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In the era of big data, mining and analysis of the enormous amount of data has been widely used to support decision-making.*is
complex process including huge-volume data collecting, storage, transmission, and analysis could be modeled as workflow.
Meanwhile, cloud environment provides sufficient computing and storage resources for big data management and analytics. Due
to the clouds providing the pay-as-you-go pricing scheme, executing a workflow in clouds should pay for the provisioned
resources. *us, cost-effective resource provisioning for workflow in clouds is still a critical challenge. Also, the responses of the
complex data management process are usually required to be real-time. *erefore, deadline is the most crucial constraint for
workflow execution. In order to address the challenge of cost-effective resource provisioning while meeting the real-time re-
quirements of workflow execution, a resource provisioning strategy based on dynamic programming is proposed to achieve cost-
effectiveness of workflow execution in clouds and a critical-path based workflow partition algorithm is presented to guarantee that
the workflow can be completed before deadline. Our approach is evaluated by simulation experiments with real-time workflows of
different sizes and different structures. *e results demonstrate that our algorithm outperforms the existing classical algorithms.

1. Introduction

Nowadays, the big data technology has been used in a wide
range of applications including complex systems to support
decision-making [1, 2]. Along with the enormous com-
mercial benefits, scientific advances, management efficiency,
and analytical accuracy brought by big data, this new
technology raises many challenging problems such as high
cost and latency of big data storage, transmission, and
processing [3–5]. To tackle these problems, cloud computing
environment and workflow modeling methods are recog-
nized as the effective way.

Many large-scale scientific applications in areas such as
astronomy, bioinformatics, andmeteorology would generate
and process large amounts of data; such applications consist
of a large number of data processing tasks that are frequently
modeled as workflows [6]. Normally, a workflow is repre-
sented by a Directed Acyclic Graph (DAG) with nodes and
edges, where nodes represent tasks and edges represent data/
control dependencies between tasks in a complex

application system. Meanwhile, once a time-critical or real-
time application system [7, 8] is modeled as a real-time
workflow, the deadline constraint can be used to ensure the
tasks complete on time effectively.

Cloud computing is being investigated as an effective
platform that delivers hardware infrastructure and software
applications as services for the tasks of big data management
and analytics. And real-time workflows can also be executed
in such high performance computing environment. *ere
are various cloud providers offering large amount of services
with different quality of service (QoS) [9–11] as well as
different prices. A lot of efforts have been made in the area of
service recommendation [12, 13] based on QoS from the
perspective of service providers [14–16], but few concerns
have focused on how to select the services in cloud platform
based on QoS from the perspective of users. Particularly,
cloud computing provides a flexible pricing model (i.e., pay-
as-you-go and on-demands services); users are charged
based on their consumption of various resources with dif-
ferent QoS.*erefore, one of the most challenging problems
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with real-time workflows in cloud computing is to get a cost-
effective way to complete the workflow within the deadline
[17].

In reality, there are two main stages when executing a
workflow in a cloud computing environment [18]. *e first
one is the resource provisioning stage: during this phase,
computing resources from the clouds will be selected and
reserved to prepare for the workflow’s execution.*e second
one is the task scheduling stage: during this phase, a schedule
is generated and each task will be mapped into the best-
suited resource. *at is, the second stage determines where
and when each task of a workflow will be executed, while the
first stage decides what types and how many resources will
be leased from the cloud service providers and therefore the
total cost of the workflow is mainly decided at this stage. To
address these distinctions between task scheduling and re-
source provisioning, we propose in this paper a novel cost
optimization algorithm that focuses only on resource
provisioning.

In order to satisfy the deadline of real-time workflow,
our proposal partitions the original workflow into some sub-
workflows which can be executed in parallel based on the
critical path methodology. *en we use the dynamic pro-
gramming knapsack algorithm to provision resources in
clouds for these sub-workflows to minimize the total cost.
Our approach is evaluated by simulation experiments with
real-time workflows of different sizes and different struc-
tures. *e results demonstrate that our algorithm outper-
forms the existing classical algorithms. Major contributions
of this paper are stated as follows:

(i) A global resource provisioning for real-time
workflow strategy is addressed for cost optimization
under deadline-constrained.

(ii) A workflow partition algorithm based on critical
path technique is proposed to get some sub-
workflows being executed in parallel to ensure the
deadline constraint.

(iii) A dynamic programming algorithm is used to
provision the most cost-effective resources to the
sub-workflows.

(iv) We perform extensive simulations and show the
efficacy of our strategy over two existing algorithms,
namely, simply DPK and IC-PCP.

*e rest of the paper is organized as follows. Section 2
introduces related work followed by problem specification in
Section 3. Section 4 explains the proposed algorithm while
Section 5 presents the evaluation of the algorithm perfor-
mance. Finally, conclusions and future work are summa-
rized in Section 6.

2. Related Work

Cost optimization for workflow execution has been widely
studied over the years. Efficient resource utilization in
parallel and distributed computing environment is a key
issue for cost-effectiveness. To resolve this issue, numerous
researches have been done by a variety of workflow

scheduling methods in clouds. Accordingly, a significant
number of real-time workflow scheduling algorithms fo-
cusing on reducing the overall execution cost of real-time
workflow have been proposed. Alkhanak et al. [19] classified
the cost optimization method of workflow in cloud com-
puting environment into two categories: heuristic methods
and meta-heuristic methods.

Abrishami et al. [17] presented a static algorithm IC-PCP
(IaaS Clouds-Partial Critical Path) based on the heuristic for
scheduling a single workflow instance on an IaaS cloud. *is
algorithm considers cloud features such as VM heteroge-
neity, pay-as-you-go, and time interval pricing. *ey try to
minimize the execution cost of scheduling all tasks in a
partial critical path on a single machine that can finish the
tasks before their latest finishing time (which is calculated
based on the application’s deadline and the fastest available
instance). In [20], Verma and Kaushal proposed a greedy
algorithm based on the classical HEFT for providing a
suitable trade-off between execution cost and time. Zheng
et al. [21] presented three novel scheduling heuristic algo-
rithms to help users to schedule their big data processing
workflow application on clouds so that the cost can be
minimized and the deadline constraints can be satisfied;
different configurations of CPU frequency were considered
in their work. Meta-heuristic approaches such as Genetic
Algorithm (GA) based [22], Ant Colony Optimization
(ACO) based [23], Particle Swarm Optimization (PSO)
based [24], and symbiotic organism search algorithms were
used to address the same objectives that minimize the cost of
workflow execution while considering the deadline. Wu
et al. [25] proposed a meta-heuristic algorithm L-ACO as
well as a simple heuristic ProLiS to minimize execution cost
of a workflow in clouds under a deadline constraint; ex-
perimental results show that the meta-heuristic L-ACO
performs better in terms of execution costs and success
ratios of meeting deadlines but the heuristic ProLiS is more
efficient. *at is to say, the meta-heuristic based algorithm
has achieved improved performance on cost optimization
but with some compromise on the execution time.

Task scheduling assigns tasks to the most cost-efficient
resource to optimize the execution cost of a workflow. But
task scheduling is a well-known NP-hard problem. *ere is
no scheduling algorithm that can obtain an optimal solution
in polynomial time [17]. Otherwise, to tackle deadline-
constrained workflow scheduling, deadline-distribution
method is the most widely used method by both meta-
heuristic based and heuristic based algorithms. *e dead-
line-distribution method always distributes the deadline to
each task in proportion to its minimum execution time [25].
In most case, this kind of methods ignores the tasks of
workflow that can be executed in parallel, so the sub-
deadline of each single task may be not appropriate.
According to these sub-deadlines, task scheduling algo-
rithms cannot get a global optimal result, because a task level
optimization was used and hence failed to utilize the whole
workflow’s structure and characteristics. Resource provi-
sioning can get a minimum cost by selecting an optimal
assembly of resources for the global workflow execution.
Our proposal minimized the total cost of workflow
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execution from the perspective of resource provisioning to
the whole workflow (or sub-workflows) without concerning
each single task’s resource mapping, which can further
improve resource utilization.

With respect to cost optimization, resource provisioning
is more efficient and effective than task scheduling for a real-
time workflow in cloud computing environment [26]. Many
researches have been done to minimize the overall cost of
workflow by resource provisioning [27, 28]. Both static and
dynamic methods are used to provision the cloud resources
[29]. Static method assumes that accurate information about
workflow and cloud resource performance can be obtained
before scheduling. Dynamic provisioning adopts no such
assumption. Most scientists run the same workflows, thereby
enabling the collection of such information through several
trial runs. *erefore static method is an appropriate method
for workflows [30]. Static scheduling is also eased by the fact
that cloud providers usually declare the performance
specifications of their resources. We use static method for
resource provisioning in this paper.

3. Problem Specification

In order to facilitate the reading of the paper, all of the
symbols used in this section are listed in Table 1.

3.1. Related Model

3.1.1. WorkflowModel. A real-time workflow refers to using
the workflow technology for modeling of a real-time ap-
plication system. *at is, temporal constraints are added to
the original workflow model using DAG graphs.

Definition 1. A workflow application is represented by a
Directed Acyclic Graph (DAG) G � (T, W, E), where T �

t1, t2, . . . , tn􏼈 􏼉 is a set of n tasks, W � w1, w2, . . . , wn􏼈 􏼉 is the
computational workload of each task in T, and
E � eij | 0≤ i≠ j≤ n􏽮 􏽯 is the set of directed edges between
two tasks. An edge eij of the form (ti, tj) denotes that there is
data dependency between ti and tj; ti is said to be the parent
task of tj and tj is said to be the child task of ti. *is
relationship between ti and tj can be represented by
ti �Parent(tj) and tj �Child(ti). *e computational workload
in W is given by the number of mega-floating point oper-
ations that need to be executed. *e temporal constraint for
a real-time workflow is the deadline which is denoted by
D.Based on this definition, a child task cannot be executed
until all of its parent tasks are completed. Figure 1 shows an
example workflow with six tasks. tentry and texit are additional
dummy nodes with computational workload 0 to give the
whole workflow a single entry and a single exit. *e task t1
must be finished before tasks t3 and t4 can start. Also, both t3
and t4 must be finished before t5 can start. However, there is
no path between t3 and t4. So t3 and t4 do not need to be
executed in any particular sequence. *erefore, the tasks {t1,
t3, t4, t5} can be executed as t1⟶ t3(t4)⟶ t5. *is means
that the workflow segment t1, t3, t5 or t1, t4, t5 must be
executed sequentially, but t3, t4 can be executed in parallel.
*ere are two classic types of workflow processes in a large

real-time workflow as shown in Figure 2. One is sequential
workflow process Figure 2(a) in which all tasks must be
executed one after the other in a certain order. *e other is
parallel workflow process Figure 2(b) in which all tasks can
be executed simultaneously without any particular order.

3.1.2. Resource Model. *is paper focuses on Infrastructure
as a Service (IaaS) clouds which offer the user a virtual
machine (VM) pool of unlimited and heterogeneous re-
sources with different computational performance, memory
capacity, and price that can be accessed on demand such as
Amazon’s EC2 (Elastic Compute Cloud) [31]. Better com-
putational performance or more memory implies higher
price. We assume that there is no limitation on using each
resource; i.e., the workflow can order any number of re-
sources from each cloud provider at any time. Based on the
profiling results about workflows given in [1] and the VM
types offered by Amazon EC2, we assume that the VMs have
sufficient memory to execute the workflow tasks. So,
memory capacity of VMs will no longer be considered in this
paper. We define VMj as a VM type in terms of its com-
putational performance Pj and PRICEj per billing cycle of τ
time units.

For each VMj of a certain type, we assume that the
computational performance in terms of mega-floating point
operations per second (MFLOPS) either is available from
the provider or can be estimated [32]. *is information
is used to deduce the computational performance by
Pj �MFLOPSj∗ τ, where τ denotes the billing cycle of VMj

which is specified by the cloud provider. User’s payment for
the usage of each VMj is based on the billing cycle τ. Any
partial utilization of the leased VM is charged as if the full
billing cycle was consumed. For example, if τ � 60 seconds
and a VM is used for 61 seconds, then the user will pay for
two cycles of 60 seconds, that is, 120 seconds. Also, we
assume that there is no limitation on the number of billing
cycles of VMs that can be leased from the provider.

Definition 2. Assume there are m types of VMs that can be
provided by cloud providers; the collection of available VMs
will be denoted as VMs � VMj | 1≤ j≤m􏽮 􏽯. Each VMj has
two parameters; one is MFLOPSj and the other is PRICEj.
MFLOPSj is defined as mega-floating point operations per
second of the VMj, and PRICEj is the price per τ seconds of
the VMj, where τ is the billing cycle of the VMj.
Pj �MFLOPSj × τ is the computational performance of VMj
per billing cycle.

3.1.3. Cost Model. Normally, the final cost is based not only
on the utilization of computational resources, but also on the
data transfer between the parent task and its child task. If
both parent and child tasks are in the same VM, there is no
data transfer fee because the tasks share the same data center
in a single VM. When the parent task and the child task are
executed on different VMs that belong to the same cloud
provider, there will not be any data transfer fee because most
of the public cloud providers, such as Amazon EC2, do not
charge for internal data transfers among their computational
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resources. So, when we use these public cloud computing
resources, we can ignore the data transfer fee at this
moment. For the rest of this paper, we will assume that we
utilize computing resources from one cloud provider
only.

*e cost of using the computational resources is cal-
culated from the resource occupation time multiplied by the
price of the resource.*e resource occupation time, denoted
by RT, concerns not only the tasks execution time (ET), but
also the data transfer time (TT) and the initial boot time (BT)
of each resource provisioned by the workflow. *us,
RT�BT+TT+ET. However, as the development of Docker

technology, the initial boot speed of virtual resources is of
the order of seconds or milliseconds. It is so small compared
with the execution time of a workflow that it can be ignored.
*at is, we can assume that BT� 0. When the data transfer
occurs between a parent task ti and its child task tj, the
transfer time depends only on the amount of data to be
transfered and the bandwidth provided by the cloud pro-
vider. Both of these values are fixed, regardless of the type of
VMs that is provisioned by the workflow. *erefore, the
value of data transfer time of each task ti can be denoted by
TTi, which is VM-independent. For a VMj, the resource
occupation time can be denoted by RTj � 􏽐

n
i�1 ETij + TTi,

where ETij is the execution time of task ti (1≤ i≤ n) on VMj
and TTi is the data transfer time of ti which is VM-inde-
pendent. Each task ti (1≤ i≤ n) may or may not be executed
by VMj (1≤ i≤m). Let aij be a 0-1 variable that indicate
whether ti is executed on VMj; when ti is executed by VMj,
aij � 1, otherwise, aij � 0. So the cost of each VMj can be
denoted by Cj � RTj × PRICEj � 􏽐

n
i�1(ETij + TTi) × aij ×

PRICEj. In order to optimize the total cost, we need to
minimize each Cj. From the formula of Cj, we see that ETij
and aij are the two variables that depend on both ti and VMj,
while TTi depends only on ti but not VMj. *us, TTi can be
regarded as a constant from the cost optimization point of
view. For the rest of the paper, we can ignore TTi.

Actually, a task does not have to be executed entirely by
one VM. It can execute sequentially on several VMs as long
as the execution coincides with a billing cycle. For example,
suppose ti has executed on a VM for one billing cycle and it
has not yet finished; then it has the option of staying with the
same VM in the next billing cycle or switching to a different
VM. Let ETi denote the execution time of task ti. *en, ti
will be charged 􏼆ETi􏼇 � 􏽐

m
j�1 xij(xij ≥ 0 andxijis an integer)

billing cycles, where the ceiling of ETi is due to the last billing
cycle of VMj (assuming that VMj is the last VM provisioned
by ti). *erefore, the cost of resource provisioning to task ti
can be denoted as Ci � ⌈ETi⌉×PRICE, where PRICE is the
price vector PRICE � (PRICE1, PRICE2, . . . ,PRICEm)T. So,
Ci � 􏽐

m
j�1 xij × PRICEj. *e total cost of a workflow can be

defined as follows:

Definition 3. Assume there is a workflow G � (T, W, E)

with n tasks as depicted in Definition 1, while there are m
VMs � VM1,VM2, . . . ,VMm􏼈 􏼉 as defined in Definition 2
that can be provisioned to workflow G. *e total cost of
resource provisioning to the workflow G is TC(G) � 􏽐

n
i�1 Ci,

where Ci � 􏽐
n
j�1 xij × PRICEj, xij is the number of billing

cycles of VMj which provision to task ti. So, TC(G) � 􏽐
n
i�1

􏽐
m
j�1 xij × PRICEj � 􏽐

m
j�1(􏽐

n
i�1 xij × PRICEj). Letting

xj � 􏽐
n
i�1 xij, we have TC(G) � 􏽐

m
j�1 xj × PRICEj.

Note that, in the above definition, we have assumed that
no two tasks are combined together. For example, suppose
there are two tasks t1 and t2 each requiring execution of 1.5
billing cycles. If we combine the two tasks together, it only
requires 3.0 billing cycles. However, in the above definition,
they will require a total of 4 billing cycles, two billing cycles
for each task. We will discuss how to combine two tasks
together in later sections.

Table 1: List of symbols.

Symbol Meaning
G(T, W, E) A workflow represented by DAG
T{t1, t2, . . ., tn} A set of n tasks
W w1, w2, . . . , wn􏼈 􏼉 *e related workloads of n tasks in T

E{eij}
A set of directed edges between two

tasks in G

D *e deadline of workflow G

Parent(ti) Parent task of ti
Child(ti) Child task of ti
TC(G) Total cost of workflow G

TW(G) Total workload of workflow G

ET(G) Total execution time of workflow G

ETij Execution time of task ti on VMj
RT Resource occupation time
BT Resource initial booting time
Ci Cost of task ti
TT Data transfer time
BL(d) A set of tasks in layer d
BD(ti) *e longest path of ti to texit
LMET(d) *e minimum execution time of layer d

CSW Sub-workflow containing all of critical
tasks

NSW Sub-workflow not containing any of
critical tasks

VMs VM1, . . . ,VMn􏼈 􏼉 A set of m types of VMs

VMj(MFLOPSj,
PRICEj)

A type of VM

MFLOPSj
Mega-floating point operations per

second of VMj

PRICEj Price of VMj

τ Billing cycle defined by VMS provider
Pj Computational performance of VMj

Cj Cost of resource VMj

X{x1, x2, . . ., xm} VMs vector of provisioning results
xj Number of billing cycles of VMj

fk(W) First k types of VMs satisfying the
workload W

W1 = 3 W3 = 27 W5 = 26

tentry W2 = 30 W4 = 44 W6 = 16 texit

t1

t2 t4 t6

t3 t5

Figure 1: Sample workflow.
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3.2. Cost-Effective Resource Provisioning

3.2.1. Optimization Objective. Resource provisioning in cloud
computing environment may have different objectives. *is
work focuses on finding a provisioning strategy to execute a
workflow on IaaS clouds such that the total execution cost is
minimized and the deadline ismet.We assume that there arem
types of VMs; the computational performance and price per
billing cycle of each VMj(j � 1, 2, . . . , m) are defined as in
Definition 2. According to Definition 3, the objective of cost
optimization is to find a resource provisioning X � xj | xj􏽮

is the number of billing cycles of VMj(j � 1, 2, . . . , m)} to
satisfy the following:

minmize TC(G) � 􏽘
m

j�1
PRICEj × xj

s.t. 􏽘
m

j�1
Pj ∗xj ≥TW

xj ≥ 0 andxj is an integer, j � 1, 2, . . . , m

ET(G)≤D,

(1)

where TW � 􏽐
n
i�1 wi is the sum of all tasks’ workload, xj is the

number of billing cycles used by VMj for all the tasks, D is the
deadline of the workflow G as defined in Definition 1, and
ET(G) is the total execution time of the workflow G. It is
generally known that ET(G) is not only affected by each task’s
execution time but also related to the execution sequence for all
tasks in a workflow. *at is, the execution time of a sequencial
workflow as shown in Figure 2(a) will be the sum of each task’s
execution timewhile a parallel workflow as shown in Figure 2(b)
will take the longest running task’s run time as its execution
time. So the execution time of a workflow is defined as follows:

Definition 4. Assume there is a workflow G � (T, W, E)

with n tasks as depicted in Definition 1. If the workflow is a
sequential process, the execution time can be expressed as
ET(G) � 􏽐ti∈GETi. If the workflow is a parallel process, the
execution time can be expressed as ET(G) � MAXti∈GETi.
ETi in both formulas denote the execution time of each task
in the workflow. So, if the workflow contains the same tasks
the execution time of parallel workflow must be less than
sequential workflow.

Shown in Table 2 is an example of three types of VMs with
computational performance Pj and price PRICEj per billing
cycle. In this example, we assume the billing cycle is one hour.

When we provision these three types of VMs to the
tasks in the sample workflow shown in Figure 1, the cost of
each task executing on each VM is shown in Table 3. As can
be seen from this table, when w1 � 3, provisioning VM3
would take 1 hour and is charged 0.1, while provisioning
VM1 or VM2 would take less than 1 hour but is charged 0.8
or 0.4. So, the optimal provisioning for t1 is one VM3 and
with a charge of 0.1. In Table 3, the optimal single VM
provisioning of each task is given in bold. Notice that for
t1, t2, t3, and t5, the optimal provisioning for each of them is
to use one type of VM. For t4, the optimal provisioning is
to use one VM1 and one VM2 for a total charge of 1.2. For
t6, the optimal provisioning is to use one VM2 and one
VM3 for a total charge of 0.5.

*e total workload of all the tasks in the workflow shown
in Figure 1 is 146. *e optimal provisioning is to use five
VM1 for a total charge of 4.0. Note that this is less than the
sum of each task’s optimal provisioning which is 4.2. *is is
because each individual optimal provisioning might have
idle time. For example, for t5, we use one VM1 which can
execute 30 MFLOPS in one hour, but t5 has a workload of
only 26 MFLOPS. So, 4 MFLOPS are wasted. *e columns
CSW and NSW will be explained later.

3.2.2. Cost Optimization Stragety. W is assumed to be the
computational workload that need to be provisioned. *e
decision variable xk is the number of billing cycles of VMk
that are leased from the IaaS provider. Let the VMs be sorted
in nonincreasing order of performance versus price; i.e., P1/
PRICE1≥ P2/PRICE2≥. . .≥ Pn/PRICEn. *e VMs are con-
sidered in this order. *at is, VM1 is considered first, fol-
lowed by VM2, and so on. *e optimal value function when
restricted to using the first k VMs can be defined by the
following equation.

fk(W) � min
􏽘

k

j�1
Pj∗xj≥W

􏽘

k

j�1
PRICEj ∗ xj

s.t. xj ≥ 0 andxj is an integer, j � 1, 2, . . . , k.

(2)

tentry texitt1 t2 tn…

(a)

tentry

t1

t2

tn

texit

…

(b)

Figure 2: *e structure of workflow. (a) Sequencial workflow process. (b) Paralleled workflow process.

Table 2: Sample virtual machines.

VM types Pj PRICEj
VM1 30 0.8
VM2 14 0.4
VM3 3 0.1
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*e optimal value function is given by fm(W). To solve
equation (2) we use dynamic programming by considering VM1
first. If there is some idle time left in using VM1 (because it does
not use a full billing cycle), VM2will then be considered for using
the residual time left by VM1. If VM2 again has idle time left,
VM3 will be considered next. *is process is repeated until we
reach VMm. *e following is the dynamic programming al-
gorithm to solve equation (2).

W1 � W,

x1 �
W1

P1
􏼦 􏼧,

f1(W) � PRICE1 × x1,

j � 1,

For k � 2, 3, . . . , m do,

Wk � Wj − xj − 1􏼐 􏼑 × Pj,

x �
Wk

Pk

􏼦 􏼧,

fk(W) � min fj(W), fj(W) − PRICEj + PRICEk × x􏽮 􏽯,

xk �

0, fk(W) � fj(W),

x, fk(W) � fj(W) − PRICEj + PRICEk × x,

⎧⎪⎨

⎪⎩

If xk ≠ 0 thenxj � xj − 1 and j � k.

(3)

*e final fm(W) is the minimum cost of provisioning all
m types of VMs to achieve the computational workload W.

VMs provisioning of individual task could cause idle
time unless the computational workload of the task matches
exactly the computational performance of the VMs provi-
sioned for it. But the probability of this matching is very low.
If we assemble some tasks together to provision VMs, the
efficiency of resource utilization can be significantly in-
creased. As shown in Table 3, the optimal cost for w1 and w3
is 0.1 and 0.8, respectively. However, if we combine w1 and
w3 together, the total workload is exactly 30. *erefore, the
optimal result is to use one VM1 that will cost 0.8. Such cost
is lower than the total cost of provisioning VMs to w1 and w3
separately. As a result, the more tasks we can assemble as a
whole for provisioning, the more we can save money in
leasing resources. In order to minimize the total cost of a

workflow execution, it would be better to provision all tasks
in the workflow as a whole. If we assemble all tasks as a single
task, it would require that all tasks be executed sequentially.
*e execution time may exceed the temporal constraint of
the workflow. According to Definition 4, some tasks should
be partitioned from this sequential process while other tasks
can be executed in parallel. In order to reduce the total
execution time to be satisfied with the temporal constraint,
some strategy of workflow partition will be discussed in the
next section.

3.2.3. Deadline Assurance Method. When ET(G) is greater
than the temporal constraint of the workflow G, the
workflow cannot be finished before the deadline. In real life,
meeting deadline constraint is very important because many
real-time workflows are Urgent Computing [33] to support
emergency computations such as severe weather prediction
for hurricanes, flooding, earthquake, etc. *erefore, tem-
poral constraint is a very important dimension for workflow
quality of service (QoS). *e temporal constraint of a
workflow execution must be considered when we optimize
the cost. To guarantee the workflow can be finished before
the deadline, the workflow can be partitioned into several
sub-workflows, where each sub-workflow can be executed in
parallel and all tasks in one sub-workflow should be executed
sequentially without exceeding the temporal constraint.
Each sub-workflow executing on time will ensure the whole
workflow to be finished before its deadline. So a series of
temporal constraints must be defined for every sub-
workflow.

*e critical path of a workflow is the longest execution
path between the entry and exit tasks of the workflow [34].
All the tasks that belong to the critical path are called critical
tasks. *e sum of the computational workload of the critical
tasks is maximum compared with any other path in the
workflow. *e critical tasks are executed sequentially be-
cause of the parent-child relationship between them. *e
execution time of the critical path by the best performing
VM must not exceed the temporal constraint D. Otherwise,
there is no solution that can meet the deadline constraint. In
the rest of this section, we assume that the execution time of
the critical path does not exceed D.

Suppose the workflow G is partitioned into a number of
sub-workflows. One of the sub-workflows GCSW contains all
of the critical tasks and some other (possibly none) non-
critical tasks. *is sub-workflow will be called the critical
sub-workflow (CSW). *e sub-workflows that contain no

Table 3: *e results of provisioning sample VMs to sample workflow.

w1 w2 w3 w4 w5 w6 TW CSW NSW
3 30 27 44 26 16 146 116 30

VM1 0.8 0.8 0.8 1.6 0.8 0.8 4.0
VM2 0.4 1.2 0.8 1.6 0.8 0.8 4.4
VM3 0.1 1 0.9 1.5 0.9 0.6 4.9
Optimized results VM3 VM1 VM1 VM1+VM2 VM1 VM2+VM3 VM1 × 5 VM1 × 4 VM1
Cost 0.1 0.8 0.8 1.2 0.8 0.5 4.0 3.2 0.8
Makespan 1 1 0.9 2 0.87 1.67 4.87 3.87 1
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critical tasks are called noncritical sub-workflow (NSW).
*ere can only be one CSW but r (r≥ 0) NSWs.

Suppose there is a CSW GCSW. If we provision the best
performing VM to GCSW with a resulting total execution
time ET(GCSW) and if ET(GCSW)≤D, then there will be a
successful provisioning that can guarantee the workflow
completed by the deadline, because the other NSWs can be
executed with the CSW in parallel. On the other hand, if
ET(GCSW)>D, it is impossible to get a successful provi-
sioning of VMs to the CSW because of the violation of
deadline. In this case, we have to partition this CSW into a
new NSW and a new CSW which includes fewer tasks. *e
new CSW includes all critical tasks but fewer noncritical
tasks. *is procedure can be repeated until the CSW can be
completed before the deadline. Also, any other NSWs’ ex-
ecution time must be satisfied with the temporal constraints
gained from the layered approach.

As a workflow, there must be a structure that determines
the execution order of each task in the workflow. Actually, all
parent tasks should be finished before their child tasks can
begin. We can use a layered approach to ensure such a
sequence. A workflow can be divided into several levels
(layers) that would be executed sequentially. At the same
time tasks within one level do not depend on each other, so
they can execute in parallel.

Definition 5. Assume there is a workflow G as defined in
Definition 1. Define the exit task to be Layer 0. Layer d is
composed of all tasks that have a longest path with d edges to
Layer 0 in the workflow G. So, Layer d is defined as
BL(d) � ti |BD(ti) � d, ti ∈ G􏼈 􏼉, where

BD ti( 􏼁 �

0, i � n,

max
tc∈Child ti( )

BD tc( 􏼁 + 1, otherwise.
⎧⎪⎨

⎪⎩
(4)

For example, the workflow shown in Figure 1 can be
divided into five levels as shown in Figure 3. As long as
executing tasks from the high level to the low level, all parent
tasks will finish before their child tasks start. *ere is no
execution order of the tasks in the same level. So, the sample
workflow shown in Figure 3 can be arranged as a sequence:
t1⟶ t2⟶ t3⟶ t4⟶ t5⟶ t6 or t2⟶ t1⟶ t4⟶
t3⟶ t6⟶ t5.

In order to guarantee that the deadline can be met, we
must have ET(GCSW)≤D, where GCSW is the critical sub-
workflow. Also, the total execution time of all tasks in each
layer of each NSWmust not bemore than the execution time
of all the tasks in the same layer of CSW. *erefore,
according to the execution time of CSW, we present the
Layer Minimum Execution Time (LMET) as follows:

Definition 6. Assume a workflow G as defined in Definition
1 is divided into l layers as BL(0), BL(1), . . ., BL(l− 1). If
BL(d) � td1

, td2
, . . . , tds

􏽮 􏽯, (0≤d≤ l − 1), where the number
of tasks in layer d is s, then the Layer Minimum Execution
Time of BL(d) is LMET(d) � (􏽐tdi

∈CSWwdi
)/Pj, where Pj is

the best performance that IaaS can provide and wdi
is the

workload of tdi
.

As for a NSW, if ET(BL(d))≤ LMET(d), where
BL(d) � ti |BD(ti) � d, ti ∈ NSW􏼈 􏼉, then the temporal
constraint of NSW can be satisfied. Otherwise, a partial
NSW should be partitioned from the original NSW. *is
process is repeated until the inequality ET(BL(d))≤
LMET(d) can be met.

Take the sample workflow G shown in Figure 1 for
instance; we assume that the deadline is four hours. Using
the best performing VM, VM1, shown in Table 2 to execute
this workflow, the result (shown in the TW column of
Table 3) shows that using one VM1 with five billing cycles
will have ET(G) � 4.87>D. So the workflow have to be
partitioned into two sub-workflows. Based on the critical
path t2⟶ t4⟶ t5, we can get a CSW and a NSW as shown
in Figure 4. After this partition, ET(GCSW) � 3.87<D, while
ET(t1)< LMET(3)� 1 and ET(t3)< LMET(2)� 1.47. So, the
temporal constraint of NSW as shown in Figure 4 can be
met. *e cost of each sub-workflow is also shown in Table 3
(the CSW and NSW columns of Table 3). *e total cost of
both CSW and NSW is 4 which is equal to the optimal cost.
So the workflow partition as shown in Figure 4 is a successful
cost optimization scheme.

4. Cost-Effective Resource
Provisioning Algorithm

4.1. Algorithm Design. *e basic idea of the global resource
provisioning algorithm is that, for a given workflow G as
shown in Definition 1, a dynamic programming method is
used to optimize the cost of resource provisioning, and a
critical path based workflow partition technique is used to
guarantee the deadline requirement of the real-time
workflow. Specifically, whether the deadline is met has to be
determined by a Resource Provisioning in Parallel Algo-
rithm before dynamic programming procedure is employed;
once the deadline cannot be satisfied, a workflow partition
procedure is employed to divide the workflow into some
sub-workflow; each sub-workflow can meet its own tem-
poral constraint; then these sub-workflows can apply the
Dynamic Programming Knapsack Algorithm to get the most
cost-effective resource provisioning scheme. All of these
algorithms are based on a Workflow Layer Algorithm.
*erefore, the whole process of our strategy is presented in
detail as follows.

We first divide the workflow into l layers according to
Definition 5. Second, using the dynamic programming al-
gorithm given in the previous section, we provision m types

W1 = 3 W3 = 27 W5 = 26

tentry W2 = 30 W4 = 44 W6 = 16 texit

t1

t2 t4 t6

t3 t5

BL(4) BL(3) BL(2) BL(1) BL(0)

Figure 3: Layers of sample workflow.
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of VMs to the workflow as though all tasks are executed in
order from BL(l− 1) to BL(0). If ET(G)>D, the provi-
sioning fails. We then partition the workflow into a CSW
and a NSW. While ET(GCSW)>D, we keep partitioning
until ET(GCSW)≤D and for each layer BL(d) �

ti |BD(ti) � d, ti ∈ NSW􏼈 􏼉 we have ET(BL(d))≤ LMET(d).
Now we apply the dynamic programming algorithm to
provision VMs to the CSW and all of the NSWs. X �

xj | xj is the number of VMj, (j � 1, 2, . . . , m)􏽮 􏽯 obtained by
this algorithm is the optimal resource provisioning results,
and the minimum cost is TC � 􏽐

m
j�1 PRICEj × xj. As this

algorithm can achieve the global optimization of cost, it is
denoted as Global Resource Provisioning for Real-time
Workflow Algorithm which is shown in Algorithm 1.

*e called procedure WorkflowLayer(G) in GRP4RW is
a algorithm to layer the workflow G according to Definition
5. *e pseudocode of WorkflowLayer algorithm is shown in
Algorithm 2.

First, (Lines 2–8) calculate the longest path of each task ti
to texit as BD(ti). Next, (Lines 9–13) assign the tasks with the
same value of BD(ti) to the same layer.*en, sort the tasks in
the same layer in nonincreasing order of their workload
(Line 12). *is has the effect of partitioning the larger task to
a sub-workflow to minimize the number of sub-workflows.
In this way the cost optimization will be more efficient.
Using this algorithm, the workflow G can be divided into l
layers, where each layer contains all the tasks with the same
length to texit.

*e next called procedure ParallelProvision(G VMs, D)
in GRP4RW is an algorithm to realize parallel provisioning
of resource to multiple sub-workflows in order to guarantee
the cost-effectiveness of each sub-workflow on the premise
of meeting deadline. *e pseudocode of Resource Provi-
sioning in Parallel Algorithm is shown in Algorithm 3.

*is algorithm first attempts the Dynamic Programming
Knapsack Algorithm (DPK) which is shown in Algorithm 4
to provision VMs to the original workflow (Lines 2-3). If
successful, it returns the optimized provision X (Lines 4-5).
Otherwise, it calls Partition Workflow Algorithm (Parti-
tionPath) which is shown in Algorithm 5 to partition the
workflow into GCSW and GNSW (Line 7). It then recursively
call ParallelProvision procedure for CSW and NSW sepa-
rately (Lines 8–12), until all sub-workflows provision VMs

successfully. As to GCSW, the temporal constraint is always
the deadline. *e temporal constraint for a GNSW can get
from the Layer Minimum Execution Time based on Defi-
nition 6.

*is Dynamic Programming Knapsack Algorithm is
based on the idea of dynamic programming elaborated in
equation (3). Primarily, this algorithmwill judge whether the
workflow G can be completed within the fixed temporal
constraint D (Line 2). If using the VM with the best com-
putational performance to execute the workflow will not
satisfy the deadline constraint, the procedure will return
failure (Line 3). Otherwise, it utilizes the method of dynamic
programming to find the VMs provisioning vector X and
then return (Lines 5–20). Note that D is a real number
expressed in terms of the number of billing cycles.

*e mission of Partition Workflow Algorithm is to
partition the current workflow or sub-workflow into two
parts: GCSW and GNSW. *e GCSW includes, but are not
limited to, critical tasks. *e other part, GNSW, does not
contain any critical tasks. We use a Boolean variable ti.as-
signed to denote the feasibility of putting ti in GNSW. Because
all critical tasks cannot be put into GNSW, the original value
of ti.assigned should be set as “false” except the critical tasks
(Lines 2–9). We choose the noncritical path between two
critical tasks as the basic of GNSW (Lines 10–31). Once a task t
belongs to GNSW, the parent tasks of t that have not yet been
assigned must belong to GNSW (Lines 22–29). Such a
principle can make the sub-workflow as large as possible to
assign the best cost performance resources as explained in
Section 3.2.2. Meanwhile, the parent and child tasks be-
longing to a single sub-workflow can guarantee the correct
execution order of the tasks (parent tasks finished before
child tasks).

4.2. Algorithm Analysis. We now consider the time com-
plexity of our algorithm. We suppose the number of tasks in
the workflow G is n, and the maximum number of types of
VMs is m. *e most time-consuming part of the Global
Resource Provisioning for Real-time Workflow (GRP4RW)
Algorithm is the WorkflowLayer and ParallelProvision
procedures. *e time complexity of the remaining parts of
GRP4RW algorithm is O(m).

W1 = 3

W2 = 30 W4 = 44

W6 = 16

W5 = 26

W3 = 27

t1

t2 t5

t6

t4

t3

tentry texit

NSW

CSW

BL(0)BL(4) BL(3) BL(2) BL(1)

Figure 4: A partition of sample workflow.
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*e first part of WorkflowLayer algorithm (Lines 1–4) is
a counting loop whose time complexity is O(n). Another
counting loop (Lines 6–9) will repeat l times, depending on
the number of layers that the workflow is divided into. l will
be no more than n because there must be at least a task in
each layer. So the total time complexity of this Work-
flowLayer procedure is O(n).

*e ParallelProvision procedure is a recursive proce-
dure. First, it calls the DPK procedure, which provisions
each type of VMs only once. So, the time complexity of the

DPK procedure is O(m). *en, another procedure Parti-
tionPath will likely be called, which has time complexity
O(n). *is is because each task belongs to either GCSW or
GNSW, and each task will be assigned only once. Because the
workflow will be partitioned into two sub-workflows by
calling the PartitionPath procedure, the maximum number
of times the ParallelProvision procedure will be called will be
2log2n � n. *erefore, the time complexity of the Paral-
lelProvision procedure is O(m · n+ n · n)�O(n · (m+ n)).
Consequently, the overall time complexity of the Global

Input:1. A workflowG � (T, W, E). 2. A collection of virtual machine types VMs � VMj | Pj,PRICEj, j � 1, 2, . . . , m􏽮 􏽯. 3. A fixed
deadline D.
Output: 1. Optimized Provision X. 2. Minimum Cost TC.

(1) Initial X⟵ xj⟵ 0 | j � 1, 2, . . . , m􏽮 􏽯;
(2) Add t0⟵ tentry, tn+1⟵ texit to G;
(3) WorkflowLayer (G);
(4) X� ParallelProvision(G, VMs, D);
(5) TC⟵ 􏽐

m
j�1 PRICEj × xj;

(6) Output X, TC

ALGORITHM 1: GRP4RW (global resource provisioning for real-time workflow) algorithm.

(1) procedure (WorkflowLayer(G))
(2) for i� 0 to (n+ 1) do
(3) if i� 0 then
(4) BD(ti)⟵ 0;
(5) else
(6) BD(ti)⟵ max

tc∈Child(ti)
BD(tc) + 1;

(7) end if
(8) end for
(9) l⟵BD(tn+1);
(10) for d� 0 to l do
(11) BL(d)⟵ ti |BD(ti) � d, ti ∈ G􏼈 􏼉;
(12) Sort ti in non-increasing order of wi (ti ∈Bl(d));
(13) end for
(14) end procedure

ALGORITHM 2: Workflow layered algorithm.

(1) procedure (ParallelProvision(G, VMs, D))
(2) TW⟵􏽐ti∈Gwi;
(3) if DPK(TW, VMs, D)≠ Failure then
(4) X⟵DPK(TW, VMs, D);
(5) return;
(6) else
(7) PartitionPath (G)
(8) ParallelProvision(GCSW, VMs, D)
(9) tF⟵ the first task of GNSW;
(10) tL⟵ the last task of GNSW;
(11) D2⟵ 􏽐

BD(tL)

d�BD(tF) LMET(d);
(12) ParallelProvision(GNSW, VMs, D2);
(13) end if
(14) end procedure

ALGORITHM 3: Resource provisioning in parallel algorithm.
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(1) procedure (DPK(TW, VMs, D))
(2) if D× P1<TW then
(3) return Failure;
(4) else
(5) m⟵ the number of VMs;
(6) TW1⟵TW;
(7) x1⟵⌈TW1/P1⌉;
(8) f1⟵ x1 × PRICE1;
(9) for j� 2 to m do
(10) TWj⟵TWj−1 − (xj−1 − 1)× Pj−1;
(11) xj⟵⌈TWj/Pj⌉;
(12) fj⟵ fj−1 −PRICEj−1 + xj ×PRICEj;
(13) if fj≥ fj−1 or xj−1 − 1 +TWj/Pj>D then;
(14) fj⟵ fj−1;
(15) xj⟵ 0;
(16) else
(17) xj−1⟵ xj−1 − 1;
(18) end if
(19) end for
(20) return X;
(21) end if
(22) end procedure

ALGORITHM 4: Dynamic programming knapsack algorithm.

(1) procedure (PartitionPath(G))
(2) CP⟵Critical Path of G;
(3) for each ti ∈G do
(4) if ti ∈CP then
(5) ti.assigned⟵ true;
(6) else
(7) ti.assigned⟵ false;
(8) end if
(9) end for
(10) k⟵BD(t) where t is the first task of CP;
(11) while all of ti ∈BL(k) with ti.assigned� true do
(12) k⟵ k− 1;
(13) end while
(14) t⟵ the first ti ∈BL(k) where ti.assigned� false;
(15) GCSW⟵G;
(16) GNSW⟵Null;
(17) while t.assigned� false do
(18) GNSW⟵GNSW + {t};
(19) GCSW⟵GCSW − {t};
(20) t.assigned⟵ true;
(21) t′⟵ t;
(22) for each tp′ ∈Parent(t′) do
(23) if tp′.assigned� false then
(24) t′� tp′;
(25) GNSW⟵GNSW + {t′};
(26) GCSW⟵GCSW − {t′};
(27) t′.assigned⟵ true;
(28) end if
(29) end for
(30) t⟵Child(t);
(31) end while
(32) return GCSW, GNSW
(33) end procedure

ALGORITHM 5: Partition workflow algorithm.
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Resource Provisioning for Real-timeWorkflow Algorithm is
O(n) +O(n · (m+ n)) +O(m)�O(n · (m+ n)).

5. Performance Evaluation

In this section, we present our empirical studies of the
Globlal Resource Provisioning for Real-time Workflow
Algorithm.

5.1. Simulation Settings. To evaluate a resource provisioning
algorithm, we measure its performance on some sample
workflows. Deelman et al. developed a workflow generator,
which can create synthetic workflows of arbitrary size that
are similar to real world real-time workflows. Using this
workflow generator, they created four different sizes for each
workflow application in terms of the number of tasks. *ese
workflows are available in DAX (Directed Acyclic Graph in
XML) format from their website [35]. For our experiments,
we chose three sizes which are small (about 50 tasks),
medium (about 300 tasks), and large (about 1000 tasks).
Meanwhile, In order to explore the influence of different
workflow structures on our algorithm performance, three
different lengths of critical path are concerned in our
simulation. However, the critical path length of each kind of
workflow generated by this workflow generator is fixed and
less than 10 tasks, so we have to organize several workflows
altogether to construct the longer critical path we need. For
example, we can connect 5 critical paths with a length of 8
and 1 critical path with a length of 10 end-to-end, so as to get
a critical path with a length of 50.

For our experiments, we modeled an IaaS provider that
offers a single data center and six different types of VMs with
different processor speeds and different prices. *e VM
configurations are based on the current Amazon EC2 of-
ferings. We used the work of Ostermann et al. [32] to es-
timate the computational performance inMFLOPS based on
the number of EC2 compute units. Another important
parameter for the experiment is the time unit for one billing
cycle. Most of the current commercial clouds, such as
Amazon, charge users based on a billing cycle of one hour.
So, we used a VM billing cycle of one hour.

As a large number of workflows with different attributes
are used for our experiments, it is important to normalize
the total cost of each workflow execution in order to clearly
analyze the cost optimization issue. For this reason, we first
take all the tasks of a workflow as a whole and use the
dynamic programming method to solve it. We define this
cost as Cheapest Cost (CC). Note that the Cheapest Cost is
obtained by ignoring the deadline constraint. *e Nor-
malized Cost (NC) of a workflow execution is defined by
NC� (total cost of provisioned VMs)/CC, where CC is the
Cheapest Cost of provisioning the VMs for the same
workflow. Note that the total cost of provisioning the VMs in
NC has deadline constraint. Because of the deadline con-
straints, clearly we have NC≥CC.

To evaluate the proposed algorithm, we need to assign a
deadline to each workflow. In order to set a series of proper
deadlines to our experiments, we define an upper bound of

the deadline as the makespan of the Cheapest Cost (CC)
situation and a lower bound as the makespan of the critical
path executing on the best performaning VM in a sequential
order. DU and DL denote the upper and lower bounds of
deadline, respectively. To set the deadlines for workflows, we
use the deadline factor α, and we set the deadline of a
workflow to be DL + α · (DU − DL), where 0≤ α≤1. We let α
goes up in steps of 0.1; i.e., α� 0, 0.1, 0.2, . . ., 0.9, 1.0.

To the best of our knowledge, many works have com-
bined resource provisioning and task scheduling to mini-
mize the cost of workflow execution; IC-PCP algorithm is
the classical one among these works. *erefore, we adopted
IC-PCP algorithm as a baseline to evaluate our algorithm. As
mentioned in Section 2, IC-PCP algorithm was designed to
minimize the cost of workflow execution while meeting a
user-defined deadline [17]. *is algorithm begins by cal-
culating the EST (Earliest Start Time), EFT (Earliest Finish
Time), and LFT (Latest Finish Time) of each task. It then
finds the partial critical paths associated with the EST, EFT,
and LFT. *e tasks on each path are scheduled on the same
VM and are preferably assigned to an already leased instance
which can meet the LFTof the tasks while the values of EST,
EFT, and LFT of each unassigned task are updated. Finally,
each unassigned task on the scheduled path is calculated and
the process is repeated until all tasks have been scheduled. At
the end of this process, each task has been assigned a VM and
has start and end times associated with it. *e IC-PCP al-
gorithm also aims at cost optimization but focuses on task
scheduling. *e time complexity of IC-PCP algorithm is
higher and it lacks flexibility. Additionally, we use the Simple
DPK algorithm to each task of the workflow as another
comparative reference to manifest the importance of global
idea on cost optimization.

5.2. Simulation Results. Figure 5 shows the relationship
between the cost optimization of resource provisioning by
the GRP4RW algorithm and the deadline. Figure 5(a) shows
the results with different sizes: small size (50 tasks), medium
size (300 tasks), and large size (1000 tasks). *ese different
sizes have similar variations in the trends of the normalized
cost with each different deadline. *e more tasks a workflow
has, the more gentle change of normalized costs with each
different deadline. *e fluctuation of normalized cost of the
workflow with the smallest size is obvious. Figure 5(a) shows
that the performance of cost optimization of our proposed
algorithm is more stable as the size of workflow is larger.

Figure 5(b) shows how the different structures of
workflows influence the variation of normalized costs. Be-
cause a large size workflow shows more stable normalized
cost, we use three large size workflows (1000 tasks each) with
different lengths of critical path (CP). *e lengths of the
critical paths are 50 tasks, 100 tasks, and 200 tasks. *e
results show that there is a nearly inversely proportional
linear relationship between the normalized cost and the
deadline to the workflows with the longest critical path.
However, the workflow with the shortest critical path has the
most expedite convergence to the optimization as the
deadline grows larger. *erefore, our proposed cost

Complexity 11



optimization algorithm can be more efficient when the
deadline is set to a low level for the workflow with shorter
critical path.

Since the performance of cost optimization for larger size
and longer critical path is better and more stable, we take a
workflow with 1000 tasks with the length of the critical path
being 200 as the simulation instance to compare the per-
formances of three cost optimization algorithms: GRP4RW,
IC-PCP, and Simply DPK. Figure 6 shows the result of the
comparison. *e normalized cost of Simply DPK algorithm
does not vary much with the change of deadline factor and it
always maintains a high value. *e normalized cost of IC-
PCP algorithm decreases with the increase of deadline. *e
normalized cost of our GRP4RW algorithm has a certain
reduction with the deadline changes and the values of the
costs are generally lower than the IC-PCP and Simply DPK
algorithm at each deadline. *ere are three reasons for these
results. First, the Simply DPK algorithm uses the dynamic
programming knapsack method to each single task of a
workflow. So, its optimization effect is modest and deadline-
invariant. Second, the IC-PCP algorithm containing the
combined idea uses the partial critical path as the optimi-
zation unit. *is makes the optimization effect improve
significantly, but dynamic programming method not uti-
lized in this algorithm results in suboptimal normalized
costs for all different deadlines. Finally, both the global idea
and the dynamic programming knapsackmethod are used in
GRP4RW algorithm. So the optimization effect achieves the
optimal result. In conclusion, global idea is the most im-
portant force in the cost optimization of resource provi-
sioning algorithm for real-time workflow. At the same time,
dynamic programming knapsack method also plays a pos-
itive role in the whole process.

Considering that the length of billing cycles could impact
on the performance of the cost optimization algorithms, we
studied the effect of the relationship between the length of
billing cycles and the execution times of tasks in workflow
on the performance of the algorithms by simulation

experiments. As the execution time of task seriously depends
on the workload of task, we used three different workflows
with different workloads of tasks: one workflow denoted as
Workflow with Small Workload in which more than 90%
task workload are less than 1 MFLOPS, another workflow
denoted as Workflow with Medium Workload in which
more than 90% task workload are between 1 and 5MFLOPS,
and the third workflow denoted as Workflow with Large
Workload in which more than 90% task workload are more
than 5 MFLOPS. Meanwhile we use 30 seconds, 60 seconds,
120 seconds, 300 seconds, 600 seconds, and 1200 seconds as
the different lengths of billing cycles. *e experimental
results are shown in Figure 7. It demonstrates that the
lengths of billing cycles have impact on the algorithms
performance; with the decrease of the length of billing cycles,
the cost optimization effect of all algorithms is improved to
some extent. When the length of billing cycle is 30 seconds,
the performance of all these algorithms is optimal. When the
length of billing cycle becomes 3600 seconds, the perfor-
mance of algorithm Simply DPK decreases significantly,

1.7
1.6
1.5
1.4
1.3
1.2
1.1

1
0.9
0.8

N
or

m
al

iz
ed

 co
st

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Deadline factor

Small size
Medium size
Large size

(a)

1.5

1.4

1.3

1.2

1.1

1

0.9

0.8

N
or

m
al

iz
ed

 co
st

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Deadline factor

Longest CP
Medium CP
Shortest CP

(b)
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while that of algorithms IC-PCP and GRP4SW is passable.
*at is to say, when the execution times of tasks are ex-
tremely smaller than billing cycle such as the workflow with
small workload under the situation that the length of billing
cycle is 3600 seconds (seen in Figure 7(a)), the length of
billing cycles impact on the performance of algorithms is
more significant, and our proposed algorithm GRP4SW has
the most advantage at that condition.

6. Conclusion

In this paper, we presented a global resource provisioning
algorithm for executing real-time workflow in cloud. We
modeled the problem as an optimization problem that aims
to get a cost-effective resource provisioning to executive a
workflow while meeting a deadline constraint. *e problem
was solved by using the dynamic programming knapsack
algorithm. Our approach embodies basic IaaS cloud

properties such as heterogeneity and elasticity of resource
performance and pay-as-you-go model of price mechanism.

We perform simulation experiments using three dif-
ferent sizes and three different structures of real-time
workflows separately. Our results show that the cost opti-
mization of our proposed solution improves as the deadline
increases. We compared the performance of our algorithm
against two other algorithms (Simply DPK and IC-PCP).
Our results show that our proposed GRP4RW algorithm has
an overall better performance than both the Simply DPK and
IC-PCP algorithms under every deadline constraints.

For future work, we intend to improve our strategy for
optimizing both data storage and data transfer cost of a real-
time workflow execution. In addition, more and more re-
searches have been focused on the optimization objectives
about security or energy consumption property of QoS
[36, 37]; the most important issue is realizing multiobjective
optimization.
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Figure 7: *e Length of billing cycles impact on algorithms. (a) Workflow with small workload. (b) Workflow with medium workload. (c)
Workflow with large workload.
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Data Availability

*e workflows used in this study can be accessed via the
website http://confluence.pegasus.isi.edu/display/pegasus/
WorkflowGenerator.
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