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.e time-scale dynamic equations play an important role in modeling complex dynamical processes. In this paper, the Mei
symmetry and new conserved quantities of time-scale Birkhoff’s equations are studied. .e definition and criterion of the Mei
symmetry of the Birkhoffian system on time scales are given. .e conditions and forms of new conserved quantities which are
found from the Mei symmetry of the system are derived. As a special case, the Mei symmetry of time-scale Hamilton canonical
equations is discussed and new conserved quantities for the Hamiltonian system on time scales are derived. Two examples are
given to illustrate the application of results.

1. Introduction

In 1988, Hilger [1] proposed the calculus on time scales to
harmonize the continuous and the discrete, to include them
in one comprehensive mathematics, and to eliminate ob-
scurity from both..is theory is really important and plays a
useful role in modeling complex dynamic processes and has
a tremendous potential for applications [2–4].

Symmetry is an important aspect in studying dynamic
equations. From a symmetry, we can find a conserved
quantity or the first integral of dynamic equations. .e
famous Noether symmetry theory which reveals the rela-
tionships between symmetries and conversation laws has
been applied to a time-scale analogue of analytical me-
chanics, modern theoretical physics, and engineering [5–10].
Except for the Noether symmetry method, the other two
popular symmetry methods, the Lie symmetry method [11]
and the Mei symmetry method [12], are widely applied in
studying dynamic systems. .e Mei symmetry means that
when the dynamic functions are replaced by the transformed
functions under the infinitesimal transformations of group,
the forms of the differential equations of motion keep in-
variant. Here, the dynamic functions are the Lagrangian, the

Hamiltonian, the Birkhoffian, Birkhoff’s functions, the
generalized forces, the generalized constraint reactions, etc.
New kinds of conserved quantity can be led by Mei sym-
metry. .is method has been successfully applied in equa-
tions of motion for Lagrangian systems, Hamiltonian
systems, Birkhoffian systems, the motion of charged parti-
cles in an electromagnetic field, the equation of nonmaterial
volumes, the equation of thin elastic rod, etc. [13–21].

.e Birkhoffianmechanics [22] represents a new stage in
the development of analytical mechanics. It is a natural
development of the Hamiltonian mechanics and has valu-
able applications in hadronic physics, spatial mechanics,
statistical mechanics, biophysics, and engineering [23–26].
Over the past two decades, important achievements, in-
cluding the symmetries and conserved quantities of Bir-
khoffian systems, the Birkhoffian dynamic inverse problems,
the stability of motion of Birkhoff’s equations, the Bir-
khoffian systems with time delay, and the fractional Bir-
khoffian systems, have been made [27–38].

.e Pfaff–Birkhoff principle and Birkhoff’s equations
were studied in a time-scale analogue, and their corre-
sponding Noether symmetry and Lie symmetry as well as the
conserved quantities have been studied [39,40] recently.
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However, the Mei symmetry of Birkhoffian systems on time
scales has not been done. It is worth going a step further to
find more new conserved quantities of Birkhoff’s equations
by another symmetry method. In this paper, we will study
the Mei symmetry and new conserved quantities of time-
scale Birkhoff’s equations.

.is paper is organized as follows: in Section 2, we first
give the definition and criterion of Mei symmetry for the
Birkhoffian system on time scales. .ree kinds of conserved
quantities led by Mei symmetry of the system on time scales
are given in Section 3. As a special case, Section 4 deals with
the Mei symmetry of time-scale Hamilton canonical
equations and the corresponding new conserved quantities
for the Hamiltonian system on time scales. Two examples are
given in Section 5 to show the application of results. In the
end, conclusions and future works are given.

2. Mei Symmetry of Time-Scale
Birkhoff’s Equations

For basic knowledge about the calculus on time scales, the
readers can refer to References [2, 3].

.e Pfaff–Birkhoff action on time scales is

S � 
t2

t1

Rω t, a
σ
υ(t)( a

Δ
ω − B t, a

σ
υ(t)(  Δt. (1)

According to the Pfaff–Birkhoff principle on time scales,

δS � 0, (2)

with boundary conditions

δaυ
t�t1

�δaυ
t�t2

� 0 (3)

and exchange relations

δa
Δ
υ � δaυ( 

Δ
,

δa
σ
υ � δaυ( 

σ
,

(4)

the time-scale Birkhoff’s equations can be derived, i.e.,

zRω t, aσ
ρ(t) 

zaσ
υ

a
Δ
ω − R
Δ
υ t, a

σ
ρ(t)  −

zB t, aσ
ρ(t) 

zaσ
υ

� 0,

(υ,ω, ρ � 1, 2, . . . , 2n),

(5)

where B: T × Rn⟶ R is the Birkhoffian function, Rω: T ×

Rn⟶ R are Birkhoff’s functions, aΔω are the delta deriv-
atives of the Birkhoffian variables aυ(t) with respect to t, and
aσ
υ(t) � (aυ ∘ σ)(t). .is result can be found in Ref. [39].
Introduce the one-parameter infinitesimal transforma-

tions of time and variables aυ as

t
∗

� t + εξ0 t, aω(t)( ,

a
∗
υ � aυ(t) + εξυ t, aω(t)( ,

υ, ω � 1, 2, . . . , 2n,

(6)

where ξ0 and ξυ are infinitesimals and the infinitesimal
parameter ε ∈ R. .e corresponding infinitesimal generator
X(0) is

X
(0)

� ξ0
z

zt
+ ξυ

z

zaυ
, (7)

and the first extended infinitesimal generator is

X
(1)

� X
(0)

+ ξΔυ − a
Δ
υ ξ
Δ
0 

z

zaΔυ
. (8)

.e Birkhoffian B and Birkhoff’s functions Rω become
the new Birkhoffian B∗ and the new Birkhoff’s functions R∗ω
under transformations (6), that is,

B
∗

� B t
∗
, a
∗σ∗
υ  � B t + εξ0, a

σ
υ + εξσυ( ,

R
∗
ω � Rω t

∗
, a
∗σ∗
υ  � Rω t + εξ0, a

σ
υ + εξσυ( .

(9)

By performing Taylor series expansion at the point ε � 0, we
have

B
∗

� B t, a
σ
υ(  + εX(0)

(B) + O ε2 , (10)

R
∗
ω � Rω t, a

σ
υ(  + εX(0)

Rω(  + O ε2 . (11)

Definition 1. If the form of equation (5) keeps invariant
when the Birkhoffian B and Birkhoff’s functions Rω are
replaced by B∗ and R∗ω, respectively, i.e.,

zR∗ω
zaσ

υ
a
Δ
ω − R
∗Δ
υ −

zB∗

zaσ
υ

� 0, (υ,ω � 1, 2, . . . , 2n), (12)

then this invariance is called the Mei symmetry of the
Birkhoffian system on time scales.

From Definition 1 and formulae (10) and (11), we have
the following.

Criterion 1. For the Birkhoffian system (5) on time scales, if
the infinitesimals ξ0 and ξυ satisfy
zX(0) Rω( 

zaσ
υ

a
Δ
ω − X

(0)
Rυ(  
Δ

−
zX(0)(B)

zaσ
υ

� 0, (υ,ω � 1, 2, . . . , 2n),

(13)

then the corresponding invariance is Mei symmetry.

3. New Conserved Quantities of Birkhoffian
Systems on Time Scales

For the Birkhoffian system (5) on time scales, new conserved
quantities can be found from Mei symmetry.

Theorem 1. If the infinitesimals ξ0 and ξυ of the Mei
symmetry of the Birkhoffian system (5) and the gauge function
G1(t, aσ

υ) satisfy the following structural equation:

X
(0)

Rυ( a
Δ
υ − X

(0)
(B) ξΔ0 + X

(1)
X

(0)
Rυ( a
Δ
υ − X

(0)
(B) 

+ μ(t)
zX(0) Rω( 

zaσ
υ

−
zX(0)(B)

zt
 a

Δ
υ ξ
Δ
0 + G
Δ
1 � 0,

(14)
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then the Mei symmetry of the system can lead to the new
conserved quantity

I1 � X
(0)

Rυ( ξυ − X
(0)

(B) + μ(t)
zX(0) Rω( 

zt
a
Δ
ω

−
zX(0)(B)

zt
ξ0 + G1 � const.

(15)

Proof. To prove that formula (15) is a conserved quantity, we
need to prove

Δ
Δt

I � 0. (16)

.erefore, we have
Δ
Δt

I1 � X
(0)

Rυ( ξΔυ +
Δ
Δt

X
(0)

Rυ(  ξσυ −

· X
(0)

(B) + μ(t)
zX(0) Rω( 

zt
a
Δ
ω −

zX(0)(B)

zt
  ξΔ0

−
Δ
Δt

X
(0)

(B) + μ(t)
zX(0) Rω( 

zt
a
Δ
ω −

zX(0)(B)

zt
  ξσ0 + G

Δ
1 .

(17)

Here, for system (5), the following energy equation [40]:
Δ
Δt

B − μ(t)
zB

zt
−

zRω

zt
a
Δ
ω   �

zB

zt
−

zRω

zt
a
Δ
ω, (18)

holds. After the infinitesimal transformations, the new en-
ergy equation
Δ
Δt

B
∗

− μ(t)
zB∗

zt
−

zR∗ω
zt

a
Δ
ω   �

zB∗

zt
−

zR∗ω
zt

a
Δ
ω, (19)

holds. Noting formulae (10) and (11), we get

Δ
Δt

X
(0)

(B) − μ(t)
zX(0)(B)

zt
−

zX(0) Rω( 

zt
a
Δ
ω  

�
zX(0)(B)

zt
−

zX(0) Rω( 

zt
a
Δ
ω.

(20)

.us, combining equation (14) with (20) yields
Δ
Δt

I1 � X
(0)

Rυ( a
Δ
υ − X

(0)
(B) ξΔ0 + X

(1)
X

(0)
Rυ( a
Δ
υ

− X
(0)

(B) + μ(t)
zX(0) Rω( 

zaσ
υ

−
zX(0)(B)

zt
 a

Δ
υ ξ
Δ
0

+ G
Δ
1 � 0.

(21)

.e proof is completed.

.eorem 1 gives theMei conserved quantity (15) on time
scales led directly by Mei symmetry of system (5) with
considering the structure equation (14). When T � R, the
conserved quantity (15) becomes the classical Mei conserved
quantity. □

Remark 1. If T � R, then σ(t) � t and μ(t) � 0, and the
conserved quantity (15) becomes the classical one [14]

I1 � X
(0)

Rυ( ξυ − X
(0)

(B)ξ0 + G1 � const. (22)

Remark 2. If T � hN0 � hi: i ∈ N0 , h> 1, then σ(t) � ht

and μ(t) � (h − 1)t, and the conserved quantity (15) be-
comes the quantum one

I1 � X
(0)

Rυ( ξυ − X
(0)

(B) +(h − 1)t
zX(0) Rω( 

zt
a
Δ
ω

−
zX(0)(B)

zt
ξ0 + G1 � const,

(23)

where aΔω � [aω(ht) − aω(t)]/(h − 1)t.

Theorem 2. If the infinitesimals ξ0 and ξυ of the Mei
symmetry of the Birkhoffian system (5) and the gauge function
G2(t, aσ

υ) satisfy the following condition:

a
σ
υ
Δ
Δt

zX(0) Rω( 

zaσ
υ

a
Δ
ω −

zX(0)(B)

zaσ
υ

  − a
Δ
υ
Δ
Δt

X
(0)

Rυ(   + G
Δ
2 � 0,

(24)

then the Mei symmetry of the system can lead to the new
conserved quantity

I2 �
zX(0) Rω( 

zaσ
υ

a
Δ
ω −

zX(0)(B)

zaσ
υ

  a
σ
υ − μ(t)a

Δ
υ  + G2 � const.

(25)

With taking note of equation (13) and condition (24), we
can derive that formula (25) is a conserved quantity of
system (5).

Theorem 3. If the infinitesimals ξ0 and ξυ of the Mei
symmetry of the Birkhoffian system (5) and the gauge function
G3(t, aσ

υ) satisfy the following condition:

zX(0)(B)

zt
−

zX(0) Rω( 

zt
a
Δ
ω + G
Δ
3 � 0, (26)

then the Mei symmetry of the system can lead to the new
conserved quantity

I3 � X
(0)

(B) − μ(t)
zX(0)(B)

zt
−

zX(0) Rω( 

zt
a
Δ
ω 

+ G3 � const.

(27)

With taking note of formulae (20) and (26), we can derive
that formula (27) is a conserved quantity of system (5).

.eorems 2 and 3 give the other two kinds of conserved
quantities (25) and (27) on time scales also led by Mei
symmetry with considering conditions (24) and (26).
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4. Mei Symmetry and Conserved Quantities of
Time-Scale Hamilton Canonical Equations

.e Birkhoffian mechanics is a natural development of the
Hamiltonian mechanics; if we take

a
σ
υ �

qσυ , υ � 1, 2, . . . , n,

pυ− n, υ � n + 1, n + 2, . . . , 2n,


Rυ �
pυ, υ � 1, 2, . . . , n,

0, υ � n + 1, n + 2, . . . , 2n,


B � H,

(28)

then we can obtain the time-scale Hamiltonian canonical
equations [8]

q
Δ
k �

zH

zpk

,

p
Δ
k � −

zH

zqσk
,

k � 1, 2, . . . , n.

(29)

Now, we introduce the infinitesimal transformations

t∗ � t + εξ0 t, qs(t), ps(t)( ,

q∗k � qk(t) + εξk t, qs(t), ps(t)( ,

p∗k � pk(t) + εηk t, qs(t), ps(t)( ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(30)

where ξ0, ξk, and ηk are infinitesimals and the infinitesimal
parameter ε ∈ R. Undergoing transformation (30), the
Hamiltonian H becomes H∗. .en,

H
∗

� H t, q
σ
k, pk(  + εX(0)

(H) + O ε2 , (31)

where

X
(0)

� ξ0
z

zt
+ ξk

z

zqk

+ ηk

z

zpk

. (32)

Definition 2. If the form of equations (29) keep invariant
when the Hamiltonian H is replaced by H∗, i.e.,

q
Δ
k �

zH∗

zpk

,

p
Δ
k � −

zH∗

zqσk
,

k � 1, 2, . . . , n,

(33)

then this invariance is called the Mei symmetry of the
Hamiltonian system on time scales.

Criterion 2. For the Hamiltonian system (29) on time scales,
if the infinitesimals ξ0, ξk, and ηk satisfy

zX(0)(H)

zqσk
� 0,

zX(0)(H)

zpk

� 0,

k � 1, 2, . . . , n,

(34)

then the corresponding invariance is Mei symmetry.
.us, we have the following three kinds of conserved

quantities led by Mei symmetry of the Hamiltonian system.

Theorem 4. If the infinitesimals ξ0, ξk, and ηk of the Mei
symmetry of the Hamiltonian system (29) and the gauge
function G1(t, qσk, pk) satisfy the following structural
equation:

− X
(0)

(H)ξΔ0 +
zX(0)(H)

zpk

ηk + X
(0)

pk( ξΔk − X
(1)

X
(0)

(H)  − μ(t)
zX(0)(H)

zqσk
q
Δ
k ξ
Δ
0 + G
Δ
1 � 0,

(35)

where

X
(1)

� X
(0)

+ ξΔk − q
Δ
k ξ
Δ
0 

z

zqΔk
+ ηΔk − p

Δ
k ξ
Δ
0 

z

zpΔk
, (36)

then the Mei symmetry of the system can lead to the new
conserved quantity

I1 � X
(0)

pk( ξk + μ(t)
zX(0)(H)

zt
− X

(0)
(H) ξ0

+ G1 � const.

(37)

Remark 3. If T � R, then σ(t) � t and μ(t) � 0, and the
conserved quantity (37) becomes the classical one [16]

I1 � X
(0)

pk( ξk − X
(0)

(H)ξ0 + G1 � const. (38)

Remark 4. If T � hN0 � hi: i ∈ N0 , h> 1, then σ(t) � ht

and μ(t) � (h − 1)t, and the conserved quantity (37) be-
comes the quantum one

I1 � X
(0)

pk( ξk + (h − 1)t
zX(0)(H)

zt
− X

(0)
(H) ξ0

+ G1 � const.
(39)

Theorem 5. If the infinitesimals ξ0, ξk, and ηk of the Mei
symmetry of the Hamiltonian system (29) and the gauge
function G2(t, qσk, pk) satisfy the following condition:

− q
σ
k

Δ
Δt

zX(0)(H)

zqσk
  − q

Δ
k

Δ
Δt

X
(0)

pk(   + G
Δ
2 � 0, (40)
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then the Mei symmetry of the system can lead to the new
conserved quantity

I2 � −
zX(0)(H)

zqσk
q
σ
k − μ(t)q

Δ
k  + G2 � const. (41)

Theorem 6. If the infinitesimals ξ0, ξk, and ηk of the Mei
symmetry of the Hamiltonian system (29) and the gauge
function G3(t, qσk, pk) satisfy the following condition:

zX(0)(H)

zt
+ G
Δ
3 � 0, (42)

then the Mei symmetry of the system can lead to the new
conserved quantity

I3 � X
(0)

(H) − μ(t)
zX(0)(H)

zt
+ G3 � const. (43)

.eorems 5 and 6 give the other two kinds of conserved
quantities (41) and (43) on time scales also led by Mei
symmetry with considering conditions (40) and (42).

5. Examples

Example 1. Birkhoff’s functions and Birkhoffian of a fourth-
order Birkhoffian system on time scales are

R1 � a
σ
3 ,

R2 � a
σ
4 ,

R3 � 0,

R4 � 0,

(44)

B �
1
2

a
σ
3( 

2
+ a

σ
4( 

2
  + a

σ
2 , (45)

which leads us to study the Mei symmetry and the conserved
quantity of the system.

.e equations of the system are

− a
σ
3( 
Δ

� 0,

− a
σ
4( 
Δ

− 1 � 0,

a
Δ
1 − a

σ
3 � 0,

a
Δ
2 − a

σ
4 � 0.

(46)

If we choose the infinitesimals

ξ0 � 0,

ξ1 � 0,

ξ2 � a
σ
4 ,

ξ3 � 0,

ξ4 � − 1,

(47)

ξ0 � 0,

ξ1 � − 1,

ξ2 � −
1
2

a
σ
3( 

2
,

ξ3 � a
σ
3 ,

ξ4 � 0,

(48)

we can verify that infinitesimals (47) and (48) satisfy the
criterion equation (13); therefore, the corresponding in-
variance is Mei symmetry.

Substituting infinitesimal (47) into the structure equa-
tion (14), we have the gauge function G1 � − t. According to
.eorem 1, we have

I1 � − a
σ
4 − t � const. (49)

Substituting infinitesimal (48) into the structure equation
(14), we have the gauge function G1 � 0. From .eorem 1,
we have

I1 � − a
σ
3 � const. (50)

.e conserved quantities (49) and (50) show that dif-
ferent infinitesimals correspond to different forms of con-
served quantities.

From formulae (47) and (24), we obtain

G2 � 0. (51)

According to .eorem 2, we have

I2 � 0. (52)

.is conserved quantity is a trivial one.
From formulae (48) and (26), we obtain

G3 � 0. (53)

According to .eorem 3, we have

I3 �
1
2

a
σ
3( 

2
� const. (54)

Conserved quantity (54) is led by the Mei symmetry of
the system.

Example 2. .e Hamiltonian of a system on time scales is

Complexity 5



H �
1
2

p
2
1 + p

2
2 + p

2
3  + q

σ
1 + q

σ
2 , (55)

which leads us to study the Mei symmetry and the conserved
quantity of the system.

.e canonical equations of the system are

q
Δ
1 � p1,

q
Δ
2 � p2,

q
Δ
3 � p3,

p
Δ
1 � − 1,

p
Δ
2 � − 1,

p
Δ
3 � 0.

(56)

Taking the calculation, we have

X
(0)

(H) � ξ1 + ξ2 + η1p1 + η2p2 + η3p3. (57)

If we choose the infinitesimals as

ξ0 � 0,

ξ1 � p1,

ξ2 � 0,

ξ3 � 0,

η1 � − 1,

η2 � 0,

η3 � 0,

(58)

ξ0 � 0,

ξ1 � p2,

ξ2 � p1 + p2,

ξ3 � 0,

η1 � − 1,

η2 � − 2,

η3 � 0,

(59)

then

X
(0)

(H) � 0. (60)

Substituting (58) into (35), we obtain G1 � − t.
According to .eorem 4, we have

I1 � − p1 − t � const. (61)

Substituting (59) into (35), we obtain G1 � − 5t. From
.eorem 4, we have

I1 � − 2p1 − 3p2 − 5t � const. (62)

.e conserved quantities (61) and (62) show that dif-
ferent infinitesimals correspond to different forms of con-
served quantities.

Substituting (58) and (59) into (40), respectively, we
obtain G2 � 0. From .eorem 5, we get a trivial conserved
quantity I2 � 0.

Taking note of formula (60), we obtain G3 � 0. From
.eorem 6, we also get a trivial conserved quantity I3 � 0.

6. Conclusions

In recent years, the theory of time-scale calculus becomes
widely available in describing plenty systems that contain
both continuous-time and discrete-time domains. Symme-
try theory is an important method to find a conserved
quantity or the first integral of the equations of dynamical
systems..is paper presented and studied theMei symmetry
of Birkhoffian systems on time scales. .ree new forms of
conserved quantities on time scales were derived from the
Mei symmetry. In addition, as a special case, the Mei
symmetry and conserved quantities for the Hamiltonian
system are studied. .e examples given illustrated the ef-
fectiveness of the results. .e results of this paper show a
method to find the conserved quantity or the first integral of
dynamical equations on time scales..emethod is universal.
.e continuous results and discrete results are special cases.
By choosing different time scales, general results can be
obtained directly without repeated proof.

Further works about the Mei symmetry for general
holonomic systems, nonholonomic systems, Hamiltonian
systems on time scales, and Birkhoffian systems on time
scales, as well as its relation to Lie symmetry on time scales,
are still worth doing.
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