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,e joint multifractal analysis is usually conducted in two different variables for their cross-correlations but rarely used for two
records of one variable collected at two different places. It is important for the detection of change in multifractality in space.
Besides, the cross-correlations in two analyzed series make the analysis of sources of joint multifractality difficult. ,ere are few
studies on the source of joint multifractality. We focus on the two issues for two level records at pairs of adjacent sites along one
river and carry out an extension of our previous work which is about the single multifractality of one record with the same data set.
,e data set is collected from 10 observation stations of a northern China river and contains about two million high-frequency
river level records. Results of joint multifractal analysis via multifractal detrended cross-correlation analysis show that the change
in joint multifractality at pairs of adjacent sites caused by weak cross-correlations can be detected by comparing the single
generalized Hurst exponent with the joint scaling exponent function and reveal the effects of human activities on joint mul-
tifractality.,is analysis provides an approach for detecting the change inmultifractality. Following the idea of our previous work,
two robust hypothesis tests via a set of pairs of surrogate series are proposed for the source testing of joint multifractality. ,e
analysis of the effects of cross-correlations is carried out via a proposed simultaneously half-shifting technique which can both
minimize the cross-correlations between original series and make full use of records. Results of source analysis show not only the
effects of autocorrelations in series and probability distribution of river levels but also the effects of cross-correlations
between series.

1. Introduction

,emultifractality has been studied in many areas of applied
sciences since its concept was first introduced byMandelbrot
[1]. ,e structure function method [2] is a classical multi-
fractal analysis method which was generalized from box-
counting algorithms [3–5] and once widely used for mul-
tifractal analysis of time series. Until now, many multifractal
analysis methods were developed, such as multifractal
detrended fluctuation analysis (MF-DFA) [6] and wavelet
transform modulus maxima (WTMM) [7] and its discrete
version, namely, wavelet leaders multifractal analysis
(WLMF) [8–11]. ,ese methods have been widely applied to

many areas of applied sciences instead of the structure
function method [12–22]. ,e MF-DFA is a multifractal
generalization of the detrended fluctuation analysis (DFA)
that is used to estimate Hurst exponent of monofractal
process [17, 23, 24]. Similarly, the monofractal versions of
wavelet-based methods can be also used for Hurst exponent
[25–31]. Besides, many complex systems usually have the
joint multifractal nature which is exhibited by simultaneous
records of two variables. ,ere are also many methods for
this issue such as multifractal detrended cross-correlation
analysis (MF-DCCA) [32], multifractal cross wavelet anal-
ysis (MF-X-WT) [33], and joint multifractal analysis based
on wavelet leaders (MF-X-WL) [34].

Hindawi
Complexity
Volume 2020, Article ID 1532805, 13 pages
https://doi.org/10.1155/2020/1532805

mailto:zhao_tongzhou@126.com
https://orcid.org/0000-0003-3213-0961
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/1532805


,eMF-DCCA which was first proposed by Zhou [32] is
a generalization of the MF-DFA [6] for two nonstationary
time series. As MF-DFA, the MF-DCCA is easy to imple-
ment and robust when time series is short. Besides, it can
also eliminate some polynomial trends that may exist in
nonstationary time series. ,e MF-DCCA has been a
commonly used joint multifractal analysis method in many
fields including hydrology [35–38]. ,erefore, we conduct
the MF-DCCA for the joint multifractal analysis of river
level records. ,e river levels we analyze are collected from
the whole 10 observation stations of a tributary of Haihe
River in North China and contain about twomillion records.
,e sampling frequency is 6 minutes. ,e multifractal
analysis of these data and their source testing has been
conducted in [39, 40]. Such many and high-frequency
records are rarely seen in previous literatures. Venugopal
et al. [41–43] studied the multifractality of high-resolution
temporal rainfall data using wavelet methods.

,is paper follows up our previous work [39, 40] with
the same data set and focuses on the joint multifractality
and its source testing of river levels at adjacent stations.
,e joint multifractality is exhibited by two simultaneous
records and distinguished from the single multifractality
of one record studied in [40]. ,e joint multifractal
analysis is usually conducted in two different variables for
their cross-correlations but rarely used for two records of
one variable collected at two different places like the data
we analyze in this paper. It is very important for the
detection of change in multifractality in space. In our
study, the joint multifractal analysis of two river level
records at adjacent stations is conducted using MF-DCCA.
,e obtained joint multifractal results are used to analyze
the change in multifractality along the river and can detect
the change in multifractality affected by human activities.
It provides an approach for detecting the change in
multifractality. Besides, there are also few studies on the
source of joint multifractality. Jiang et al. [33] studied the
source of joint multifractality in financial series using MF-
X-WT. It is known that the single multifractality of one
record has two main sources: the fatness of the probability
distribution of original time series and the different cor-
relations in small and large fluctuations. ,e two sources
can be usually distinguished by analyzing the corre-
sponding surrogate series [44–48]. In addition to the two
sources that cause single multifractality, the cross-corre-
lations that exist in two analyzed records also affect the
joint multifractality. ,e cross-correlations in two ana-
lyzed records make some surrogate series methods

ineffective and the analysis of sources of joint multi-
fractality difficult. Following the idea in [40], we propose
two hypothesis tests for the source of joint multifractality,
which are based on the empirical distributions of scaling
exponent function estimated from some pairs of surrogate
series. ,e pairs of surrogate series are generated via
shuffling method and rank-ordered remapping technique
which are still effective for joint multifractality. For further
testing the effect of cross-correlations, we also propose a
simultaneously half-shifting technique that can minimize
cross-correlations. Testing results show that the joint
multifractality in water levels is mainly caused by the
different correlations within and between original series
and is also related to the probability distribution of river
levels. ,e simultaneously half-shifting technique further
shows the effects of cross-correlations. ,eMF-DCCA and
related comparison results not only show the effects of
cross-correlations but also can detect the change of
multifractality.

,e paper is organized as follows: in Section 2, we in-
troduce the MF-DCCA method and propose the source
testing method and the simultaneously half-shifting tech-
nique. ,e data and related preliminaries are described in
Section 3. In Section 4, we report the results and give detailed
analysis. Our work is concluded in Section 5.

2. Methods

2.1. Multifractal Detrended Cross-Correlation Analysis. In
this section, we introduce the MF-DCCA [32, 49] which is
used for joint multifractal analysis of river level fluctuations
in this work. ,e MF-DCCA is a generalization of the MF-
DFA [6] for two nonstationary time series. ,e method is
described as follows.

Let X(t) and Y(t) be the two processes to be analyzed.
First, the profile is computed as follows:

X′(i) ≔
i

k�1(X(k) − X),

Y′(i) ≔
i

k�1(Y(k) − Y), i � 1, . . . , L,

(1)

where L is the minimum length of X(t) and Y(t) and X and
Y are the means of X(t) and Y(t), respectively.

Dividing the profiles X′(t) and Y′(t) into
Ns: � int(L/s) nonoverlapping segments with equal length
s and then computing the detrended covariance for each
segment, we get

FXY(v, s) �
1
s

   s
i�1 X′[(v − 1)s + i] − xv(i)


 Y′[(v − 1)s + i] − yv(i)


, v � 1, . . . , Ns, (2)

where xv(i) and yv(i) are, respectively, the best polynomial
fit of X′[(v − 1)s + i] and Y′[(v − 1)s + i] in each of the Ns

segments v. In this step, the trends are removed via the
polynomial fit of profile.,e m-order polynomial used in the
fitting procedure can eliminate the polynomial trend of

order m − 1 in the original series. ,is ensures the fluctu-
ation analysis available for data affected by trends or other
nonstationarities. Note that the detrended covariance
computed by equation (2) uses absolute values of fluctua-
tions for fluctuation strength, which is different from that of
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original paper [32] using absolute values of FXY(v, s) for
fluctuation itself. Besides, the operation of absolute value
here can also avoid no obvious power-law scaling when q< 0
[32, 37], which exists in this study.

Average the fluctuation function FXY(v, s) over all the
segments, given by

FXY(q, s) ≔
1

Ns

  

Ns

v�1
FXY(v, s) 

(q/2)
⎧⎨

⎩

⎫⎬

⎭

(1/q)

, (3)

where q can be any real values except 0. For q � 0,

FXY(0, s) ≔ exp
1

2Ns



Ns

v�1
lnFXY(v, s)

⎧⎨

⎩

⎫⎬

⎭. (4)

,e final step is calculating hXY(q) via the slope of the
log-log plot of FXY(q, s) versus s, which is based on the
power-law [32]:

FXY(q, s) ∼ s
hXY(q)

, for large s. (5)

,e function hXY(q) is called the scaling exponent
function [32]. When q � 2, hXY(q) is the bivariate Hurst
exponent [50].

When X � Y, MF-DCCA degenerates to MF-DFA and
hXY(q) is called the generalized Hurst exponent [6]. Let
hX(q) and hY(q) be the generalized Hurst exponents of X(t)

and Y(t) estimated using MF-DFA, respectively. For bi-
nomial multifractal measures and some multifractal random
walks, it is validated numerically in the case of dependent
pairs [32, 51]:

hXY(q) �
hX(q) + hY(q)

2
. (6)

Furthermore, more general relationship is derived [37]:

hXY(q)≤
hX(q) + hY(q) + logsk

2
 , (7)

where k is a positive constant. When scale s⟶ +∞,

hXY(q)≤
hX(q) + hY(q)

2
. (8)

Since the computation of FXY(q, s) in equation (3) is
determined by FXY(v, s) from the segments with large
fluctuation for q> 0, hXY(q) of q> 0 shows the scaling be-
havior of the segments with large fluctuations. For q< 0,
hXY(q) shows that with small fluctuations [6, 17].

,e joint multifractal spectrum fXY(α) is obtained via
the Legendre transform of Renyi scaling exponent τXY(q):

α � τXY
′(q),

fXY(α) � qα − τXY(q),
(9)

where α is the singularity strength and τXY(q) can be ob-
tained by calculating τXY(q) � qhXY(q) − 1 [35, 38]. ,e
strength of joint multifractality of records can be charac-
terized by ΔαXY � αmax − αmin.

,e dynamics of multifractal system are described by a
continuous spectrum of exponents (multifractal spectrum),

rather than a single exponent (fractal dimension). ,is in-
dicates that the exponent α (singularity strength or Hölder
exponent) values continuously in one range. ,e width of
this range is the width of multifractal spectrum ΔαXY. It can
reflect the complexity of exponent value and characterize the
strength of multifractality. Inherently, the multifractal for-
malism is originally used to characterize the complexity of
invariant measures of nonlinear dynamical systems.

If h(q) satisfies the generalized binomial multifractal
model [18]

hXY(q) �
1
q

  −
ln a

q
+ b

q
( 

q ln 2
 , (10)

then the τ(q) and Δα can be calculated via the following
formulas:

τXY(q) � −
ln a

q
+ b

q
( 

ln 2
,

ΔαXY �
ln b − ln a

ln 2
.

(11)

2.2. Testing Method for Source of Joint Multifractality.
,is section focuses on the testing for the source of joint
multifractality. As shown in previous articles
[33, 44, 47, 48, 51], the source of multifractality can be
clarified by analyzing the corresponding surrogate series.
Unlike the source testing of single series, we need to consider
cross-correlations between series which also play an im-
portant role in generating joint mulitfractality [33, 34]. In
view of the above, we propose two hypothesis tests using
pairs of surrogate series for the following two different
sources:

(1) ,e different correlations within and between
original series.

(2) ,e fatness of probability distribution of original
series.

,e following two surrogate methods [51] can generate
pairs of surrogate series which keep one of the two sources
and destroy another. Let X(t) and Y(t) be the two series to
be analyzed (t � 1, . . . , L).

(1) For testing Type (1) source, the pair of surrogate
series (Xsg1(t), Ysg1(t))|tt � n1, 2q, h . . ., xL  is
generated via shuffling the two series X(t) and Y(t)

independently.
(2) For testing Type (2) source, the pair of surrogate

series (Xsg2(t), Ysg2(t))|tt � n1, 2q, h . . ., xL  is
generated using rank-ordered remapping technique:
let Z(t)|tt � n1, 2q, h . . ., xL  be a sequence of
random numbers generated from the standard
normal distribution. We rearrange Z(t){ } such that
the rearranged series ZX(t)|tt � n1, 2q, h . . ., xL 

has the same rank ordering as the original series
X(t){ }. ,e series ZY(t)|tt � n1, 2q, h . . ., xL  is
generated using the same technique for the original
series Y(t){ }. Let (Xsg2(t), Ysg2(t)) 
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� (σXZX(t), σYZY(t)) , where σX and σY are the
sample standard deviations of X(t) and Y(t),
respectively.

,e pair of surrogate series (Xsg1(t), Ysg1(t))  pre-
serves the distribution of original series and removes the
correlations within and between original series. If the joint
multifractality is caused in part by different correlations
within and between original series, their joint multi-
fractality will be significantly different from that of two
original series. ,e pair of surrogate series
(Xsg2(t), Ysg2(t))  preserves the correlations within and
between original series, and both have the Gaussian dis-
tribution. If the joint multifractality is caused in part by the
fat-tailed distribution of original series, they will show a
weaker joint multifractality than original series. ,en, the
two types of joint multifractality can be distinguished by
comparing hXY(q) of two original series with that of
corresponding pair of surrogate series.

Following the idea in [40], we propose two hypothesis
tests for the source of joint multifractality, which are based
on the empirical distribution of scaling exponent function
estimated from 1000 pairs of surrogate series. It can not only
achieve more robust results than the previous clarification
method using one pair of surrogate series but also show
more details about the source of joint multifractality such as
the effects of large and small fluctuations.

,e null hypotheses for the two hypothesis tests are
described as follows:

(i) H0sg1: the joint multifractality is not due to the
correlations within and between series.

(ii) H0sg2: the joint multifractality is not due to the
fatness of probability distribution.

Monte Carlo simulation is adopted for the acceptance
region of null hypotheses [52]. ,e proposed procedure for
the two hypothesis tests is described as follows:

(i) Assume that the significance level of test is α.
Generate 1000 pairs of surrogate series and calculate
the scaling exponent function hsg1(q) (or hsg2(q))
usingMF-DCCA to obtain the empirical probability
distribution of the scaling exponent function, where
hsg1(q) and hsg2(q) denote the scaling exponent
function estimated from (Xsg1(t), Ysg1(t))  and
(Xsg2(t), Ysg2(t)) , respectively.

(ii) Obtain the acceptance region [hl(qi), hu(qi)] for
null hypothesis at the significance level αi � (α/N),
based on the empirical probability distribution. In
detail, hl(qi) is estimated by the (αi/2)-quantile of
the empirical probability distribution and hu(qi) is
estimated by the (1 − (αi/2))-quantile,
i � 1, . . . ,N, where N is the number of the ana-
lyzed qs.

(iii) Connect hl(qi)s and hu(qi)s, respectively, using
straight line. Since hl(qi)s or hu(qi)s varies con-
tinuously, it is suitable to connect using straight line.
,e area surrounded by these connection lines from
q1 to qN is the acceptance region.

(iv) Calculate the scaling exponent function hXY(q) of
original series using MF-DCCA.

(v) Accomplish the hypothesis testing via comparing
the hXY(q) with the acceptance region.

Take testing for the null hypothesis H0sg1 as an example.
If h(q) falls into the acceptance region for H0sg1, we accept
that the joint multifractality is not mainly due to different
correlations within and between series. If h(q) falls out of the
acceptance region for H0sg1, we believe that the joint
multifractality is caused in part by different correlations
within and between series.

Note that the significance level for each q is αi � (α/N)

because this procedure is a multiple-testing procedure so
that Bonferroni correction is conducted. In this paper, N �

31 and we use 5% as its significance level. So the significance
level for each q is αi ≈ 0.16%.

2.3. Simultaneously Half-Shifting Technique. As shown in
[33], the shift of two series does not change the correlations
within each series but can weaken cross-correlations be-
tween them. For further analyzing the effects of cross-
correlations on joint multifractality, we propose the fol-
lowing technique in MF-DCCA for both minimizing the
cross-correlations between original series and making full
use of records:

(i) Let X(t) and Y(t) be the two series to be analyzed
(t � 1, . . . , L). tm: � int(L/2).

(ii) Let Y0(t) � Y(1), . . . , Y(tm) , Y1(t) � Y(tm+

1), . . . , Y(L)} and X0(t) � X(1), . . . , X(L − tm) ,
X1(t) � X(L − tm + 1), . . . , X(L) . Two con-
structed pairs of shifting series are (X0(t), Y1(t)) 

and (X1(t), Y0(t)) .,ey keep the autocorrelations
in each series and minimizing the cross-correlations
between series.

(iii) For making full use of records, the joint multi-
fractality without cross-correlations is obtained by
simultaneously conducting two pairs of shifting
series using MF-DCCA. For details, in the step of
computation of FXY(q, s), for each s, the FXY(q, s)s

is computed via averaging the fluctuations of both
(X0(t), Y1(t))  and (X1(t), Y0(t)) . ,e other
steps are the same.

,is technique simultaneously uses two pairs of series
that are shifted half their length relative to each other. We
thus call it simultaneously half-shifting technique (SHST).
,e scaling exponent function hXYS(q) obtained via si-
multaneously half-shifting technique is compared with the
scaling exponent function estimated from two original series
and the acceptance region for H0sg1.

For MF-DFA of single series X(t), there are no cross-
correlations. In this case, the simultaneously half-shifting
technique degenerates the operation of half-dividing; that is,
theX(t) is divided into two seriesX0(t) andX1(t) which are
defined above. Further for multifractal detrended fluctuation
analysis of the two divided series, FX(q, s)s is computed via
averaging the fluctuations of both X0(t) and X1(t). ,e
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operation of half-dividing should not change the multi-
fractality since it can keep the autocorrelations in series and
the distribution of series. We can analyze the change in
multifractality of each series (X(t) and Y(t)) after the op-
eration of half-dividing for validating the simultaneously
half-shifting technique in keeping autocorrelations.

3. Data and Preliminaries

,e river level records we consider have been analyzed for
single multifractality in previous papers [39, 40]. ,e records
are collected in real time from 10 observations along a tributary
of Haihe River in North China. ,e locations of 10 observa-
tions are shown in Figure 1. We mark these locations from
upstream to downstream with Site 1-Site 10.,e records are of
high-frequency, collected every 6 minutes at 10 water level
observations of this river from April 2011 to September 2013.
,e location of river has a significant continental monsoon
climate, which is cold and dry in the winter and warm and
humid in the summer. More information about records can be
seen in Section 3 of [40] and Table 1. ,e sudden change in
records in Table 1 at Site 2 and Site 7 is led by water storage and
discharge at the two sites. Besides, there are some tributaries
located downstream of Site 7 that flows into this river. ,e
main tributary of this river is located at Site 9.

,e preprocessing of records considers three issues: (1)
the noise effects led by high-frequency data; (2) the missing
data led by abnormal work of data-collecting equipment;
and (3) seasonal trend in the records led by monsoon cli-
mate. Following the literature [40], we conduct the pre-
average of one day’s record and the linear interpolation,
respectively, for the first two issues. ,e preaverage of one
day’s record allows us to use the daily average river levels for
analysis. More detail about the preprocessing can be seen in
Section 3 of [40].

For the third issue, it is known that MF-DCCA cannot
remove the seasonal periodic trends in the records, which
cause cross-overs in fluctuation function and further give
incorrect results [53–58].,ere are some robust methods for
the time series with periodic trends such as Fourier
detrended fluctuation analysis (F-DFA) [54, 55], singular
value decomposition (SVD) [56, 57, 59], and the polynomial
of varying order l [60]. ,e method of SVD can achieve the
same goal as F-DFA [36]. A useful review on this issue can
refer to the literature [58]. In this work, we use F-DFA for
removing the seasonal periodic trends. After truncating the
first 38 coefficients of low Fourier frequencies, we obtain the
preprocessed daily average river levels for analysis, which
show no cross-overs in fluctuation function (see Figure 2).

Note that since we calculate joint multifractality of two
records, the two records used for analysis should keep the
same in time. ,is results in less available data than the
sampling days.

4. Results and Discussion

4.1. Multifractal Results. In this section, we study the joint
multifractality between the preprocessed daily average river
levels using MF-DCCA and mainly focus on the change in

joint multifractality along the river. So the joint multifractal
properties of two records at Site k and Site k + 1 are ob-
tained, where k � 1, . . . , 9. Parameters for MF-DCCA are
selected following [39, 40]. ,ey have been proved to be
robust and useful for the same records. ,e third-order
polynomial is adopted to calculate the best polynomial fit of
the profile in each segment, which can eliminate the second-
order polynomial trend in the original series. Limited by the
series length and following [39, 40], the scaling range of s is
selected from 25.1 to 27.2 every 0.1 power.

,e length of river levels is short and only about 800. For
avoiding inaccurate results at large q caused by the finite-size
effects [61–64], the q-range cannot be large. ,e range of q is
chosen − 6≤ q≤ 6 carefully. ,e range is large enough to
contain accurate hXY(q)s for our analysis.

Figure 2 shows the log-scaling plots of FXY(q, s) versus s

for two preprocessed daily average river levels at Site k and
Site k + 1. It can be seen that although there is some volatility
in log2FXY(q, s) which is led by short series, log2FXY(q, s)

increases approximately linearly with log2 s for all qs at all
adjacent sites. ,erefore, there exists the cross power-law
behavior of two preprocessed daily average river levels at
adjacent sites.

,e joint multifractal results between two preprocessed
daily average river levels at Site k and Site k + 1 are shown in
Figure 3. ,e errors bars of hXY(q) are based on the linear
least square fit. It is shown in Section 2.1 that there exist
some relationships between hXY(q) and (hX(q) + hY(q))/2.
We also plot the values of (hX(q) + hY(q))/2 in Figure 3 for
comparison. From Figure 3, we can find the values of
(hX(q) + hY(q))/2 deviate obviously from the values of
hXY(q) and fall out of the errors bars for q< 0 at all adjacent
sites except Site 3-Site 4 and Site 9-Site 10. ,e deviations of
all pairs of adjacent sites become smaller as they get away
from Site 2 and Site 7. As mentioned in Section 2.1, it has
been validated numerically in the case of dependent pairs
[32, 51]:

hXY(q) �
hX(q) + hY(q)

2
. (12)

For dependent pairs, the values of (hX(q) + hY(q))/2
should not differ much from that of hXY(q). So the devi-
ations of hXY(q) from (hX(q) + hY(q))/2 can reflect the
strength of cross-correlations. ,e small deviations corre-
spond to the strong cross-correlations. ,e results shown in
Figure 3 are consistent with this conclusion and indicate
weak cross-correlations between two daily average river
levels of these adjacent sites except Site 3-Site 4 and Site 9-
Site 10. In fact, we note that there are water storage and
discharge activities at Site 2 and Site 7, which can lead to the
weak cross-correlations between them and their upstream or
downstream (Site 1, Site 3, Site 6, and Site 8). Site 4 and Site 5
are close to Site 7 (see Figure 1) and also affected by this
activity. ,e hXY(q) is usually used to characterize the joint
multifractality. ,us, we conclude that the human activities
(water storage and discharge) at Site 2 and Site 7 can change
the corresponding joint multifractality of river levels (the
part caused by cross-correlations) by weakening cross-
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Site 1
Site 2

Site 3 Site 4

Site 5 Site 6
Site 7

Site 8

Site 9 Site 10

Figure 1: Site 1-Site 10 locations.

Table 1: Information about records.

Statistics for daily average obs.
Obs. Days Mean Median Std. Max. Min.

Site 1 182855 808 481.132 481.039 0.314 482.826 480.495
Site 2 152307 668 1.076 1.248 0.382 1.622 0.073
Site 3 189967 809 1.275 1.070 0.577 2.615 0.060
Site 4 190959 809 1.449 1.248 0.622 2.902 0.230
Site 5 188074 806 1.066 1.175 0.355 1.522 0.010
Site 6 185557 785 1.109 1.056 0.505 2.165 0.100
Site 7 190840 809 0.216 0.119 0.217 1.090 0.020
Site 8 190445 809 0.514 0.236 0.549 2.471 0.084
Site 9 185822 801 1.885 1.881 0.611 2.969 0.292
Site 10 111600 515 1.495 1.414 0.603 2.504 0.530

F x
yq

Site 1-Site 2 Site 2-Site 3 Site 3-Site 4

0.25

Site 4-Site 5 Site 5-Site 6 Site 6-Site 7

Site 7-Site 8 Site 8-Site 9 Site 9-Site 10

64 12832
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64 12832
s

64 12832
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64 12832
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64 12832
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64 12832
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64 12832
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64 12832
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64 12832
s
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0.1250

F x
yq

0.125

0.250

F x
yq
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yq

0.25

0.50

F x
yq

0.25

F x
yq

0.125

0.250

F x
yq

0.125

0.250

F x
yq

0.125

0.250

F x
yq

0.125

0.250

Figure 2: Log-scaling plots of FXY(q, s) versus s for two preprocessed daily average river levels at adjacent sites. ,e scaling range of s is
selected from 25.1 to 27.2. ,e range of q is chosen every 0.4 from − 6 to 6, which corresponds to lines from bottom to top in each subfigure.
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correlations. ,e significant deviations at Site 8-Site 9 may
be due to the lateral inflow from the main tributary at Site 9
which can also weaken cross-correlations.

It can be also seen in Figure 3 that the shapes of hXY(q)

for all pairs of adjacent sites suggest the two-parameter
binomial model.,e fitting results are shown in Figure 3 and
reported in Table 2. ,e results show that the hXY(q) given
by MF-DCCA is fitted well with two-parameter binomial
model (see equation (10)), and the values of R2 are all larger
than 0.95. For two-parameter binomial model, the strength
of joint multifractality can be characterized by
Δα � ((ln b − ln a)/ln 2). From Table 2, the values of Δα are
larger than 0.6, which indicates that there is strong joint
multifractality at all adjacent sites.

4.2. Source of JointMultifractality. In this section, we test the
source of joint multifractality obtained from river level
records at pairs of adjacent sites in the section above. ,e
testing method is described in Section 2.2. All the testing
results are based on 1000 pairs of surrogate series.

Figure 4 shows the testing results for the null hypothesis
H0sg1: the joint multifractality is not due to the correlations
within and between series. ,e shadow area indicates ac-
ceptance region of hXY(q) at 5% significance level estimated
from 1000 pairs of surrogate series (Xsg1(t), Ysg1(t)) . For
testing of the null hypothesis H0sg1, if the joint multi-
fractality is only due to the correlations within and between
series, the pair of surrogate series (Xsg1(t), Ysg1(t))  should
show monofractality with hXY(q) � 0.5, and the acceptance
region should be around 0.5 for all qs. In this case, our testing
method will be invalid for hXY(q) near 0.5 since hXY(q) near
0.5 will always fall into the acceptance region and accept
H0sg1.,is suggests that we should focus on the hXY(q) away
from 0.5 when conducting this testing. From Figure 4,
triangles indicate hXY(q)s of two preprocessed daily average
river levels at adjacent sites. It can be seen that the accep-
tance region is always around 0.5 and most values of hXY(q)

fall out of the shadow area at all pairs of adjacent sites except
those near 0.5; that is, we should reject H0sg. So we can
conclude that the joint multifractality is mainly due to the
correlations within and between series. Note that most
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Figure 3: Comparison of values of hXY(q) and ((hX(q) + hY(q))/2) for two preprocessed daily average river levels at adjacent sites. Different
colors and symbols indicate the corresponding different results: blue triangles for values of hXY(q) and red circles for values of
((hX(q) + hY(q))/2).,e curves are obtained by fitting the two-parameter binomial model (equation (10)) to points of hXY(q).,e resulting
model parameters are reported in Table 2. ,e errors bars of hXY(q) are based on the linear least square fit. All the errors bars reveal 95%
confidence interval.
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values of hXY(q) are smaller than the acceptance region,
which indicates strong negative correlations within and
between records.

For further analyzing the effects of cross-correlations on
joint multifractality, we obtain the hXYS(q) (see circles in
Figure 4) via simultaneously half-shifting technique which is
described in Section 2.3 for minimizing the cross-correlations
between original series. It can be seen that the difference

between hXYS(q) obtained via simultaneously half-shifting
technique and hXY(q) without this technique is large at Site 3-
Site 4, Site 4-Site 5, Site 8-Site 9, and Site 9-Site 10. ,is
indicates that the cross-correlations have significant effects on
the joint multifractality at those pairs of adjacent sites. ,e
insignificant effects of the cross-correlations on joint multi-
fractality for Site 1-Site 2, Site 2-Site 3, Site 5-Site 6, Site 6-Site
7, and Site 7-Site 8 are consistent with the previous analysis of
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Figure 4: Testing via pair of surrogate series (Xsg1(t), Ysg1(t)) . X-axis denotes the range of q values. Triangles indicate hXYS(q)s of two
preprocessed daily average river levels at adjacent sites. Circles indicate hXYS(q)s obtained via simultaneously half-shifting technique. ,e
shadow area indicates acceptance region of hXY(q) at 5% significance level estimated from 1000 pairs of surrogate series for the null
hypothesis H0sg1: the joint multifractality is not due to the correlations within and between series.

Table 2: Fitting results of binomial multifractal model.

hXY(2) hXY(2) errors bars a b Δα R2

Site 1-site 2 0.054 0.021 0.688 1.156 0.748 0.993
Site 2-site 3 0.050 0.016 0.713 1.152 0.692 0.996
Site 3-site 4 0.070 0.015 0.535 1.207 1.173 0.979
Site 4-site 5 0.074 0.019 0.636 1.174 0.884 0.974
Site 5-site 6 0.067 0.016 0.728 1.135 0.640 0.998
Site 6-site 7 0.062 0.017 0.675 1.167 0.791 0.994
Site 7-site 8 0.053 0.017 0.601 1.203 1.002 0.993
Site 8-site 9 0.055 0.020 0.627 1.190 0.924 0.995
Site 9-site 10 0.126 0.027 0.647 1.131 0.806 0.999
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deviations between hXY(q) and ((hX(q) + hY(q)))/2. It is due
to the weak cross-correlations caused by human activities
(water storage and discharge) at Site 2 and Site 7. We can also
see that the values of hXYS(q) obtained via simultaneously
half-shifting technique fall out of the shadow area at all pairs
of adjacent sites except those near 0.5. It indicates that the

autocorrelations within each series also have significant effects
on the joint multifractality at all pairs of adjacent sites. Note
that most values of hXYS(q) is smaller than the acceptance
region, which indicates strong negative autocorrelations in
records. In summary, for Site 1-Site 2, Site 2-Site 3, Site 5-Site
6, Site 6-Site 7, and Site 7-Site 8, the joint multifractality is
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Figure 5: Comparison of values of the generalized Hurst exponent hX(q), respectively, obtained from the preprocessed daily average river
levels and its half-dividing series. Different symbols indicate the corresponding different results: triangles for results of the preprocessed
daily average river levels and circles for its half-dividing series.,e errors bars for the preprocessed daily average river levels are based on the
linear least square fit. All the errors bars reveal 95% confidence interval.
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mainly caused by the autocorrelations within each series; For
other pairs of adjacent sites, both autocorrelations and cross-
correlations have significant effects on the joint
multifractality.

Besides, we also compare the values of the generalized
Hurst exponent hX(q), respectively, obtained from the
preprocessed daily average river levels and its half-dividing
series at all sites for validating the simultaneously half-
shifting technique in keeping autocorrelations. ,e results
are shown in Figure 5. It shows that the values of hX(q)

change little after the operation of half-dividing. ,is vali-
dates the effectiveness of simultaneously half-shifting
technique in keeping autocorrelations.

Figure 6 shows the testing results for the null hypothesis
H0sg2: the joint multifractality is not due to the fatness of
probability distribution. ,e shadow area indicates accep-
tance region of hXY(q) at 5% significance level estimated
from 1000 pairs of surrogate series (Xsg2(t), Ysg2(t)) . It
can be seen that almost all values of hXY(q) fall out of the
shadow area; that is, we should reject H0sg2. But the dif-
ference between hXY(q) and acceptance region is small. ,is
confirms that the probability distribution of river levels also

has effects on the joint multifractality, but the effects are
small.

5. Conclusion

,e joint multifractal analysis is usually conducted in two
different variables for their cross-correlations but rarely used
for two records of one variable collected at two different
places. Besides, there are also few studies on the source of
joint multifractality. In this paper, we focused on the two
issues for river level records of a tributary of Haihe River in
North China and proposed two hypothesis tests and si-
multaneously half-shifting technique for the source analysis
of joint multifractality. ,is study is an extension of our
previous work on the single multifractality of one record
with the same data set.

,e joint multifractal analysis was conducted using MF-
DCCA for two river level records at pairs of adjacent sites
along the river. ,e obtained hXY(q)s was compared with
((hX(q) + hY(q))/2) at each pair of adjacent sites. Results of
comparison showed that human activities (water storage and
discharge) can change the joint multifractality to deviate
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Figure 6: Testing via pair of surrogate series (Xsg2(t), Ysg2(t)) . X-axis denotes the range of q values. Triangles indicate hXYS(q)s of two
preprocessed daily average river levels at adjacent sites. ,e shadow area indicates acceptance region of hXY(q) at 5% significance level
estimated from 1000 pairs of surrogate series for the null hypothesis H0sg2: the joint multifractality is not due to the fatness of probability
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from the average of two single multifractality. ,e change is
due to the weak cross-correlations caused by human ac-
tivities. It provides an approach for detecting the change in
joint multifractality caused by cross-correlation.

For the source of joint multifractality, we proposed two
hypothesis tests, which are based on empirical distributions of
the scaling exponent function estimated from 1000 pairs of
surrogate series. It can achieve more robust results than the
previous clarification method using one pair of surrogate
series. Results of source testings showed that the joint mul-
tifractality in river level records is mainly caused by the
correlations within and between series and is also related to
the probability distribution of river levels. ,e simultaneously
half-shifting technique was proposed for further analyzing the
effects of the cross-correlations. ,is technique can both
minimize the cross-correlations between original series and
make full use of records. ,e further analysis showed more
details about the source of joint multifractality. For Site 1-Site
2, Site 2-Site 3, Site 5-Site 6, Site 6-Site 7, and Site 7-Site 8, the
joint multifractality is mainly caused by the autocorrelations
within each series. For other pairs of adjacent sites, both
autocorrelations and cross-correlations have significant ef-
fects on the joint multifractality. ,ese results are partly
consistent with results of joint multifractal analysis.

,emultifractality of hydrologic dynamics and its source
is an important topic in the fields of hydrology and mete-
orology. ,e hydrologic complex system has strong non-
linear correlations which cause the multifractal feature of
dynamics. ,e source of multifractality is the direct influ-
ence factor of hydrologic dynamics. ,us, the join multi-
fractal analysis of river levels in this study is useful for the
theory and simulation of hydrological phenomena. Espe-
cially, the analysis of effects of human activities on joint
multifractality can be a reference for the detection and
control of human activities in hydrological and meteoro-
logical environment. From the research method, this study
provides an approach for detecting the change in joint
multifractality and some techniques for source analysis of
joint multifractality.,esemethods can be extended to other
applications of joint multifractal analysis.
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E. Foufoula-Georgiou, “Evidence for inherent nonlinearity in
temporal rainfall,” Advances inWater Resources, vol. 32, no. 1,
pp. 41–48, 2009.

[44] Q. Zhang, C.-Y. Xu, Y. D. Chen, and Z. Yu, “Multifractal
detrended fluctuation analysis of streamflow series of the
Yangtze river basin, China,” Hydrological Processes, vol. 22,
no. 26, pp. 4997–5003, 2008.

[45] W.-X. Zhou, “,e components of empirical multifractality in
financial returns,” EPL (Europhysics Letters), vol. 88, no. 2,
p. 28004, 2009.

[46] W.-X. Zhou, “Finite-size effect and the components of
multifractality in financial volatility,” Chaos, Solitons &
Fractals, vol. 45, no. 2, pp. 147–155, 2012.

[47] J. Barunik, T. Aste, T. Di Matteo, and R. Liu, “Understanding
the source of multifractality in financial markets,” Physica A:
Statistical Mechanics and Its Applications, vol. 391, no. 17,
pp. 4234–4251, 2012.

[48] J. T. Lee and D. G. Kelty-Stephen, “Cascade-driven series with
narrower multifractal spectra than their surrogates: standard
deviation of multipliers changes interactions across scales,”
Complexity, vol. 2017, Article ID 7015243, 8 pages, 2017.

[49] B. Podobnik and H. E. Stanley, “Detrended cross-correlation
analysis: a new method for analyzing two nonstationary time
series,” Physical Review Letters, vol. 100, no. 8, p. 084102, 2008.

[50] L. Kristoufek, “Can the bivariate hurst exponent be higher
than an average of the separate hurst exponents?” Physica A:
Statistical Mechanics and Its Applications, vol. 431, pp. 124–
127, 2015.

12 Complexity



[51] Z.-Q. Jiang, W.-J. Xie, W.-X. Zhou, and D. Sornette, “Mul-
tifractal analysis of financial markets: a review,” Reports on
Progress in Physics, vol. 82, no. 12, p. 125901, 2019.

[52] P. Ma, D. Li, and S. Li, “Efficiency and cross-correlation in
equity market during global financial crisis: evidence from
China,” Physica A: Statistical Mechanics and Its Applications,
vol. 444, pp. 163–176, 2016.

[53] K. Hu, C. Plamen, Z. Chen, P. Carpena, and H. E. Stanley,
“Effect of trends on detrended fluctuation analysis,” Physical
Review E, vol. 64, no. 1, p. 011114, 2001.

[54] C. V. Chianca, A. Ticona, and T. J. P. Penna, “Fourier-
detrended fluctuation analysis,” Physica A: Statistical Me-
chanics and Its Applications, vol. 357, no. 3-4, pp. 447–454,
2005.

[55] R. Nagarajan and R. G. Kavasseri, “Minimizing the effect of
sinusoidal trends in detrended fluctuation analysis,” Inter-
national Journal of Bifurcation and Chaos, vol. 15, no. 5,
pp. 1767–1773, 2005.

[56] R. Nagarajan and R. G. Kavasseri, “Minimizing the effect of
periodic and quasi-periodic trends in detrended fluctuation
analysis,” Chaos, Solitons & Fractals, vol. 26, no. 3,
pp. 777–784, 2005.

[57] R. Nagarajan and R. G. Kavasseri, “Minimizing the effect of
trends on detrended fluctuation analysis of long-range cor-
related noise,” Physica A: Statistical Mechanics and Its Ap-
plications, vol. 354, pp. 182–198, 2005.

[58] I. Eghdami, H. Panahi, and S. M. S. Movahed, “Multifractal
analysis of pulsar timing residuals: assessment of gravitational
wave detection,” <e Astrophysical Journal, vol. 864, no. 2,
p. 162, 2018.

[59] G. H. Golub and C. F. Van Loan,Matrix Computations, Johns
Hopkins University Press, Baltimore, MA, USA, 1996.

[60] D. Horvatic, H. E. Stanley, and B. Podobnik, “Detrended
cross-correlation analysis for non-stationary time series with
periodic trends,” EPL (Europhysics Letters), vol. 94, no. 1,
p. 18007, 2011.

[61] R. Weron, “Estimating long-range dependence: finite sample
properties and confidence intervals,” Physica A: Statistical
Mechanics and Its Applications, vol. 312, no. 1-2, pp. 285–299,
2002.
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