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Let a d-prime be a positive integer number with d divisors. From this definition, the usual prime numbers correspond to the
particular case d � 2. Here, the seemingly random sequence of gaps between consecutive d-primes is numerically investigated.
First, the variability of the gap sequences for d � 2; 3; . . . ; 11f g is evaluated by calculating the informational entropy. (en, these
sequences are mapped into graphs by employing two visibility algorithms. Computer simulations reveal that the degree dis-
tribution of most of these graphs follows a power law. Conjectures on how some topological features of these graphs depend on d
are proposed.

1. Introduction

Prime numbers, the building blocks of any positive integer,
fascinate math lovers [1, 2]. From a purely theoretical
perspective, primes are crucial for understanding the
properties of numbers [1, 2]. From an applied science
perspective, primes have been used in cryptographic keys
[3], can be found in the life cycles of cicadas [4], and
characterize the energy spectrum of chaotic quantum sys-
tems [5].

Since 300 BC, the irregular distribution of primes
throughout the sequence of natural numbers has been ex-
tensively investigated. Giants as Chebyshev, Dirichlet,
Eratosthenes, Erdös, Euclid, Euler, Fermat, Gauss, Legendre,
and Riemann analyzed this matter [1, 2]. To get some insight
on this distribution, the statistical properties of the gaps
between consecutive primes [6, 7], second-order gaps (the
gaps between these gaps), and higher-order gaps [8, 9] have
been examined. (e distribution of primes has also been
studied by using graphs. For instance, consider that primes
are the nodes of a graph. Since any even number can be
written as the sum of two primes, a pair of nodes is linked in
this graph if it represents the sum of a given even number

[10]. In another graph-based approach, the natural numbers
are the nodes, and there is a connection between two nodes if
they share a common prime divisor [11]. Graphs are also
used in this work.

Assume that a d-prime is a positive integer with d di-
visors. (erefore, the usual prime numbers correspond to
the case d � 2. In this work, the frequency of the gaps be-
tween d-primes is computationally analyzed. First, the
difference of successive d-primes is calculated for
d � 2; 3; . . . ; 11f g, and the gap sequences thereby obtained
are considered as discrete time series. To evaluate their
variability, the informational entropy [12] of these series is
computed. In addition, these series are transformed into
undirected graphs by applying two visibility algorithms
[13, 14]. (e degree distribution and the average degree of
these graphs are determined and compared. (ese are the
main contributions of this work, which are described in the
next section.

(e aim of this study based on d-primes is to understand
how the gap sequences depend on d. (e proposed approach
can be used to analyze other sequences of numbers found in
nature [15], such as the energy levels of atomic nuclei and the
quantum space-time structure [16].

Hindawi
Complexity
Volume 2020, Article ID 1480890, 5 pages
https://doi.org/10.1155/2020/1480890

mailto:luizm@mackenzie.br
https://orcid.org/0000-0002-2309-1254
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/1480890


2. Methodology and Numerical Results

Let a d-prime be defined as a positive integer pd greater than
1 that is divisible by 1, the number itself, and d � 2 (smaller)
positive integers. (us, a d-prime has exactly d distinct
divisors. For instance, number 12 is a 6-prime because its
(six) divisors are 1, 2, 3, 4, 6, and 12. A d-prime with d� 2 is
usually called a composite number [1, 2]. Note that the 2-
primes are just the usual primes. (us, d-prime is a naive
generalization of the concept of prime number.

Let pd�n� be the n
th d-prime, with n � N�. For instance,

p3�4� is the fourth 3-prime, which is equal to 49. Table 1
presents a list of the first d-primes for d � 2; 3; . . . ; 11f g. Let
xd�n� � pd�n � 1� � pd�n� be the gap between consecutive
d-primes. For instance, x5�1� � 65 because p5�2� � 81 and
p5�1� � 16. Note that the sequence xd�n� can be taken as a
time series, in which n corresponds to the time variable.
Table 2 shows the first numbers of the series xd�n� for
d � 2; 3; . . . ; 11f g.

In order to evaluate the variability of the series xd for
d � 2; 3; . . . ; 11f g, the informational entropy H [12] was
computed. (is entropy has been calculated, for instance, in
investigations on the dynamics of biological [17] and social
systems [18]. Its normalized value, denoted by �, is given by

� �
H
Hmax

: ���

(e entropy H � � 
q
i�1 pi lnpi and its maximum value

Hmax � ln q (obtained in the case of pi � �1/q� for
i � 1; . . . ; q [12]) are calculated by taking pi as the relative
frequency of occurrence of distinct xd. In these expressions,
q is the number of distinct values of xd.

As the next step, the time series xd�n� were converted
into undirected graphs by using two visibility algorithms
[13, 14]. (ese algorithms have been employed, for instance,
in the analysis of stock indices [19] and electroencepha-
lography recordings [20]. Here, in the visibility graphs, each
node represents a distinct value of xd.

Consider that na � ni � nb. In the natural visibility (NV)
graph [13], the nodes corresponding to xd�na� and xd�nb�
are connected if any intermediate point �ni; xd�ni�� in the
time series satisfies the inequality

xd ni(  � xd na(  � xd nb(  � xd na( ( 
ni � na
nb � na

 : ���

(us, these nodes are connected if there is a straight line
joining �na; xd�na�� and �nb; xd�nb�� in the plot xd�n� � n,
provided that any intermediate point �ni; xd�ni�� is below
such a line. For instance, the four first points of the sequence
x3�n� shown in Table 2 are x3�1� � 5, x3�2� � 16,
x3�3� � 24, and x3�4� � 72. (ere is a connection between
the nodes corresponding to x3 � 16 and x3 � 72 because the
intermediate datum x3 � 24 is below the straight line linking
these points in the plot x3�n� � n, that is, because x3�3� �
24�x3�2� � �x3�4� � x3 �2����3 � 2�/�4 � 2�� � 16� ��72�
16�/2� � 44. Also, note that there is not a connection be-
tween the nodes x3 � 5 and x3 � 24 because
x3�2� � 16�x3�1� � �x3

�3� � x3�1����2 � 1�/�3 � 1�� � 5 � ��24 � 5�/2� � 14:5. In
this case, the datum (2, 16) is high enough to prevent the
data (1, 5) and (3, 24) from seeing each other.

In the horizontal visibility (HV) graph [14], the nodes
associated with xd�na� and xd�nb� are connected if

xd na( ; xd nb(   �xd ni( ; ���

with na � ni � nb. (us, these nodes are connected if any
intermediate point �ni; xd�ni�� in the plot xd�n� � n is below
the horizontal line joining �na; xd�na�� and �nb; xd�nb��. In
the HV graph built from the beginning of the sequence
x3�n�, the nodes corresponding to x3 � 16 and x3 � 72 are
not connected because x3�2� � 16� x3�3� � 24; that is,
�2; 16� and �4; 72� cannot see each other because �3; 24� is
high enough to block their horizontal visibility. (us, x3 �
16 and x3 � 72 are connected in the NV graph, but they are
not connected in the HV graph.

Numerical experiments were performed by taking
n � 1; 2; . . . ; 10000, that is, the first 10,000 d-primes for each
value of d. From these 10,000 d-primes, 9999 values of xd�n�
were computed. (e values corresponding to
n � 1; 2; 9998; 9999 were discarded in order to neglect the
initial transient �n � 1; 2� and the effects of truncation
�n � 9998; 9999�.

(e normalized entropy � was computed by using
equation (1). As shown in Table 3, � � 1 for d � 5; 7, and 11
because there is no repeated value of xd in the corresponding
sequences. For d � 3 and d � 9, �	1; for d even, � 
 0:7.

Table 1: Sequences of d-primes, denoted by pd�n� with n � N�, for
d � 2; 3; . . . ; 11f g.

d pd�n�

2 2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41; . . .
3 4; 9; 25; 49; 121; 169; 289; 361; 529; 841; . . .
4 6; 8; 10; 14; 15; 21; 22; 26; 27; 33; 34; 35; . . .
5 16; 81; 625; 2401; 14641; 28561; 83521; . . .
6 12; 18; 20; 28; 32; 44; 45; 50; 52; 63; 68; 75 . . .
7 64; 729; 15625; 117649; 1771561; 4826809; . . .
8 24; 30; 40; 42; 54; 56; 66; 70; 78; 88; 102; . . .
9 36; 100; 196; 225; 256; 441; 484; 676; 1089; . . .
10 48; 80; 112; 162; 176; 208; 272; 304; 368; . . .
11 1024; 59049; 9765625; 282475249; . . .

Table 2: Sequences of first-order differences of consecutive
d-primes, given by xp�n� � pd�n � 1� � pd�n� with n � N�, for
d � 2; 3; . . . ; 11f g.

d xp�n�

2 1; 2; 2; 4; 2; 4; 2; 4; 6; 2; 6; 4; 2; 4; 6; 6; 2; 6; 4; . . .
3 5; 16; 24; 72; 48; 120; 72; 168; 312; 120; 408; . . .
4 2; 2; 4; 1; 6; 1; 4; 1; 6; 1; 1; 3; 1; 7; 5; 4; 2; 1; 4; . . .
5 65; 544; 1776; 12240; 13920; 54960; 46800; . . .
6 6; 2; 8; 4; 12; 1; 5; 2; 11; 5; 7; 1; 16; 6; 1; 17; 1; . . .
7 665; 14896; 102024; 1653912; 3055248; . . .
8 6; 10; 2; 12; 2; 10; 4; 8; 10; 14; 2; 1; 5; 4; 14; 2; . . .
9 64; 96; 29; 31; 185; 43; 192; 413; 67; 69; 219; . . .
10 32; 32; 50; 14; 32; 64; 32; 64; 37; 59; 32; 16; . . .
11 58025; 9706576; 272709624; 25654949352; . . .
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Hence, for d � 2; 3; . . . ; 11f g, d odd favors equiprobable
values of pi more than d even.

From the gap sequences xd�n� for d � 2; 3; . . . ; 11f g,
undirected visibility graphs were built by using equations (2)
and (3). (en, the corresponding degree distributions P�k�
and the average degree hki were determined. Recall that the
degree of a node is the number of edges connected to this
node [21]. Recall also that the degree distribution expresses
how the percentage P�k� of nodes with degree k varies with k
[21]. Usually, P�k� is interpreted as the probability of
randomly picking a node with degree k.

Figures 1 and 2 exhibit the log-log plot of P�k� for NV
and HV graphs, respectively, for d � 2; 3; . . . ; 11f g. Observe
that most P�k� decay as a power law in these plots. Power
laws have been found in the distribution of prime gaps [22]
and in a myriad of contexts, such as a psychiatric ward [23]
and financial crashes [24]. Here, P�k� is proportional to k
taken to the power �c, that is,P�k� � Ak� c, in whichA is the
proportionality constant. In a log-log plot, logP�k� �
logA � c log k; thus, the power-law dependence is trans-
formed into a linear relation between logP�k� and log k. At
least as a first approximation, this relation can be taken as
linear in most plots shown in both figures; that is, a power-
law form for P�k� can be considered a plausible model for
these plots. Possible exceptions are the NV plots for
d � 7; 11f g.

Tables 4 and 5 present A, c, and hki for the 20 graphs.
(e average degree hki for the HV graphs is smaller than
that for the NV graphs because HV graphs are subgraphs of
the corresponding NV graphs. For the NV graphs, hki 
 6,
with the exception of d � 5; 7; 11f g, which present higher
values. For the HV graphs, hki � 3:90 for d odd and
hki � 3:90 for d even. Note also that the values of A and c,
determined from least square fitting [25], present smaller
variability for the HV graphs than for the NV graphs. In
addition, for the NV graphs, c	1:1; for the HV graphs,
c	1:7.

By reducing the quantity of d-primes used in this
computational study from n � 10; 000 to n � 5000, the
values of �, A, c, and hki vary about 1% on average as
compared to the numbers presented in Tables 3 and 5. For
the results shown in Table 4, larger variations are found forA
and c, the parameters of the fitted straight lines; the vari-
ations related to hki are also about 1% on average, with the
exception of d � 11.

From the numerical experiments reported in this work, the
following relations were found: p3�n� � �p2�n��

2, p5�n� �
�p2�n��

4, p7�n� � �p2�n��
6, and p11�n� � �p2�n��

10; thus, 3-
primes, 5-primes, 7-primes, and 11-primes are just powers of
prime numbers with powers 2, 4, 6, and 10, respectively.
However, no relation between p2�n� and pj�n� with
j � 4; 6; 8; 9; 10f g was found; that is, no relation was
found between prime numbers and d-primes when d is not
prime.

3. Discussion and Conclusion

(e absence of a discernible pattern in the sequence of prime
numbers has historically hampered the derivation of a
formula for correctly generating such a sequence [1, 2]. (e
analytical generation of d-primes, with d� 2, can be an even
more challenging task mainly if d is not prime. Here, the
distribution of the gaps between d-primes was examined by
using a variability measure and two visibility graphs, which
were deterministically built.

As shown in Table 3, �	1 for d � 3; 5; 7; 9; 11f g because
repetitions in the sequences of xd are absent or rare; that is,
these sequences are aperiodic. In addition, � 
 0:7 for
d � 2; 4; 6; 8; 10f g; thus, the variability of the gap lengths for
d even is lower than for d odd. (erefore, a possible con-
jecture is: the normalized entropy � distinguishes d even
�� 
 0:7� from d odd ��	1�. In other words, the parity of d
determines the value of �.

As shown in Figures 1 and 2 and Tables 4 and 5, most
degree distributions P�k� of the visibility graphs built from the
differences between successive d-primes for d � 2; 3; . . . ; 11f g
approximately follow a power law written as P�k� � Ak� c.
Fluctuations observed around the fitted straight lines shown in
both figures can be effects of the finite size of the gap sequences
xd�n� used in the numerical experiments [26]. Recall that
power-law distributions in the connectivity are associated with
complex networks known as scale-free [26–28]. Scale invari-
ance in the degree distribution implies self-similarity; that is,
P�k� of renormalized networks, obtained by a coarse-graining
procedure [29], also follows a power law. Note that the value of
c in the NV and HV plots is not a good parameter to show the
influence of the value of d on the networks derived from the
gap sequences; however, hki can highlight this influence: in
NV plots, for d that is prime, hki increases with d; for d that is
not prime, hki 
 6; in HV plots, hki � 3:90 for d odd and
hki � 3:90 for d even.(erefore, another possible conjecture is:
hki in NV plots distinguishes d that is prime from d that is not
prime; hki in HV plots distinguishes d odd from d even.

It is well known that, for HV graphs obtained for pe-
riodic sequences of period T (without repeated number
within a period), the average degree is given by hki � 4�1 �
�1/�2T��� [30]. As a consequence, for aperiodic series, hki �
4 (because T � �). According to Table 5, this is the
approximate value of hki found for d-primes with d odd,
which is in agreement with the value of � presented in
Table 3. It is also well known that, for an uncorrelated
random sequence, the HV graph has
Prand�k� � �1/3��2/3�k� 2 [30]. (erefore, deviations from
this degree distribution reveal that the studied sequence was
not generated by an uncorrelated random process. (e
straight line corresponding to Prand�k� is shown as a dotted
line in Figure 2. Note that P�k� for d-primes has a smaller
slope than the slope of Prand�k�.(is smaller slope and hki �
4 can be features of chaotic sequences [30].

Table 3: Normalized informational entropy � for xp�n� for d � 2; 3; . . . ; 11f g.

d 2 3 4 5 6 7 8 9 10 11
� 0.713 0.997 0.653 1.000 0.797 1.000 0.696 0.999 0.700 1.000
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Figure 1: (e degree distribution found in the NV graphs (dots) and the corresponding fitted function Ak� c (solid line) for
d � 2; 3; . . . ; 11f g.
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Figure 2: (e degree distribution found in the HV graphs (dots) and the corresponding fitted function Ak� c (solid line) for
d � 2; 3; . . . ; 11f g. (e dotted line representing Prand�k� � �1/3��2/3�k� 2 was included just for comparison.

Table 4: Values ofA and c of the fitted degree distribution P�k� � Ak� c and the average degree hki in function of d for the natural visibility
algorithm employed for mapping xd�n� into graphs.

Visibility d A c hki
Natural 2 0:4  0:1 1:1  0:2 6.17
Natural 3 0:4  0:1 1:1  0:2 6.52
Natural 4 1:2  0:2 1:6  0:1 6.40
Natural 5 1:03  0:07 1:53  0:05 14.3
Natural 6 0:5  0:1 1:1  0:2 6.33
Natural 7 0:29  0:03 1:02  0:06 27.7
Natural 8 0:4  0:1 1:1  0:2 6.28
Natural 9 0:12  0:05 0:6  0:2 6.66
Natural 10 0:4  0:1 1:1  0:2 6.23
Natural 11 0:19  0:02 0:91  0:04 45.2

Table 5: Values of A and c of the fitted degree distribution P�k� � Ak� c and the average degree hki in function of d for the horizontal
visibility algorithm employed for mapping xd�n� into graphs.

Visibility d A c hki
Horizontal 2 1:2  0:3 1:7  0:3 3.67
Horizontal 3 1:1  0:2 1:6  0:2 3.98
Horizontal 4 1:7  0:2 1:9  0:2 3.47
Horizontal 5 1:1  0:2 1:6  0:2 3.97
Horizontal 6 1:1  0:2 1:6  0:2 3.89
Horizontal 7 1:1  0:2 1:6  0:2 3.96
Horizontal 8 1:5  0:2 1:8  0:2 3.59
Horizontal 9 1:0  0:2 1:6  0:2 3.99
Horizontal 10 1:1  0:2 1:6  0:2 3.84
Horizontal 11 1:1  0:2 1:6  0:2 3.95
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A final comment about the generation of d-primes by
deterministic equations: when d is prime, then pd�n� �
�p2�n��

d� 1; however, the way of obtaining pd�n� when d is
not prime is not yet evident. Also, a formula to generate
p2�n� (the exact sequence of primes) remains to be found.
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