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Ensemble pruning has been widely applied to improve the capacity of multiple learner system. Both diversity and classification
accuracy of learners are considered as two key factors for achieving an ensemble with competitive classification ability. Con-
sidering that extreme learning machine (ELM) is characterized by excellent training rate and generalization capability, it is
employed as the base classifier. For a multiple ELM system, when we increase its constituents’ diversity, the mean accuracy of the
whole members must be decreased. ,erefore, a compromise between them can ensure that the ELMs remain good diversity and
high precision, but finding the compromise brings a heavy computational burden. It is hard to look for the exact result via the
searching of intelligent algorithms or pruning of diversity measures. On the basis, we propose a hybrid ensemble pruning
approach employing coevolution binary glowworm swarm optimization and reduce-error (HEPCBR). Considering the good
performance of reduce-error (RE) in selecting ELMs with high diversity and precision, we try to employ RE to choose the
satisfactory ELMs from the generated ELMs. In addition, the constituents are further selected via the proposed coevolution binary
glowworm swarm optimization, which are utilized to construct the promising ensemble. Experimental results indicate that,
compared to other frequently used methods, the proposed HEPCBR achieves significantly superior performance in classification.

1. Introduction

Ensemble learning is widely used to improve classification
ability in the areas such as image recognition [1, 2], intel-
ligent detection [3, 4], and data mining [5, 6]. Its main idea is
to aggregate the predictions of multiple learners so that a
better predictive results can be attained [7, 8]. Considering
that its remarkable enhancement in classification in contrast
to single ones [9, 10], it has been widely used to several
distinct applications, e.g., image processing [11, 12], medical
diagnosis [13, 14], age prediction [15, 16], gene expression
data classification [17, 18], and intrusion detection [19], but
there is no such thing as a free lunch. When we employ
massive learners for attaining an ensemble with good
generalization ability, it needs to consume a large number of
computing resources in the application of practical problems
[20]. To reduce the consumption of computing resources,
ensemble pruning has been studied to cope with it [9]. It

aims to aggregate a fraction of learners for increasing pre-
diction accuracy via consuming less resource [10]. It is
widely accepted that the same results are achieved by ag-
gregating multiple identical learners, and the classification
capacity cannot be enhanced [20]. Namely, the learners
should be more diverse on data samples, so as to acquire the
ensemble with higher predictive ability.

Nevertheless, combining diverse learners may result in a
better or worse performance, because the ensemble com-
posed of the members with great diversity and low precision
may win low classification capacity [21]. Hence, the per-
formance of ensemble is dramatically influenced by the two
fundamental factors, i.e., diversity and precision of learners
[22, 23]. As a consequence, we should select the learners with
large diversity and high precision, and it can be converted to
a combinatory optimization question [24]. Assume that
there are n learners in an ensemble, and its size of nonempty
subsets is very large [9, 25]. Hence, most algorithms cannot
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do an exhaustive search in such a large subset [9]. Many
ensemble pruning methods are proposed for coping with the
selection of learners, and the existing works are presented as
below.

As a rule, we can classify these techniques into several
categories [10, 20]. Firstly, some scholars attempt to adopt
some diversity measures to evaluate the learners, and those
ones who satisfy some stability conditions can be chosen to
build the ensemble via different pruning strategies [26, 27],
e.g., kappa [28], reduce-error [9], complementarity [26],
contribution [29], margin-based criteria [30], margin and
diversity-based measure [31], and relevancy and comple-
mentarymeasures [32]. Secondly, the pruning of classifiers is
a combinatory optimization question. Some researchers try
to directly employ heuristic search algorithms to solve it
[33, 34], for instance, a well-known pruning method, named
GASEN [33], and GSOEP [34]. ,irdly, some clustering
techniques are used to select the learners with good diversity
for integration, and those ones are a series of representative
learners [8]. Widely used techniques include k-means [35]
and deterministic annealing [36]. Finally, many scholars
study other different pruning methods to acquire the se-
lection of learners, for example, frequent pattern [7], a
randomized greedy selective strategy and ballot [37], greedy
randomized dynamic pruning [38], confidence interval
based on double-fault measure [39], graph coloring way
[40], cost-sensitive rotation forest [17], induction of decision
tree [41], and simple coalitional games [20].

As to the analysis above, it is easy to find that those
existing works via diversity measures only remove a part of
learners with bad performance, and there still exist learners
with low precision, whichmay impact on the performance of
the ensemble. To tackle the aforementioned issue, we
combine diversity measures and heuristic algorithms to filter
out redundant learners. ,e integration of them can seek for
the optimal combination of learners. Where diversity
measure is used to preprune a collection of learners with
poor comprehensive capability [9]. ,ey notably reduce its
computational requirements. ,en, we employ heuristic
algorithms to select the learners with good comprehensive
performance from the remaining learners to build the en-
semble [33].

Considering the advantages of ELM [42, 43], we use it as
the base learner in this work [39]. Reduce-error (RE) can
perform better than other diversity measures in filtering out
learners with bad performance [9]. Hence, RE can select
some complementary learners with high classification ca-
pability, memorably downsize ELMs, and reduce the
computing requirements. ,erefore, RE denotes an ap-
propriate preselection measure. In addition, glowworm
swarm optimization (GSO) shows the superiorities [44–48]
of strong robustness, easy to realize, and good capability of
global search. Hence, it provides an efficient search strategy
for further pruning redundant ELMs.

,erefore, we propose a novel hybrid pruning method
called HEPCBR utilizing the integration of the proposed
CBGSO and RE. Existing pruning methods generally find
the subensemble with best capability employing GSO or RE
separately, which cannot exactly find it, so the combination

of CBGSO and RE is employed to search for it. HEPCBR is
an integrated method for dealing with ensemble pruning of
multiple ELMs, which performs well in terms of searching
for the optimal combination of ELMs. We remove some
redundant ELMs using RE for reducing the size of ELMs and
alleviating the computational complexity, and the presented
CBGSO is also adopted to further seek for the optimal
subensemble of ELMs. ,erefore, the combination of
CBGSO and RE can cope with the selection of ELMs.

,is work’s contributions have been presented as
follows:

(1) An ensemble pruning algorithm, named HEPCBR,
which utilizes the integration of RE and the proposed
CBGSO

(2) We modify the basic GSO, named CBGSO, which
has good convergence accuracy and high evolution
velocity

(3) RE takes full advantage of the diversity among ELMs
and filters out a fraction of ELMs with poor com-
prehensive performance

(4) Experimental results show the proposed approach
can obtain a significant enhancement in classifica-
tion capacity

2. CBGSO

,e presented GSO was inspired via glowworms’ luminous
behavior [44, 45]. In GSO’s searching process, an initial
population composed of many glowworms is generated
randomly, and then each glowwormmoves forwards the one
with larger luciferin. In addition, many individuals can come
together the locations of the ones with high luciferin values
[49]. ,erefore, the optimal one has been gained. For an
optimization question in a discrete space, the basic GSO
cannot be directly used because of its fixed step.

To deal with the above question in a discrete space, we
propose the CBGSO by improving the searching processes of
the basic GSO. In CBGSO, its fixed step is modified, so as to
make the algorithm efficiently seek for global optimum
solution in the binary space. Crossover operation and col-
laborative operation are introduced into the basic GSO,
which can create some new individuals and maintain the
population diversity, so as to avoid getting in the local
optimum and improve the convergence rate. Escaping op-
eration is used in this work, which make those individuals
who equal to the locally optimal solution have a chance to
escape from the current area and avoid falling into a local
optimum. ,e above operations are introduced into the
basic GSO, so as to make it efficiently find the optimum
solution. CBGSO has been displayed in the following part.

2.1. Improvement of Moving Way. Given a binary combi-
natorial optimization problem, GSO cannot directly do a
search using a fixed step, and we need to modify its
movement. To make sure that GSO can move in binary
space, we try to update the position of a glowworm with a
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certain probability [34, 48]. Its updating process can be
formulated as

xik(t + 1) �

r, if rand ≤
p

3
,

xik(t), if
p

3
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2p

3
,

xij(t), if rand >
p

3
,
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(1)

where Xi(t) � (xi1, xi2, . . . , xin) is the current glowworm;
xik(t) is the k-th dimension of Xi(t) at the t-th iteration; r is
random integer 0 or 1; p is a predefined probability; and
rand is a random number.

2.2. Crossover Operation. To enhance the searching rate of
GSO, a crossover operation is introduced in GSO, which is
inspired by GA [33]. In the population of glowworms, two
selected glowworms perform a crossover, and two new
offspring individuals can be created by exchanging part of
elements of their parent individuals. ,at is, it has a chance
to create new offspring individuals that perform better than
before, and those individuals are not maintained in the
population. If all the glowworms in the population perform
the crossover, then the population performs diversely with a
large probability. After that, those glowworms with bad
performance will be eliminated. Namely, if the new gen-
erated glowworms can achieve better results, then the
current individuals would be replaced. ,e crossover op-
eration is described as

Xi
′(t) � xi1, xi2, . . . , xjk, . . . , xin􏼐 􏼑

Xj
′(t) � xj1, xj2, . . . , xik, . . . , xjn􏼐 􏼑

⎧⎪⎨

⎪⎩
, if rk < 0.5,

Xi(t) � Xi
′(t), if Yi

′(t)>Yi(t) andYi
′(t)>Yj

′(t),

Xi(t) � Xj
′(t), if Yj

′(t)>Yi(t) andYj
′(t)>Yi

′(t),

⎧⎨

⎩

(2)

where Xi
′(t), Xj
′(t) represent the new generated glowworms

who are created using the crossover operation; Xi, Xj ex-
press two different glowworms, respectively; and rk declares
a random number, rk ∈ (0, 1), 1≤ k≤ n.

2.3. Collaborative Operation. To avoid the remaining local
optima, a collaborative operation is employed. Each glow-
worm in GSO can keep strong links with those glowworms
inside its dynamic local-decision domain but has no link
with that outside the dynamic local-decision domain. So,
each glowworm should keep link with those individuals
outside the dynamic local-decision domain. In this work, the
population of glowworms can be partitioned into several
subgroups. Each subgroup can keep strong links with other
subpopulations. ,e optimal glowworm in one subgroup
performs a crossover with the individual in another one, so
as to gain new individuals with better performance via the
exchange of their elements.

Assume that the population can be partitioned into S

subgroups, X
s1
i (t) � (x

s1
i1 , x

s1
i2 , . . . , x

s1
in) is the optimal glow-

worm in the s1-th subgroup, X
s2
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s2
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s2
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the optimal glowworm in the s2-th one, and 1≤ s1 ≠ s2 ≤ S.
,e collaborative operation can be expressed as follows:
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where X
s1s2
i (t), X

s1s2
j (t) are the new generated glowworms,

respectively; Y
s1
i (t), Y

s1s2
i (t), Y

s1s2
j (t) are the fitness values of

X
s1
i (t), X

s1s2
i (t), X

s1s2
j (t), respectively.

2.4. Escaping Operation. To increase the probability of es-
caping from the local optima, escaping operation [50] is
adopted. If the glowworm wins the same with the locally
optimal solution, several random elements of the glowworm
will be changed, so as to move forward other position for
escaping from the local optima.

3. HEPCBR

In this section, HEPCBR is proposed using the combi-
nation of CBGSO and RE. First, the ELMs with poor
comprehensive performance are prepruned using RE for
downsizing ELMs and notably reducing the computa-
tional overheads of the selection of ELMs; second, the
subensemble of ELMs are chosen from the remaining
ELMs using the proposed CBGSO. ,e proposed
HEPCBR is described as follows.

3.1. InitialPool. Tomaintain the good ability in classification
by grouping multiple learners, these members should be
diverse. When we try to gain the diverse learners, the weak
one can be employed [40]. ELM is a weak learner [39] with
fast training speed. We produce multiple diverse ELMs with
a high efficiency. ,erefore, ELM can be utilized to generate
M ELMs via the bootstrap sampling method in bagging [51],
and the initial pool of ELMs is constructed.

Huang et al. [42, 43] first published the first version of
ELM for dealing with classification and regression problems
[52]. When the hidden node of ELM is a certain value, the
hidden weights and biases are generated randomly, so as to
gain the unique solutions with a high efficiency.

For a training set Ztrain � (zi, li), i � 1, 2, . . . , Ntrain􏼈 􏼉,
then the model of ELM is expressed as follows:

􏽘

L

i�1
βigi zj􏼐 􏼑 � 􏽘

L

i�1
βig ωizj + bi􏼐 􏼑 � li, (4)

where zi � [zi1, zi2, . . . , zin]T ∈ Rn, li � [li1, li2, . . . , lim]T ∈
Rm, 1≤ i, j≤Ntrain; L declares the hidden nodes’ size; g(z)

exhibits an activate function; ωi denotes the weight
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matrix; βi discloses the weight matrix of the output layer;
and bi reveals a threshold. Equation (4) is recharacterized
in another way:

H
∗β � L

∗
, (5)

where H∗ �

g(ω1z1 + b1) · · · g(ωLz1 + bL)

⋮ ⋱ ⋮
g(ω1zN + b1) · · · g(ωLzN + bL)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

N×L

,

L∗ � lT1 · · · lTN􏽨 􏽩
T

N×m
, and β � βT

1 · · · βT
L

􏽨 􏽩
T

L×m
, and H∗

manifests the hidden output matrix. ,en, we can get

β � H
+
L
∗
. (6)

where H+ intimates the Moore–Penrose generalized inverse
of H∗.

3.2. Preselection of ELMs. ,e pruning of learners is an NP-
complete problem. To make an ensemble perform at its
best, we should balance the accuracy and the diversity of
ELMs, which will bring heavy computational burden.
,erefore, it is almost impossible to directly perform the
search for the optimal subensemble. To efficiently find the
optimal subensemble, we need to downsize the redundant
ELMs and reduce the computational burden of the se-
lection of ELMs. Finally, the final ensemble can be ob-
tained using heuristic algorithms with a high searching
efficiency.

Reduce-error (RE) [9, 26, 28] selects the ELMs with good
diversity and high precision via evaluating its contribution to
the ensemble, and it should be utilized for removing some
poorly performing ELMs. We introduce its basic concept in
the following part.

For a training set Ztrain � (zi, li), i � 1, 2, . . . , Ntrain􏼈 􏼉. Its
samples are composed of a vector zi and a label
li ∈ 1, 2, . . . , c{ }. ,e predictive results are attained by
classifying the samples in the training set Ztrain, and h(x)

shows an ELM that can achieve the predictive label li in
terms of zi. ,e predictive result EH(z) ≡ hm(z)􏼈 􏼉

M
m�1 of the

original ensemble is obtained using the unweighted majority
voting method, which is shown as follows [9, 26, 28]:

EH(z) � argmax􏽘
M

i�1
I hi(z) � l( 􏼁, l ∈ C, (7)

where I(·) represents an indicator function (I(true) � 1 and
I(false) � 0); hm(z) expresses the class label classified by the
i-th ELM; and C � 1, 2, . . . , c{ } represents the set of sample
labels.

,e ELMs who can reduce the error rate of the candidate
subensemble in the pool of unselected ELMs can be used to
construct the final ensemble [9, 26, 28]. ,e first selected
ELM is that with the highest classification ability on the
training set. Assume u ELMs have been selected to constitute
the ensemble Su, and then the u + 1th ELM is packaged into
the ensemble Su:

Su+1 � argmax
k

􏽘
(z,l)∈Ztrain

I ESu ∪ hk
(z) � l􏼐 􏼑⎛⎝ ⎞⎠, (8)

where hk ∈ F\Su, hk ∈ F∩ hk ∉ Su.
In this section, we use RE to reduce a part of redundant

ELMs for a goal of significantly alleviating the computation
complexity. ,e ELM with the best classification accuracy is
selected according to the prepruning method utilizing RE,
which is the first ELM of the ensemble, and it grows by
joining new ELMs in terms of equation (8). We attempt to
determine the size of the preselection through the use of RE.
Suppose that we retain the first M′ ELMs acquired by RE to
construct the prepruned ensemble, and then the M′
members are used to be further selected.

Theorem 1. 2e ensemble composed of the first M′ ELMs
extracted from the initial pool using RE, and its ensemble
accuracy can be improved.

Proof. M training subsets are generated employing a
bootstrap sampling way, and multiple ELMs can be inde-
pendently trained on the different training subsets. Hence,
M ELMs are achieved H � h1, h2, . . . , hm􏼈 􏼉. ,e process of
preselection based on RE is as follows.

First, the ELM h1′ in H who does the best in classification
is selected to add into the new subensemble H′ � h1′􏼈 􏼉, and
its accuracy is en1. Second, the ELM h2′ is extracted from the
unselected ELMs H\H′, so as to attain that new sub-
ensemble H′ � h1′, h2′􏼈 􏼉 wins the highest precision according
to equation (8), and its ensemble accuracy is en2. Finally,
h3′, h4′, . . . , hm

′ in the unselected ELMs H\H′ can be added
into the new subensemble H′ one by one according to
equation (8) in a similar fashion, and their ensemble ac-
curacies en3, en4, . . . , enm are achieved. ,en, the new se-
quence of ELMs H′ � h1′, h2′, . . . , hm

′􏼈 􏼉 and its sequence of
ensemble accuracies en1, en2, . . . , enm are attained.

Let M′ � argmax
i

(en1, en2, . . . , eni, . . . , enm), namely,
enM′ is the best. In addition, h1′, h2′, . . . , hM′′ should be
retained, because the ensemble composed of h1′, h2′, . . . , hM′′
can achieve the highest accuracy. In a word, the first M′
ELMs are utilized to form the prepruned ensemble using RE,
and then its ensemble performance can be improved.

To verify the above theorem, the average ensemble
accuracies are achieved by ordered bagging in terms of RE
with 50, 150, and 250 ELMs on different datasets (Bupa,
Vehicle, and CMC), respectively, as shown in Figure 1. We
can observe from Figure 1 that the curves of the accuracies
achieved by RE first rise up and then move down, with the
ELMs’ size growing. It can attain a peak when the number
of ELMs is moderated. After that, as the size of ELMs
increases, its precision gradually decreases. Namely, the
ensemble ability can be enhanced after preselection based
on RE. At the beginning, the ELMs have low diversity, so
their accuracies go up with the size of ELMs rising,
whereas as the number gets larger, the poor-performing
ELMs have been added into the subensemble, which leads
to the decline of the precision. From Figure 1, we can
know that the ordered ensemble using RE achieves a
maximal value before the ELMs’ size reaches a certain
value. Yang et al. [21] found that the heuristic algorithms
can perform better in the selection of learners than other
techniques when the size of learners is less than 25. As a
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consequence, we select the first 25 well-performing ELMs,
which are used for postselection via CBGSO.

3.3. Postselection of ELMs. Ensemble pruning is a combi-
natorial optimization problem. To calculate its fitness value,
we take the classification accuracy f as its fitness function
[33, 34], where f shows the classification precision between
the predictive outputs and the actual labels,
f � (1/m) 􏽐

m
j�1 Acc(􏽢yj, yj), where if 􏽢yj � yj, then

Acc(􏽢yj, yj) � 1; otherwise, Acc(􏽢yj, yj) � 0, m expresses the
size of testing samples, 􏽢yj, yj represent the predictive result
and its actual label on the j-th testing samples, respectively.
In addition, H′ � h1′, h2′, . . . , h25′􏼈 􏼉 shows the selected 25
ELMs gained by RE. In this work, each glowworm is
characterized as a bit sequence. In the bit sequence, 1 dis-
closes the ELM is selected, and 0 points to the ELM is not
selected. So, we can cope with the pruning question of well
employing CBGSO.

3.4. 2e Pseudocode of HEPCBR. ,e pseudocode of
HEPCBR has been exhibited as follows (Algorithm 1).

4. Experiments

To evaluate the classification ability of HEPCBR, we select 25
UCI machine learning benchmark datasets to implement the
massive experiments, and these datasets are presented in
Table 1. Specifically, each experiment is repeated 30 times
using different random seeds, and then the final classifica-
tion accuracies are attained. ,e parameters of CBGSO are
given in the following part [44, 45]: the ρ � 0.4, the c � 0.08,
the nt � 5, the p � 0.45, the S � 5, and the tmax � 400.We
randomly divide the dataset into five equal parts, three of
them as training, one of them as validation, and the other
one as testing, where the ELMs were trained on the training
datasets, the pruning process of ELMs is implemented on the
validation datasets, and the final results are achieved on the
testing datasets.
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Figure 1: Mean precision of ordered ensemble using reduce-error on the different datasets. On Bupa: (a) size of 50, (b) size of 150, and
(c) size of 250. On Vehicle: (d) size of 50, (e) size of 150, and (f ) size of 250. On CMC: (g) size of 50, (h) size of 150, and (i) size of 250.
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4.1. Experimental Results. ,e proposed HEPCBR achieves
the final ensemble using the combination of RE and the
proposed CBGSO, and we attempt to verify that whether
HEPCBR can perform better than any one of them. So, the
predictive results of the proposed HEPCBR are compared to
both RE and CBGSO in different sizes of ELMs, as shown in
Tables 2 and 3. It is easy to see from Tables 2 and 3 that
HEPCBR, via the integration of RE and CBGSO, wins a
higher precision than any one of them (CBGSO or RE) on
the most datasets using less size of ELMs. We can also
observe from Tables 2 and 3 that, as the pool size increases,
the prediction results achieved by HEPCBR and RE are
getting better, but those attained by CBGSO are getting
worse. We diagnose the causes, and we find that the
computation complexity of the selection of ELMs expo-
nentially increases as the size gets larger. For CBGSO, it is
difficult to do an exhaustive search to find the exact
subensemble. As a result, the preselection of ELMs can
significantly lower the calculation complexity of the se-
lection of ELMs. RE can select some well-performing
ELMs, and the postselection of CBGSO can make the
ensemble gain better results. Moreover, the classification
ability of HEPCBR can attain a very small improvement as
the initial size exceeds 150. Hence, 150 ELMs are used in
this work.

4.2. Comparison with Other Methods. To test the classifi-
cation ability of HEPCBR further, massive experiments were
implemented by comparing it with other techniques: bag-
ging [51], kappa [28], AGOB [26], POBE [27], DREP [22],
DEELM [39], GASEN [33], GSOEP [34], MOAG [30], RREP
[10], DMEP [40], EPSCG [20], DASEP [24], MDOEP [31],
RCOA [32], and PEAD [41]. Bagging extracts the training
samples with equal probability, and it can construct an initial
pool composed of multiple learners with a good diversity.
Kappa pruning achieves the ensemble by grouping the
learners with their measures under a certain value. AGOB,
POBE, and MOAG find the ordering of those learners in the
ensemble works well. DREP first selects learner with the best
classification ability and gradually increases the size of the
ensemble which can make the ensemble achieve better
precisions. DEELM chooses the learners with their measures
falling into an interval. GASEN can assign a random weight
to each learner. It adopts GA to evolve their parameters, and
the learners whose weights exceed a predefined value can be
utilized for combination. GSOEP employs GSO to directly
filter out the redundant learners. RREP attained the en-
semble by utilizing the retained learners and the removed
ones gained by RE. DMEP employs GA to optimize five
pairwise diversity matrices for a combining diversity mea-
sure, and select a part of learners in the light of the graph

Inputs: HEPCBR’s parameters.
Outputs: the subensemble Xopt and its precision fopt.

(1) A pool composed of M ELMs is built, H⟵ h1, h2, . . . , hM􏼈 􏼉.
(2) H′⟵∅.
(3) ,e optimal ELM h1′ with the best classification ability is chosen.
(4) H′⟵ h1′􏼈 􏼉.
(5) H⟵H\ h1′􏼈 􏼉.
(6) for i⟵ 2 to M′ do
(7) ,e ELM hi

′ is chosen via equation (8).
(8) H′⟵H′ ∪ hi

′􏼈 􏼉.
(9) H⟵H\ hi

′􏼈 􏼉.
(10) end for
(11) N individuals can be produced randomly, and evaluate their fitness values f.
(12) Xopt⟵ max fitness(X1, . . . , XN), fopt⟵ max f1, . . . , fN􏼈 􏼉.
(13) t⟵ 1.
(14) while t ≤ tmax do
(15) for s⟵ 1 to S do
(16) for i⟵ 1 to N/S do
(17) if fi � fopt then
(18) Perform escaping operation to generate a new glowworm.
(19) end if
(20) Find the objective individual Xj.
(21) Update the position of Xi via equation (1).
(22) Update parameters of Xi.
(23) Perform crossover operation to produce new individuals.
(24) end for
(25) Perform collaborative operation produce new individuals.
(26) end for
(27) Xopt⟵ max fitness(X1, . . . , XN), fopt⟵ max f1, . . . , fN􏼈 􏼉.
(28) end while
(29) return Xopt and fopt

ALGORITHM 1: HEPCBR.

6 Complexity



coloring theory. EPSCG evaluates the learners’ contribution
to the ensemble in terms of the Banzhaf index of power.
DASEP finds new measures by simultaneously considering

diversity and accuracy of learners, and acquires a good result
in the selection of learners. MDOEP attains the final en-
semble by the aggregation using margin and diversity-based

Table 1: UCI datasets.

Datasets Instances Attributes Classes
Heart 270 13 2
Cleveland 303 13 5
Column 310 6 2
Ecoli 336 8 8
Bupa 345 6 2
Wholesale 440 7 2
Forest 523 27 4
Balance 625 4 3
Diabetes 768 8 2
Vehicle 846 18 4
Tic-tac-toe 958 9 2
German 1000 20 2
QSAR 1055 41 2
Diabetic-r 1151 19 2
Phishing 1353 9 3
CMC 1473 9 3
Yeast 1484 9 10
Wineq-r 1599 11 6
Car 1728 6 4
CTG 2126 22 3
Segment 2310 19 7
Abalone 4177 8 3
Spambase 4601 57 2
Wineq-w 4898 11 7
Waveform 5000 21 3

Table 2: Precisions of HEPCBR in comparison with RE and CB.

Datasets
50 100 150

RE n CB n HE n RE n CB n HE n RE n CB n HE n
Heart 74.29 25 76.83 19 78.07 12 77.59 25 74.38 44 80.49 13 81.35 25 75.31 71 83.12 13
Cleveland 56.82 25 56.26 25 59.34 10 58.62 25 54.44 47 60.25 10 57.04 25 53.09 75 57.95 15
Column 86.43 25 87.59 20 90.54 11 88.22 25 86.03 46 90.51 14 90.60 25 86.70 72 92.38 14
Ecoli 87.63 25 88.23 23 88.43 12 88.38 25 88.25 49 88.92 13 89.27 25 88.13 75 89.88 12
Bupa 74.41 25 74.97 22 77.91 13 78.88 25 78.18 44 81.05 14 79.22 25 75.98 70 81.72 14
Wholesale 89.33 25 90.84 18 91.37 13 91.82 25 89.48 43 93.19 13 90.98 25 88.76 71 91.68 14
Forest 92.47 25 93.01 23 93.96 11 92.52 25 91.16 46 93.44 14 94.64 25 91.50 69 94.94 15
Balance 92.72 25 93.12 21 93.04 12 91.84 25 91.36 50 92.48 13 91.84 25 91.76 73 92.80 11
Diabetes 69.41 25 72.27 19 72.55 10 71.78 25 70.67 45 73.62 11 74.33 25 69.68 68 75.17 14
Vehicle 65.85 25 67.26 19 69.95 13 69.43 25 68.50 42 71.25 16 69.77 25 66.14 65 71.59 15
Tic-tac-toe 93.95 25 94.88 22 95.62 13 94.94 25 95.00 43 96.25 13 96.29 25 93.53 76 96.66 15
German 78.60 25 78.10 21 81.20 11 80.90 25 77.50 44 82.80 13 80.90 25 74.20 73 82.20 12
QSAR 87.39 25 86.89 21 89.96 12 89.08 25 87.05 47 91.55 11 90.35 25 84.52 69 92.60 13
Diabetic-r 77.02 25 77.59 18 81.01 13 78.96 25 77.18 46 81.47 14 80.50 25 75.84 71 83.10 12
Phishing 86.39 25 86.53 24 88.54 11 87.60 25 85.82 48 88.78 11 88.53 25 85.54 76 89.35 13
CMC 61.14 25 62.10 20 63.79 12 62.33 25 61.29 41 64.30 12 63.40 25 59.86 63 64.75 14
Yeast 58.74 25 60.53 20 60.56 12 62.57 25 61.98 46 63.99 13 62.23 25 61.39 71 63.23 12
Wineq-r 57.30 25 61.56 19 60.34 11 61.86 25 59.13 41 63.95 13 64.07 25 58.74 67 66.26 13
Car 92.64 25 94.27 19 93.80 10 94.72 25 92.71 46 95.18 12 94.54 25 92.06 72 95.30 11
CTG 81.70 25 84.39 16 85.28 9 85.09 25 80.88 42 87.82 9 85.14 25 79.54 77 87.54 10
Segment 86.12 25 87.97 19 88.34 11 88.27 25 86.88 43 89.44 14 89.19 25 85.97 69 90.44 14
Abalone 57.11 25 59.99 19 58.58 11 60.60 25 57.21 41 61.64 12 58.74 25 59.97 71 59.96 12
Spambase 80.21 25 81.66 17 82.89 11 81.82 25 79.75 40 84.27 12 83.37 25 79.04 61 85.17 12
Wineq-w 47.32 25 51.20 15 50.12 10 51.05 25 48.48 41 53.14 13 51.18 25 48.60 69 53.76 12
Waveform 88.24 25 89.38 20 89.71 13 89.28 25 88.35 44 90.17 13 90.12 25 88.56 70 90.94 14
HE: HEPCBR; RE: reduce-error; CB: CBGSO.
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measure. RCOA ranks all the learners based on the relevancy
and complementary measures in a descending order, and the
final ensemble is achieved. PEAD selects a collection of
learners extracted from a pool using the induction of de-
cision tree, which are used to form the final ensemble.

We gain the classification precisions of the proposed
HEPCBR, and other methods with 150 ELMs in the pool are
displayed in Tables 4 and 5. “+/� /−,” respectively, indicates
that HEPCBR achieves higher/neutral/lower precisions than
other methods. It is clearly shown in Tables 4 and 5 that the
proposed HEPCBR outperforms other state-of-the-art
techniques on the most classification tasks, which shows its
enhancements in classification. Table 6 displays the sizes of
the final ensemble attained by all the pruning approaches. As
shown in Table 6, HEPCBR utilizes less the size of ELMs to
build the ensemble, but it uses more ELMs than DMEP.
Additionally, HEPCBR gains better results than DMEP. As a
whole, the proposed HEPCBR has acquired the expected
results in classification.

In this section, we try to estimate the difference sig-
nificance between the predictive accuracies gained by
HEPCBR and that attained by other comparative methods,
and we used theWilcoxon rank sum test [40] with its level of
0.05. When the p value of two techniques is lower than 0.05,
it expresses that there exists significant difference between
them. Table 7 exhibits the p values acquired in the test
between HEPCBR and other comparative approaches. Ta-
ble 7 indicates that the p values have been below 0.05. It
manifests the significance and the effectiveness of HEPCBR.

,e execution time of the proposed HEPCBR and other
comparative techniques is reported in Table 8. ,e obser-
vations from Table 8 flag up that HEPCBR uses much less
time than GASEN, GSOEP, and DMEP, but utilizes more
time than the retaining comparative methods. In HEPCBR,
CBGSO is employed to extract the final ELMs from the
remaining ones after pruning, which needs to calculate the
classification accuracy of each candidate subensemble at
each iteration. During the search of CBGSO, each candidate
subensemble is expressed by a glowworm, and each glow-
worm needs to calculate its fitness value at least once per
iteration. ,erefore, it requires much more time. ,ose
techniques with less running time achieve the selection of
ELMs without repetitive iteration process and assessment.
Nevertheless, they cannot attain good results in classifica-
tion. HEPCBR cost less time than the mentioned three
methods, it is the reason that those approaches directly
selected the ELMs with good comprehensive performance
without preselection, and it might not be enough to seek for
the exact solution due to the enormous amount candidate
subensembles. Moreover, the preselection process can no-
tably alleviate the computational burden of the selection of
ELMs. It is concluded that HEPCBR consumes much more
time, but the remarkable improvements in classification are
obtained.

,e aforementioned comparative methods are based on
bagging, which are attained using diversity measures with
different strategies or heuristic algorithms. In addition, we
further compare the proposed HEPCBR with the more state-
of-the-art approaches by considering other factors, which

are not the same category with the aforementioned com-
parative methods: C-RoF [17], CS-D-ELM [18], KPCA-RoF
[4], and DyPReVNsGraspEnS [38]. C-RoF introduces
misclassification, test, and rejection costs for overcoming
that some existing works neglect the classification costs, and
it achieves a good result. CS-D-ELM extends the D-ELM
employing misclassification cost of the learner and embeds
rejection cost into it to increase the classification stability.
KPCA-RoF integrates the KPCA and RoF for linearly in-
separable dataset classification problems, and it enhances the
classification capacity of RoF on the nonlinear fractional
datasets. DyPReVNsGraspEnS realizes random multistart
search, and it can avoid falling into local optimal solutions
and possesses a high probability to exactly find the ensemble
with better performance. ,e classification results achieved
by different approaches are presented in Table 9. We can see
from Table 9 that the accuracies gained by HEPCBR are
higher than other four state-of-the-art methods. ,en, we
verify the significance between HEPCBR and other four
approaches using the Wilcoxon rank sum test, which is
displayed in Table 10. From Table 10, all the p values are less
than 0.05. So, we can conclude that the proposed HEPCBR
has powerful advantages over other four techniques in
classification, and it is significant and effective.

4.3. Parameter Analysis. In HEPCBR, we employ CBGSO to
select the ELMs with good diversity and high accuracy from
the remaining ones after prepruning. To make the proposed
CBGSO perform well, we try to analyze its parameters. In
addition, to assess its convergence speed and precision, the
comparative analyses have been presented as follows: MGSO
[48], MBGSO [47], MDGSO [34], IBFS [50], MBFS [53],
MFS [54], and GA [33]. We implemented the experiments
on two datasets, and we adopt different methods in search of
the optimal subensemble from the remaining ELMs using
RE with the pool size of 150.

It is clearly observed in Figure 2 that, as a whole, CBGSO
attains better convergence accuracy and higher evolution
velocity than other seven comparative algorithms, i.e.,
CBGSO performs better than others in terms of the speed
and the precision of convergence. It is also easy to find that
the accuracies acquired by CBGSO rise up and stay stable.
,e results achieved by CBGSO just can attain a slight gain
in classification, when the number of iterations is above 400.
So, it is 400. In addition, when CBGSO is utilized to search
for the final ensemble in HEPCBR, it costs less time than
other seven heuristic algorithms, which is displayed in Ta-
ble 11. Table 11 demonstrates that CBGSO performs higher
efficiency of searching than other heuristic algorithms.
Hence, CBGSO can work well when it comes to searching
speed and efficiency. ,e accuracies mount and level off, as
the population size increases, which is rendered in
Figure 3(a). We can see from Figure 3(a) that, when the
population size of glowworms is above 25, it will greatly
increase the computation complexity with less improve-
ments in classification. Hence, the size is 25. Figure 3(b)
analyzes the affection of the initial range on the performance
of CBGSO.We can observe from Figure 3(b) that it performs
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Table 3: Precisions of HEPCBR in comparison with RE and CB.

Datasets
200 250 300

RE n CB n HE n RE n CB n HE n RE n CB n HE n
Heart 79.92 25 72.80 92 82.16 13 80.62 25 71.14 121 82.29 14 82.30 25 71.12 144 83.19 16
Cleveland 56.75 25 55.21 100 57.66 11 60.06 25 54.02 126 61.38 11 57.89 25 54.40 149 58.90 13
Column 91.27 25 84.81 96 93.30 16 91.52 25 85.27 121 92.88 15 92.10 25 84.09 147 93.72 14
Ecoli 89.80 25 87.47 98 90.53 11 90.17 25 87.79 125 90.62 13 89.35 25 87.65 150 90.05 10
Bupa 82.24 25 74.62 94 83.96 15 82.03 25 74.06 119 84.29 14 82.45 25 75.31 149 84.02 15
Wholesale 92.90 25 89.20 91 93.64 14 93.39 25 88.03 117 93.85 13 92.55 25 88.21 150 93.59 14
Forest 94.38 25 91.66 97 95.04 13 94.63 25 90.58 122 95.29 13 95.41 25 90.59 145 95.95 15
Balance 91.44 25 91.04 97 91.60 13 93.12 25 91.12 124 93.52 12 91.68 25 91.60 153 92.08 12
Diabetes 72.79 25 69.01 98 74.34 13 74.26 25 69.20 122 75.75 13 75.25 25 68.91 143 78.84 15
Vehicle 70.81 25 66.96 91 72.46 16 71.77 25 65.72 116 73.47 15 73.93 25 64.97 138 74.52 18
Tic-tac-toe 96.60 25 93.37 96 97.28 13 96.19 25 92.48 119 96.76 13 97.50 25 92.43 146 97.65 16
German 82.00 25 76.40 97 83.10 12 81.70 25 76.90 121 83.10 14 80.50 25 72.20 152 81.90 13
QSAR 90.58 25 87.08 95 92.58 13 89.21 25 83.39 119 90.91 11 90.47 25 83.70 141 91.52 15
Diabetic-r 80.42 25 73.85 95 82.59 13 83.42 25 75.78 121 85.33 16 81.99 25 75.66 140 83.46 16
Phishing 90.53 25 85.46 100 91.20 13 90.62 25 86.27 123 91.29 13 90.52 25 86.86 150 90.82 14
CMC 64.29 25 59.34 90 65.65 13 65.92 25 58.08 117 67.07 15 64.79 25 58.65 144 66.01 14
Yeast 64.80 25 59.23 97 65.54 12 62.63 25 59.33 123 63.18 13 63.54 25 58.10 148 64.08 13
Wineq-r 62.58 25 56.92 96 65.28 13 62.23 25 56.47 117 63.99 13 63.68 25 59.21 149 65.49 14
Car 93.81 25 91.60 96 94.39 12 94.14 25 91.74 123 94.61 12 94.61 25 92.29 146 95.13 12
CTG 86.45 25 80.20 98 87.91 11 88.14 25 80.39 126 89.23 14 88.40 25 79.94 149 89.76 13
Segment 89.30 25 85.43 97 90.30 12 89.77 25 86.08 118 90.58 15 89.53 25 85.57 143 90.18 15
Abalone 60.04 25 59.82 95 60.76 12 60.55 25 58.21 119 61.16 14 60.87 25 57.81 145 62.01 12
Spambase 83.73 25 78.94 90 85.34 14 84.70 25 79.17 110 85.91 14 83.85 25 76.48 140 85.06 15
Wineq-w 52.42 25 46.54 96 54.39 13 49.12 25 48.24 128 51.68 11 51.43 25 46.86 149 53.28 14
Waveform 90.04 25 87.78 99 90.78 15 90.09 25 87.37 122 90.66 15 89.46 25 87.86 148 90.06 16
HE: HEPCBR; RE: reduce-error; CB: CBGSO.

Table 4: Classification precisions won by other methods with 150 ELMs.

Datasets HEPCBR Bagging Kappa AGOB POBE DREP DEELM GASEN GSOEP
Heart 83.12 68.57 70.07 75.90 75.51 72.62 72.89 74.87 74.97
Cleveland 57.95 53.52 52.45 54.88 53.87 53.26 53.52 54.58 52.77
Column 92.38 80.40 84.31 87.67 86.99 84.61 83.36 85.62 85.10
Ecoli 89.88 87.16 87.95 88.84 89.03 87.72 88.25 88.42 87.98
Bupa 81.72 68.27 68.43 75.03 75.30 72.55 71.93 73.22 74.34
Wholesale 91.68 85.78 88.92 90.13 90.16 88.32 88.59 87.92 88.72
Forest 94.94 89.05 91.33 93.38 92.82 90.93 91.22 91.15 91.52
Balance 92.80 90.48 91.36 92.72 92.64 91.92 92.28 91.68 91.52
Diabetes 75.17 66.12 69.57 72.40 72.30 71.06 70.35 70.39 70.13
Vehicle 71.59 57.84 60.44 66.83 64.38 64.58 64.02 63.40 65.35
Tic-tac-toe 96.66 90.97 94.65 96.11 94.84 93.14 93.40 92.49 92.59
German 82.20 72.30 75.25 79.50 78.50 76.85 76.75 76.90 76.70
QSAR 92.60 83.21 84.82 87.55 87.08 85.28 85.28 84.82 85.59
Diabetic-r 83.10 69.04 73.07 76.62 75.89 74.15 73.58 74.09 75.14
Phishing 89.35 84.39 85.66 87.21 86.84 85.70 85.70 88.07 87.18
CMC 64.75 54.31 53.53 58.59 57.74 56.55 56.24 59.61 60.28
Yeast 63.23 58.03 57.85 60.54 60.16 59.11 59.18 59.77 59.22
Wineq-r 66.26 55.89 55.93 59.49 59.39 57.89 57.09 58.02 57.63
Car 95.30 91.29 92.74 93.52 93.49 92.48 92.54 93.65 92.89
CTG 87.54 78.62 82.10 85.72 83.51 81.75 82.08 84.78 80.09
Segment 90.44 84.35 85.53 87.24 86.86 85.66 85.70 86.36 86.71
Abalone 59.96 55.40 56.52 58.53 58.46 57.40 57.26 57.97 57.25
Spambase 85.17 73.61 78.87 81.77 79.70 78.49 77.55 76.83 77.40
Wineq-w 53.76 46.51 46.89 48.59 48.02 47.85 46.93 49.08 48.16
Waveform 90.94 86.35 87.66 88.56 88.58 87.82 87.57 89.02 89.41
+/� /− 17/3/5 0/0/25 0/0/25 0/0/25 0/0/25 0/0/25 0/0/25 0/0/25 0/0/25
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Table 5: Classification precisions won by other methods with 150 ELMs.

Datasets MOAG RREP DMEP EPSCG DASEP MDOEP RCOA PEAD
Heart 71.63 81.40 78.51 76.12 78.85 77.52 77.38 76.54
Cleveland 53.26 56.24 56.60 54.81 55.84 55.76 56.92 57.88
Column 83.43 91.43 88.76 86.94 86.27 85.82 86.39 85.98
Ecoli 87.59 89.60 89.83 87.14 89.96 86.97 88.46 89.22
Bupa 70.45 79.61 77.30 75.15 76.64 77.97 76.11 75.26
Wholesale 87.69 92.05 91.24 87.48 89.82 87.76 88.52 87.50
Forest 90.50 92.80 92.83 90.45 94.94 94.94 94.82 93.75
Balance 91.96 93.00 93.32 91.72 93.20 91.40 91.68 92.44
Diabetes 69.37 75.89 74.56 72.52 72.66 71.38 71.62 70.27
Vehicle 60.32 71.08 67.57 66.16 66.59 67.63 68.86 65.27
Tic-tac-toe 92.38 96.66 95.41 96.66 94.29 96.66 95.17 94.92
German 75.85 81.50 81.15 77.30 78.60 78.70 78.00 77.15
QSAR 84.48 90.29 88.97 86.58 87.50 88.36 87.33 86.52
Diabetic-r 72.46 81.48 78.79 77.24 77.80 79.99 78.08 76.34
Phishing 85.74 87.91 89.06 85.11 88.03 86.52 86.77 87.65
CMC 55.87 63.31 61.44 58.95 59.15 58.12 58.06 57.60
Yeast 59.46 62.11 62.32 58.60 60.99 57.99 58.98 59.63
Wineq-r 57.74 63.80 62.80 57.08 60.86 59.68 59.09 57.82
Car 92.42 94.65 94.71 92.13 93.96 91.47 93.79 93.13
CTG 81.21 87.54 86.90 82.54 85.21 87.54 86.39 87.54
Segment 85.13 89.03 87.49 84.92 86.30 86.10 85.63 84.13
Abalone 58.19 60.33 60.13 57.33 58.93 59.20 60.50 59.96
Spambase 76.31 84.15 82.24 78.83 79.45 81.34 79.10 79.91
Wineq-w 47.89 51.57 51.65 48.92 49.94 49.48 50.40 49.52
Waveform 87.43 90.26 89.36 87.28 88.17 89.34 88.67 88.29
+/� /− 0/0/25 2/2/20 1/0/24 0/1/24 1/1/23 0/3/22 1/0/24 0/1/24

Table 6: Sizes of the selected ELMs via other methods with 150 ELMs.

Datasets HE Ba Ka AG PO DR DE GA GS MO RR DM EP DA MD MR PE
Heart 13 150 30 17 30 75 77 56 71 30 18 5 31 29 30 26 37
Cleveland 15 150 30 21 29 75 61 37 76 23 17 2 15 26 30 25 22
Column 14 150 30 23 30 75 81 44 71 35 21 4 17 13 30 32 47
Ecoli 12 150 30 20 29 75 76 52 79 26 16 2 19 15 30 25 32
Bupa 14 150 30 25 32 75 82 71 70 26 24 3 19 23 30 24 52
Wholesale 14 150 30 20 31 75 81 54 65 33 17 3 12 19 30 29 32
Forest 15 150 30 18 30 75 83 69 71 31 18 9 27 30 30 26 23
Balance 11 150 30 20 30 75 77 61 72 8 16 2 17 24 30 23 22
Diabetes 14 150 30 20 29 75 76 28 69 35 16 6 50 14 30 24 27
Vehicle 15 150 30 22 31 75 82 67 72 32 19 8 69 30 30 23 41
Tic-tac-toe 15 150 30 15 31 75 82 73 69 31 17 8 36 29 30 19 39
German 12 150 30 15 30 75 79 39 73 36 16 5 31 17 30 18 29
QSAR 13 150 30 19 30 75 81 67 72 27 21 9 13 15 30 28 22
Diabetic-r 12 150 30 22 32 75 81 50 62 34 17 7 15 14 30 29 47
Phishing 13 150 30 19 31 75 78 29 73 24 17 4 21 34 30 30 35
CMC 14 150 30 26 34 75 81 58 60 24 18 8 38 13 30 23 23
Yeast 12 150 30 20 31 75 79 36 74 31 18 6 11 18 30 26 23
Wineq-r 13 150 30 20 32 75 80 29 69 35 18 4 17 33 30 23 24
Car 11 150 30 18 30 75 79 40 73 26 16 5 38 21 30 26 26
CTG 10 150 30 17 25 75 67 31 55 32 16 4 51 17 30 23 23
Segment 14 150 30 23 32 75 82 66 70 30 20 9 45 19 30 24 23
Abalone 12 150 30 26 32 75 79 14 65 28 21 5 16 31 30 23 28
Spambase 12 150 30 16 28 75 72 44 71 33 18 6 98 16 30 19 24
Wineq-w 12 150 30 26 32 75 71 27 68 29 20 4 40 17 30 24 32
Waveform 14 150 30 24 31 75 81 71 61 36 21 5 29 24 30 25 29
HE: HEPCBR; Ba: bagging; Ka: kappa; AG: AGOB; PO: POBE; DR: DREP; DE: DEELM; GA: GASEN; GS: GSOEP; MO:MOAG; RR: RREP; DM: DMEP; EP:
EPSCG; DA: DASEP; MD: MDOEP; RC: RCOA; PE: PEAD.
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Table 7: ,e p values of the Wilcoxon rank sum test.

Comparison p value Significant or not
HEPCBR vs bagging 0.00123 Yes
HEPCBR vs kappa 0.00123 Yes
HEPCBR vs AGOB 0.00123 Yes
HEPCBR vs POBE 0.00123 Yes
HEPCBR vs DREP 0.00123 Yes
HEPCBR vs DEELM 0.00123 Yes
HEPCBR vs GASEN 0.00123 Yes
HEPCBR vs GSOEP 0.00123 Yes
HEPCBR vs MOAG 0.00123 Yes
HEPCBR vs RREP 0.02327 Yes
HEPCBR vs DMEP 0.00286 Yes
HEPCBR vs EPSCG 0.00182 Yes
HEPCBR vs DASEP 0.00267 Yes
HEPCBR vs MDOEP 0.00401 Yes
HEPCBR vs RCOA 0.00157 Yes
HEPCBR vs PEAD 0.00270 Yes

Table 8: Execution time of different techniques.

Datasets
Execution time (s)

HE Bag Ka AG PO DR DF GA GSO MO RRE DivP SC SD MD MR PE
Heart 6.32 0.47 0.50 4.09 0.49 1.27 0.51 16.22 16.71 0.50 4.23 18.12 0.50 0.65 0.56 1.39 0.49
Cleveland 25.29 0.42 0.44 8.09 0.45 3.48 0.45 39.80 39.34 0.59 8.19 42.48 0.59 0.82 0.55 1.67 0.42
Column 6.73 0.51 0.54 4.70 0.53 1.42 0.55 18.04 18.34 0.55 4.78 23.52 0.55 0.70 0.63 1.47 0.51
Ecoli 34.64 0.45 0.47 12.53 0.48 5.09 0.49 57.57 57.97 0.72 12.59 65.55 0.72 1.04 0.74 1.94 0.54
Bupa 7.72 0.48 0.51 5.17 0.49 1.53 0.52 20.07 19.47 0.53 5.82 22.43 0.53 0.70 0.60 1.67 0.57
Wholesale 9.56 0.69 0.73 6.59 0.69 1.92 0.74 25.26 24.82 0.74 6.67 26.17 0.74 0.95 0.87 1.83 0.81
Forest 24.43 0.81 0.84 7.73 0.82 3.67 0.85 40.52 39.36 0.98 8.21 45.87 0.97 1.19 0.99 2.23 0.85
Balance 21.46 0.87 0.89 7.31 0.90 3.54 0.90 38.75 38.76 1.01 7.51 47.92 1.01 1.22 1.05 2.17 1.01
Diabetes 10.54 0.69 0.73 6.76 0.71 1.98 0.74 25.85 25.51 0.75 6.83 33.71 0.75 0.97 0.85 1.84 0.71
Vehicle 37.70 1.11 1.16 12.50 1.23 5.94 1.17 64.70 63.03 1.39 12.97 69.21 1.38 1.75 1.33 3.70 1.48
Tic-tac-toe 12.48 1.50 1.55 9.35 1.60 3.16 1.56 32.17 32.37 1.58 9.51 43.53 1.57 1.85 1.75 3.58 2.27
German 6.65 1.27 1.29 5.29 1.29 2.10 1.30 19.06 19.03 1.30 5.82 25.28 1.30 1.45 1.37 2.02 1.07
QSAR 7.22 1.65 1.68 5.95 1.65 2.58 1.69 20.03 20.56 1.69 6.05 26.67 1.69 1.86 1.79 2.36 1.38
Diabetic-r 7.59 1.15 1.19 5.94 1.16 2.21 1.20 21.38 21.79 1.20 5.94 23.17 1.20 1.38 1.28 2.27 1.17
Phishing 23.25 2.29 2.32 9.94 2.35 5.48 2.33 49.93 47.89 2.47 10.21 59.35 2.47 2.72 2.50 2.91 1.66
CMC 26.57 2.22 2.26 10.83 2.33 5.84 2.27 52.99 53.62 2.42 10.98 67.29 2.42 2.70 2.39 2.93 1.27
Yeast 59.84 1.06 1.09 19.42 1.16 8.11 1.10 87.86 88.76 1.47 20.39 98.21 1.47 1.95 1.36 3.04 0.95
Wineq-r 45.94 2.00 2.04 16.53 2.20 7.80 2.05 77.23 76.34 2.33 16.91 86.12 2.33 2.74 2.24 3.86 1.80
Car 36.04 3.08 3.12 14.12 3.38 7.53 3.13 64.04 62.53 3.34 14.53 69.18 3.33 3.66 3.39 4.45 2.86
CTG 36.07 1.53 1.57 12.42 1.58 6.03 1.58 64.75 66.94 1.78 12.67 65.62 1.77 2.11 1.82 3.26 1.45
Segment 81.08 3.20 3.25 27.39 3.19 12.77 3.26 115.91 115.46 3.76 28.15 135.40 3.75 4.42 3.74 7.42 4.10
Abalone 47.83 3.81 3.87 18.40 3.91 9.87 3.88 90.25 88.63 4.15 18.49 99.82 4.14 4.60 4.11 7.48 5.03
Spambase 19.30 5.49 5.58 17.89 5.55 8.21 5.59 57.69 57.97 5.61 18.11 68.33 5.61 6.05 5.85 7.87 5.73
Wineq-w 85.03 4.91 4.99 31.50 4.96 15.52 5.00 140.39 138.23 5.52 32.32 165.14 5.51 6.26 5.33 7.99 4.60
Waveform 58.34 6.36 6.44 23.66 6.61 13.63 6.45 110.49 107.94 6.76 25.01 131.15 6.76 7.30 6.85 9.07 6.26
HE: HEPCBR; Ba: bagging; Ka: kappa; AG: AGOB; PO: POBE; DR: DREP; DE: DEELM; GA: GASEN; GS: GSOEP; MO:MOAG; RR: RREP; DM: DMEP; EP:
EPSCG; DA: DASEP; MD: MDOEP; RC: RCOA; PE: PEAD.

Table 9: Comparison of classification performance with other state-of-the-art methods.

Datasets HE C-RoF CS-D KPCA DyP
Heart 83.12 78.62 77.55 79.21 80.84
Cleveland 57.95 57.05 57.66 56.05 57.86
Column 92.38 89.07 88.48 88.73 89.43
Ecoli 89.88 90.36 89.82 89.65 90.00
Bupa 81.72 77.52 77.69 78.22 80.46
Wholesale 91.68 89.38 91.36 91.58 92.84
Forest 94.94 92.58 93.70 94.08 93.28
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Table 9: Continued.

Datasets HE C-RoF CS-D KPCA DyP
Balance 92.80 92.80 92.48 92.48 92.80
Diabetes 75.17 74.71 74.60 75.41 74.81
Vehicle 71.59 68.18 68.91 68.43 70.56
Tic-tac-toe 96.66 94.32 95.51 95.57 96.57
German 82.20 78.00 79.20 78.40 80.80
QSAR 92.60 89.94 89.32 90.32 90.81
Diabetic-r 83.10 75.21 77.64 76.61 80.76
Phishing 89.35 88.35 89.83 89.24 89.71
CMC 64.75 61.02 61.28 60.88 62.28
Yeast 63.23 61.65 62.73 61.65 62.41
Wineq-r 66.26 63.63 61.63 62.25 61.50
Car 95.30 94.44 94.91 93.85 94.37
CTG 87.54 84.18 85.87 84.74 86.53
Segment 90.44 87.30 87.91 88.01 89.72
Abalone 59.96 57.93 57.72 58.78 58.36
Spambase 85.17 80.54 81.44 81.22 83.28
Wineq-w 53.76 50.23 51.30 52.58 51.21
Waveform 90.94 88.45 88.70 88.68 88.84
HE: HEPCBR; CS-D: CS-D-ELM; KPCA: KPCARoF; DyP: DyPReVNsGraspEnS.

Table 10: ,e p values of the Wilcoxon rank sum test.

Comparison p value Significant or not
HEPCBR vs C-RoF 0.00235 Yes
HEPCBR vs CS-D 0.00254 Yes
HEPCBR vs KPCA 0.00200 Yes
HEPCBR vs DyP 0.01716 Yes
CS-D: CS-D-ELM; KPCA: KPCA-RoF; DyP: DyPReVNsGraspEnS.
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Figure 2: ,e affection of iteration on the convergence rate of algorithms. (a) Vehicle. (b) CMC.

12 Complexity



at its best when the initial range is 11. Hence, the initial
range is 11. Figure 3(c) reveals the affection of the
maximal one on the performance of CBGSO. It is more
than the initial one. ,e observations from Figure 3(c)
disclose that the performance of CBGSO peaks at 15. So,
we advise it is set as 15.

5. Conclusions

Ensemble pruning extracts a subset of ELMs extracted from
a constructed pool of ELMs for achieving better predictive
results and efficiency. To make an ensemble perform well, it
must consist of accurate and diverse ELMs. Attaining that is
a combinatory optimization question, and it has high
complexity. To address this issue, HEPCBR is presented via
the fusion of RE and CBGSO, the prepruning strategy using
RE can avoid heavy computing burdens of the selection of
ELMs, and then the ELMs with good comprehensive per-
formance can be efficiently selected by CBGSO. Experi-
mental study utilizing 25 UCI datasets has demonstrated
that the proposed HEPCBR outperforms bagging and other
algorithms, and it also indicates the effectiveness and sig-
nificance. Furthermore, the presented CBGSO can look for
the better results than other methods. ,e proposed
HEPCBR brings forward a new study way for the pruning
question of ELMs.

With respect to future research directions, we aim to
design a new combining diversity measure, which can
minimize the redundant ELMs. ,erefore, it can provide
these well-performing ELMs for further pruning.
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