks facing random disruptions, including
original Chain 14 and four reconfigured ones, under fa� 5%,
fa� 10%, and fa� 15%, respectively. In Figures 6(a)–6(c), the
horizontal axes denote the percentage of disrupted nodes,
while the vertical axes are values of normalized SLACC.
Similar to Figure 6, Figures 7(a)–7(c) show the responses of
five supply networks facing target disruptions, including
original Chain 14 and four reconfigured ones, under fa� 5%,
fa� 10%, and fa� 15%, respectively. For presenting a
quantitative comparison, Table 2 summarizes the average
values, the best values, and the worst values of Rr and Rt of
the 20 independent experiments based on Chain 14.

Firstly, in both Figures 6 and 7, the performances of all
networks decrease when nodes are removed sequentially
from the networks. It is also observed that a higher fraction
of the added edge leads to a better performance for all
reconfiguration methods. Besides, by comparing Figures 6
with 7, it is found that all networks are more vulnerable to
target disruptions. For example, In Figure 6(a), when 15%

nodes are disrupted under random disruptions, the function
of original Chain 14 is also well preserved as the majority of
remaining nodes are still connected to form a functional
component. As presented in Figure 7(a), the value of nor-
malized SLACC becomes 0, when less than 15% nodes are
disrupted under target disruptions. By comparing the per-
formances of different reconfiguration methods, it is ob-
served that the networks reconfigured by AVNS-based
method are more robust than others facing both random and
target disruptions, especially for target disruptions.

As presented in Table 2, the average values and the best
values of Rr achieved by the proposed AVNS-based
method are better than the three other methods in all of the
instances. As for the worst values of Rr, only when fa � 10%,
the performance of the proposed AVNS-based method is
slightly worse than SA-based method. Except for the in-
stance under fa � 10%, the AVNS-based method also
achieves the best performance. As for Rt, the proposed
AVNS-based method achieves the best performance with
respect to all of the three indicators. Such results are
consistent with Figures 6 and 7.

5.2.2. Experimental Results Based on Chain 21. Figures 8 and
9 present the robustness of Chain 21 and the reconfigured
ones facing random disruptions and target disruptions,
respectively. Similar to Figures 6 and 7, in all the figures of
Figures 8 and 9, the horizontal axes denote the percentage of
disrupted nodes, while the vertical axes are values of nor-
malized SLACC. Table 3 also summarizes the average values,

Table 1: Basic characters of the three real-life supply networks.

Network
name

Number of each type of nodes Total number of
nodes

Total number of
edges 〈k〉 H

Distributor Manufacturer Supplier Retailer Transporter
Chain 14 5 9 — 66 36 116 119 2.052 1.983
Chain 21 17 59 76 34 — 186 359 3.860 2.158
Chain 25 31 142 94 142 — 409 853 4.171 4.653
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Figure 5: Degree distributions of real-life supply networks. (a) Chain 14. (b) Chain 21. (c) Chain 25.
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the best values, and the worst values of both Rr and Rt of the
20 independent experiments based on Chain 21.

As presented in Figures 8 and 9, it is observed that Chain
21 is also vulnerable to target disruptions and exhibits much
stronger tolerance to random disruptions. It is also noticed

that Chain 21 is more robust than Chain 14 facing both
random and target disruptions. For example, when the
proportion of random disrupted nodes is 20%, the nor-
malized SLACC of Chain 14 is less than 0.5, while the
normalized SLACC of Chain 21 is almost 0.7.With respect to
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Figure 6: Responses of chain 14 and reconfigured ones facing random disruptions. (a) fa � 5%. (b) fa � 10%. (c) fa � 15%.

Table 2: Robustness comparison of chain 14 and reconfigured ones.

fa (%) Method
Rr Rt

Average Best Worst Average Best Worst
— Original 0.2623 0.3465 0.1503 0.0135 0.0168 0.0114

5

LD 0.2714 0.3566 0.1535 0.0185 0.0213 0.0158
LB 0.2772 0.3502 0.1653 0.0299 0.0357 0.0245

AVNS 0.2852 0.3587 0.1735 0.0479 0.0544 0.0385
SA 0.2794 0.3584 0.1615 0.0332 0.0351 0.0311

10

LD 0.2854 0.3745 0.1768 0.0370 0.0412 0.0256
LB 0.2889 0.3877 0.1644 0.0392 0.0405 0.0335

AVNS 0.3049 0.3749 0.1793 0.0603 0.0612 0.0514
SA 0.2986 0.3759 0.1817 0.0477 0.0487 0.0392

15

LD 0.2981 0.3732 0.2111 0.0444 0.0487 0.0337
LB 0.2963 0.3798 0.2055 0.0425 0.0445 0.0372

AVNS 0.3169 0.3769 0.2453 0.0635 0.0645 0.0534
SA 0.3070 0.3704 0.2410 0.0579 0.0608 0.0518
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Figure 7: Responses of chain 14 and reconfigured ones facing target disruptions. (a) fa � 5%. (b) fa � 10%. (c) fa � 15%.
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Figure 8: Continued.
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Figure 8: Response of chain 21 and reconfigured ones facing random disruptions. (a) fa � 5%. (b) fa � 10%. (c) fa � 15%.
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Figure 9: Response of chain 21 and reconfigured ones facing random disruptions. (a) fa � 5%. (b) fa � 10%. (c) fa � 15%.
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target disruptions, when the proportion of disrupted nodes
in target disruptions is less than 15%, Chain 14 loses all
functional components, while the functional components of
Chain 21 still remain until the proportion of target disrupted
nodes reaches 35%. *e main reason of such difference can
be deduced that Chain 21 is denser than Chain14. By
comparing the performance of different reconfiguration
methods, it is also observed that networks reconfigured by
AVNS-based method are more robust than others facing
both random and target disruptions, especially for target
disruptions.

As presented in Table 3, the average values, the best
values, and the worst values of Rr achieved by the proposed
AVNS-based method are better than the three other
methods in all of the instances. As for Rt, the proposed
AVNS-based method also achieves the best performance in
all of the instances with respect to all of the three indicators.
*e results presented in Table 3 are also consistent with
Figures 8 and 9.

5.2.3. Experimental Results Based on Chain 25.
Figures 10 and 11 also present the robustness of Chain 25
and the reconfigured ones facing random disruptions and
target disruptions, respectively. In all the figures of Fig-
ures 10 and 11, the horizontal axes also denote the per-
centage of disrupted nodes, while the vertical axes are values
of normalized SLACC. Table 4 also summarizes the average
values, best values, and worst values of Rr and Rt of the 20
independent experiments based on Chain 25.

As presented in Figures 10 and 11, Chain 25 is also
vulnerable to target disruptions and exhibits much stronger
tolerance to random disruptions. It is also noticed that Chain
25 is more robust than Chain 14 facing both random and
target disruptions.*emain reason of such difference can be
deduced that Chain 25 is much denser than Chain14. It can
also be observed from Table 4 that Chain 25 is slightly robust
than Chain 21 facing random disruptions. When facing
target disruptions, Chain 25 is more vulnerable than Chain
21. Chain 25 is denser than Chain 21, whichmay enhance the
robustness of it facing random disruptions. However, the

stronger degree heterogeneity of it also weakens the ro-
bustness of it facing target disruptions. It is also observed
from Figures 10 and 11 that networks reconfigured by
AVNS-based method are more robust than others facing
both random and target disruptions, especially for target
disruptions.

As presented in Table 4, the average values, the best
values, and the worst values of Rr achieved by the proposed
AVNS-based method are better than the three other
methods in all of the instances. As for Rt, the proposed
AVNS-based method also achieves the best performance in
all of the instances with respect to all of the three indicators.
*e results presented in Table 4 are also consistent with
Figures 10 and 11.

5.2.4. Verification for Adaptive Search-Based Solution
Improvement. To validate the effectiveness of proposed
adaptive search-based solution improvement, a comparative
experiment is also performed to compare the proposed
AVNS with three alternative algorithms, GNS, LNS, and
GNS+LNS. As for GNS and LNS, the adaptive search-based
solution improvement is replaced by global search and
community closeness-based local neighborhood search,
respectively. In GNS+LNS, the adaptive neighborhood
determination scheme in the solution improvement pro-
cedure is replaced by a randomized neighborhood selection,
which is commonly used in VNS. Experiments were per-
formed on 3 representative instances, namely, add 5% edges
for Chain 14, Chain 21, and Chain 25, respectively. We ran
each algorithm 10 times on each instance within a time limit
Tmax � 1800 seconds.

*e experimental results are presented in Figure 12 and
Table 5.*e average fitness curves of AVNS, GNS, LNS, and
GNS + LNS under fa� 5% for Chain 14, Chain 21, and
Chain 25 are presented in Figures 12(a)–12(c), respectively.
It can be observed that AVNS can find better solutions in a
shorter time in all of the instances. In addition, the ex-
perimental results are summarized in Table 5. For each
instance, we report the average fitness value (faver), the best
fitness value (fbest), and the worst fitness value (fworst) of the

Table 3: Robustness comparison of chain 21 and reconfigured ones.

Fa (%) Method
Rr Rt

Average Best Worst Average Best Worst
— Original 0.3476 0.3949 0.3165 0.0980 0.1024 0.0919

5

LD 0.3491 0.3803 0.3060 0.1652 0.1741 0.1558
LB 0.3570 0.4035 0.3071 0.1683 0.1766 0.1518

AVNS 0.3611 0.3993 0.3227 0.2179 0.2255 0.2119
SA 0.3559 0.3929 0.3021 0.1694 0.1752 0.1619

10

LD 0.3652 0.4059 0.3015 0.1881 0.1934 0.1799
LB 0.3674 0.3997 0.3094 0.1833 0.1862 0.1779

AVNS 0.3738 0.4184 0.3220 0.2518 0.2590 0.2423
SA 0.3537 0.4093 0.3010 0.1879 0.1939 0.1811

15

LD 0.3819 0.4146 0.3490 0.2034 0.2076 0.1980
LB 0.3792 0.4135 0.3252 0.1972 0.2035 0.1903

AVNS 0.3890 0.4153 0.3583 0.2784 0.2922 0.2685
SA 0.3749 0.4079 0.3444 0.2177 0.2231 0.2112
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Figure 10: Response of chain 25 and reconfigured ones facing random disruptions. (a) fa � 5%. (b) fa � 10%. (c) fa � 15%.
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Figure 11: Continued.
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10 trials achieved by each algorithm. *e results show that
the proposed AVNS performs significantly better than
other algorithms in terms of all comparison indicators.
*us, the proposed adaptive search-based solution im-
provement can effectively increase the performance of
algorithm, suggesting that AVNS-based reconfiguration is
a suitable method for supply network robustness
enhancement.

5.3. Experimental Result Discussion. Structural analysis of
real-life supply networks is made. It is found that the degree
distribution of real supply networks obeys the truncated
power-law distribution. Such a finding indicates a very few
number of entities occupy the central position in a supply
network. *ese entities play critical roles in maintaining the
basic operation of a supply network. *us, a supply network
is usually robust against random disruptions but is fragile
when these important entities with high degrees are
damaged.

Experiments based on three real-life supply networks
validate that the proposed AVNS-based reconfiguration
method can enhance the robustness of supply networks
effectively. In addition, it is also found that supply networks
are vulnerable to target disruptions. *ey also exhibit
comparatively stronger tolerance to random disruptions.
Such experimental results consist with the structural char-
acters of supply networks. Besides, comparing the robust-
ness of Chain 14, Chain 21, and Chain 25, it is observed that
density can affect the robustness of a supply network. A
denser supply network can be more robust than a sparse
supply network facing both random and target disruptions.
In addition, the degree heterogeneity of a supply network
can also impact the robustness of it facing target disruptions.
*e more heterogeneous a network is, the more fragile it is
facing target disruptions. Edge addition-based supply net-
work reconfiguration methods can enhance the robustness
effectively. Along with the number of added edges in-
creasing, the reconfigured network can exhibit a stronger
robustness.
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Figure 11: Response of chain 25 and reconfigured ones facing random disruptions. (a) fa � 5%. (b) fa � 10%. (c) fa � 15%.

Table 4: Robustness comparison of chain 25 and reconfigured ones.

Fa (%) Method
Rr Rt

Average Best Worst Average Best Worst
— Original 0.3622 0.4252 0.2740 0.0717 0.0734 0.0695

5

LD 0.3743 0.4340 0.2954 0.0942 0.0977 0.0913
LB 0.3761 0.4318 0.2952 0.0930 0.0953 0.0912

AVNS 0.3788 0.4344 0.3014 0.1406 0.1444 0.1371
SA 0.3741 0.4343 0.2931 0.0963 0.0980 0.0946

10

LD 0.3930 0.4302 0.3251 0.1121 0.1147 0.1096
LB 0.3954 0.4301 0.3290 0.1155 0.1179 0.1130

AVNS 0.3977 0.4305 0.3563 0.1826 0.1867 0.1788
SA 0.3923 0.4198 0.3314 0.1203 0.1228 0.1186

15

LD 0.4057 0.4494 0.3251 0.1521 0.1563 0.1476
LB 0.4056 0.4488 0.3324 0.1478 0.1509 0.1443

AVNS 0.4137 0.4531 0.3646 0.2079 0.2158 0.2024
SA 0.4032 0.4490 0.3458 0.1328 0.1345 0.1308
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6. Conclusions

*e structure of a supply network is critically important to
its robustness. In spite of the proposed optimal structural
designs, a real-life supply network can be quite different
from these optimal structures. Meanwhile, real cases reveal
the vulnerability of real-life supply networks. *us, this
study proposes a robustness enhancing method for supply
networks by reconfiguring the existing network structure.
*e following can be concluded:

(1) A supply network model considering the different
roles of entities in supply networks is introduced.
Based on the model, two robustness metrics de-
scribing supply networks’ tolerance of random and
target disruptions are proposed.

(2) An AVNS-based reconfiguration method is pre-
sented for supply network robustness enhancement.
In order to search for the optimal reconfiguration
solution effectively and efficiently, a new variant of
VNS, namely, AVNS is proposed. In the proposed
AVNS, adaptive search-based solution improvement
is designed, which is validated to be effectively im-
prove algorithm performance.

(3) *is study also has implications for empirical
analysis of supply networks. *e structural charac-
ters of three empirical supply networks are analyzed.
It is found that the degree distribution of real-life
supply networks obeys the truncated power-law
distribution. Such finding indicates supply networks
are heterogeneous. In a supply network, a very few
number of entities occupy the central positions and

play critically important roles to maintain the
function of the supply network. While many others
occupy peripheral positions and have less impact on
the function of the supply network. *us, a supply
network is robust against random disruptions but is
vulnerable when these important entities with high
degrees are damaged.

(4) Experiments based on the three real-life supply
networks were conducted. *e effectiveness of the
proposed AVNS-based supply network reconfigu-
ration method is validated using comparative ex-
periments. In addition, experimental results verify
that supply networks are extremely vulnerable to
target disruptions and exhibit stronger tolerance of
random disruptions. And, the robustness of a supply
network can be enhanced by adding a small number
of edges especially for target disruptions.
However, in this study, the adaptive behavior of
entities facing disruptions in a supply network is
neglected.*us, we will take the adaptive behavior of
entities into consideration and analyze the effect of it
on the supply network robustness in the future.
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Figure 12: Fitness curve comparison between AVNS, GNS, LNS, and GNS+LNS: reconfiguring (a) chain 14, (b) chain 21, and (c) chain 25
by adding fa � 5% edges.

Table 5: Performance comparison of four neighborhood searching method.

Chain 14 Chain 21 Chain 25
Faver Fbest Fworst Faver Fbest Fworst Faver Fbest Fworst

AVNS 0.3583 0.3860 0.3317 0.6072 0.6283 0.5781 0.5244 0.5392 0.5001
GNS 0.3524 0.3792 0.3277 0.5917 0.6194 0.5586 0.5203 0.5331 0.4983
LNS 0.3478 0.3769 0.3277 0.6004 0.6264 0.5605 0.5048 0.5162 0.4826
GNS+LNS 0.3511 0.3853 0.3264 0.5973 0.6173 0.5647 0.5160 0.5293 0.4937
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