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Secret sharing has been study for many years and has had a number of real-word applications. 0ere are several methods to
construct the secret-sharing schemes. One of them is based on coding theory. In this work, we construct a secret-sharing scheme
that realizes an access structure by using linear codes, in which any element of the access structure can reconstruct the secret key.
We prove that our scheme is a multiprover zero-knowledge proof system in the random oracle model, which shows that a passive
adversary gains no information about the secret key. Our scheme is also a leakage-resilient secret-sharing scheme (LRSS) in the
bounded-leakage model, which remain provably secure even if the adversary learns a bounded amount of leakage information
about their secret key. As an application, we propose a new group identification protocol (GID-scheme) from our LRSS.We prove
that our GID-scheme is a leakage-resilient scheme. In our leakage-resilient GID-scheme, the verifier believes the validity of
qualified group members and tolerates l bits of adversarial leakage in the distribution protocol, whereas for unqualified group
members, the verifier cannot believe their valid identifications in the proof protocol.

1. Introduction

0e secret-sharing scheme, originally and independently
introduced by Shamir [1] and Blakley [2], is a method in
which a dealer selects a secret and distributes it as shares
among a set of parties in the distribution stage. Only the
predefined subsets of parties can reconstruct the secret from
their shares, while others learning nothing about the secret
in the reconstruction stage. 0ese subsets are called quali-
fied, and the monotonic collection of qualified subsets is
called an access structure of the secret-sharing scheme. As a
basic primitive in cryptography, the secret-sharing scheme
has been used widely in security applications and protocols,
such as threshold cryptography [3], secure multiparty
computation [4], cloud computing [5–7], oblivious transfer
[8], and access control [9].

In general, in the secret-sharing scheme (n parties and
access structures are known in advance), there are two types
of access structures: threshold and nonthreshold. In the
threshold access structure, at least t � t(n) qualified parties
can reconstruct the secret key. In [10], the authors con-
structed an evolving secret-sharing scheme for a dynamic
threshold access structure. In their scheme, the size of the
qualified set increases if the number of parties increases.
However, in the nonthreshold access structure, the size of the
qualified set is not limited, i.e., any collection of the qualified
subsets can reconstruct the secret key. If the nonthreshold
access structure (a small monotonic span program) can be
described, then an efficient secret-sharing scheme is realized
[11]. For instance, given the forbidden graph access struc-
ture, Beimel et al. [12] proposed a linear secret-sharing
scheme for forbidden graph access structures.
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1.1. Secret-Sharing Scheme from Linear Codes. 0ere is a
natural correspondence between linear codes and a secret-
sharing scheme. McEliece and Sarwate noted the relation-
ship between Shamir–Blakley’s secret-sharing scheme and
Reed–Solomon codes in [13]. Since then, several secret-
sharing schemes have been constructed in terms of linear
error-correcting codes [14–16]. To construct a secret-sharing
scheme from linear codes, Massey pointed out the rela-
tionship between the access structure and the minimal
codewords of the dual code of the underlying code [17, 18].
0erefore, when designing a secret-sharing scheme based on
linear codes, it is necessary to consider the open problem of
how to determine the minimal codewords for certain linear
codes. In this work, we assume that the codes and their dual
codes are efficiently encodable and decodable, respectively.
In this work, the relationship between secret-sharing scheme
and linear codes is presented in Section 2.1.

1.2. Leakage-Resilient Secret-Sharing Scheme. In the appli-
cation of secret-sharing scheme realizing the access
structure, some parties exist that might cheat others by
providing false secret keys under the sharing control, and
the information about the secret key is leaked. To avoid this
situation, it is necessary to consider the challenge of
protecting the secret key of the dealer and the shares of
parties against information leakage, i.e., in previous work,
most researchers generally used leakage-resilient crypto-
graphic primitives [19–24] and leakage-resilient devices
[25, 26] to protect the security of the secret key. 0e
cryptographic primitives and computational devices are
said to be leakage-resilient if it remains secure in the
presence of bounded-leakage of an internal (secret) state. In
the work presented in [27], the authors defined the as-
sumption that only the computation leaks information. In
other words, there is no leakage without computation.
However, this assumption does not guarantee security in
the model because cold-boot attacks [28] may work [29].
0erefore, motivated by the work of Dziembowski and
Pietrzak [30], we describe the leakage assumptions con-
sidered in this work as follows:

Independent leakage: the computation can be orga-
nized into rounds, and the leaks in each round are
independent
Bounded leakage: in each round, the number of
leakages are bound to some parameters,whereas the
total leakage bit is bounded by l
Bounded domain: in fact, the leakage function takes as
input only the secret state during the invocation

Formally, in the bounded-leakage model, an attacker can
repeatedly and adaptively access to a leakage oracle and learn
information about the secret key, as long as the total number
of information leaked is bounded by some parameter l. An
attacker chooses a sequence of polynomial-time-computable
leakage functions fi: 0, 1{ }|sk|⟶ 0, 1{ }li 

n

i�1 and obtains
f(state), where state is the party P’s secret state information
at the end beginning of each round i and ili ≤ 1.

1.3. Our Contributions. In this work, we construct a secret-
sharing scheme for a given access structure arising from
linear correcting codes. According to the definitions of
security models and attack models, we prove that our
protocol is an n-prover zero-knowledge proof system in the
random oracle model, which reveals that the secret key can
be shared repeatedly without leaking any information in the
case of a passive attacker. Additionally, our protocol is a
leakage-resilient secret-sharing scheme (LRSS) in the
bounded-leakage model, which shows that it is leakage-
resilient against (θ, n, l)-BCP.

In particular, as an application, our LRSS is a group
identification scheme (GID-scheme); that is, all qualified
parties can detect whether the dealer is cheating, and any
verifier can detect whether unqualified parties are cheating.
We also prove that our GID-scheme is leakage-resilient in
the bounded-leakage model. 0e basic construction of our
scheme relies on the following considerations:

Assume that a private channel exists in the distribution
protocol of our protocol between every party and the
dealer and that all the parties have an individual
broadcast channel
Given the public key pk and l bits of secret key sk

leakage, our protocol is performed between any
probabilistic polynomial-time adversarial verifier V∗

and an honest prover P, maintaining information-
theoretic entropy and achieving security in the boun-
ded-leakage model
For any adversarial prover, the corresponding secret
key of the emulated identity’s public key should be
known
For one public key, the probability of an algorithm to
find two distinct secret keys is negligible

1.4. Organization. 0is paper is organized as follows. In
Section 2, we introduce some definitions and lemmas that
are used in this work. We describe how to construct our
protocol in Section 3 and provide several proofs of the
properties of our protocol in Section 4. As an application, we
propose a group identification protocol in Section 5. Finally,
we provide the conclusions and future work on this topic in
Section 6.

2. Preliminaries

Here, we introduce the notations and basic definitions used
throughout this work. Let N and R be sets of natural
numbers and real numbers, respectively. We write [n] to
indicate the set 1, . . . , n{ } of natural numbers n ∈ N. Let |x|

denote the binary length of x.

2.1. Secret-Sharing Scheme from Linear Codes and Security
Definitions. Let Fq denote a finite field where q is a prime.
We write F ∗q for the set of nonzero elements of Fq; then, F ∗q is
a multiplicative cyclic group with q − 1 elements, and any
element in F ∗q has order dividing q − 1. We use the symbol
Fn

q to refer to an n-dimensional linear vector space over Fq.
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Let “‖” denote the concatenation of finite vector (bold letter),
i.e., x � (x1, x2, . . . , xn) � (x1‖x2‖ . . . xn) � (x1‖c) ∈ Fn

q,
where c � (x2, . . . , xn) ∈ Fn− 1

q .

Definition 1 (linear codes). An [n, k] code C is a k-di-
mensional linear subspace of Fn

q, which means that the sum
of the two codewords of C is a codeword and that the
product of any codeword by a field element is a codeword.

Definition 2 (generator matrix). A matrix
G � (v0, v1, . . . , vn)τ is called a generator matrix of an [n +

1, k] code C, if for every codeword z in C is a linear com-
bination of the rows of G, i.e.,
z � r0v0 + · · · + rk− 1vk− 1 � (r0, . . . , rk− 1)G, where
vi � (gi0, . . . , gin), gij ∈ Fp for 0≤ i≤ k − 1, 0≤ j≤ n.

Let Pn � P1, . . . , Pn  be a set of n parties. 0e definition
of the access structure (monotone) is given as follows.

Definition 3 (access structure [31, 32]). A set

AS � A⊆ 2Pn

A can reconstruct the secret , (1)

is called an access structure, if it satisfies the monotone
property, i.e., for any A′ ∈ AS and A′ ⊆A⊆ 2Pn , it holds
A ∈ AS.

Any subsets in AS are called qualified (or authorized),
and the subsets that do not belong to AS are called un-
qualified (or unauthorized).

Definition 4 (secret-sharing scheme, SSS). Let Share be any
probabilistic algorithm that takes as input a secret s ∈ S and
returns n shares s � (s1, . . . , sn). Let Recon be a determin-
istic algorithm that takes as input the shares of a subset Λ
and output a possible secret. Note that S is the domain of the
secret key. We say that an (n, t)-secret-sharing
schemeSSS � (Share,Recon) over field Fq for realizing an
access structure AS, if it satisfies.

Correctness: for every secret s ∈ S and every qualified
set, Λ ∈ AS with |Λ|≥ t, and it has the equation
Recon(sΛ, Λ) � s

Security: for every unqualified set, Λ ∉ AS with |Λ|< t,
and two arbitrary distinct secrets s(1), s(2) ∈ S, s(1)

Λ is
identically distributed to s(2)

Λ , where s⟶ Share(s) and
sΛ � si i∈\Λ are the completed shares of parties in Λ

Definition 5 (linear secret-sharing scheme, LSSS). An
(n, t)-SSS � (Share,Recon) over field Fq is linear if the
codomain of Share is the vector space Fn

q, and Share is a
Fq-linear mapping and Share(s) is uniformly probability
distributed over Fn

q for any s ∈ Fq.
Based on the work in [17], we use a linear codes to

construct an SSS as follows. An [n + 1, k] code C is a linear
subspace of Fn+1

q . Note that G � (g0, g1, . . . , gn) be the
generator matrix for C, where gi ∈ Fk

q is the column vector of
G, 0≤ i≤ n. In the SSS � (Share,Recon) constructed from C,
the secret s is an element of Fq, n parties P1, P2, . . . , Pn and a

dealer D are involved. To compute the shares s1, . . . , sn of
secret s, D performs the algorithm Share as follows.

0e dealer D chooses a random codeword
u � (u0, u1, . . . , uk− 1) ∈ Fk

q satisfying s � ug0. Next, D
computes the corresponding codeword by the following
equation:

v � s0, s1, . . . , sn(  � uG. (2)

0erefore, (s0, s1, . . . , sn) ∈ C with s0 � ug0 � s. Let s �

(s1, . . . , sn) be the shares of s. Finally, D securely sends si to
party Pi, for i � 1, 2, . . . , n.

To reconstruct the secret s, the algorithm Recon of SSS is
performed as follows: recall the fact that the dual code C⊥ of
C can be defined using the following formula:

C
⊥

� x ∈ Fn+1
q

 xG � 0 . (3)

Namely, a vector x ∈ Fn+1
q belongs to C⊥ if and only if x is

orthogonal to any codeword in C. If
x � (x0, x1, . . . , xn) ∈ C⊥ with x0 ≠ 0, for any codeword
(s0, s1, . . . , sn) ∈ C, then we have

s � 
n

i�1
−

xi

x0
si. (4)

Using equation (1), the secret s can be reconstructed
from the shares s1, s2, . . . , sn.

Lemma 1. Assume that A � Pc1
, . . . , Pcm

 ⊆Pn,

1≤ c1 < · · · < cm ≤ n; then, the members in A can reconstruct
the secret s with their own shares sc1

, . . . , scm
if and only if the

vector g0 is a linear combination of gc1
, . . . , gcm

.

Proof. “⇒” 0e necessity is quite obvious.
“⇐” Assume that g0 is a linear combination of

gc1
, . . . , gcm

; then, there exists ac1
, . . . , acm

∈ Fq such that

g0 � 

m

i�1
aci
gci

. (5)

0en, the secret s is reconstructed by calculating

s � ug0 � u 
m

i�1
aci
gci

⎛⎝ ⎞⎠ � 
m

i�1
aci

ugci
  � 

m

i�1
aci

sci
. (6)

0e above mentioned SSS realizes that the access
structure AS is defined as follows:

AS � A⊆Pn

 g0 ∈ span gi

 Pi ∈ A  , (7)

where “span” means the linear space spanned by the element
of the gi | Pi ∈ A  set.

Based on Definition 4 and the work of [19], we present
the security definition of SSS and the adversarial model in
the following.

In this work, to model adversarial leakage attacks on a
secret key s, the adversary has an opportunity to adaptively
access a leakage oracle and obtains information about the
secret key s. 0e formal definition of leakage oracle is given
as follows. □
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Definition 6 (leakage oracle [20, 22]). LetOλ,l
sk (·) be a leakage

oracle, which is parameterized by a prover’s secret key sk, a
leakage parameter l, and a security parameter λ. A query to
the leakage oracle is constituted by a leakage function
fj: 0, 1{ }|sk|⟶ 0, 1{ }lj 

j∈[n]
, and the oracle responds with

fj(sk). 0e oracleOλ,l
sk (·) is restricted in the total number of l

bits. For all queries received, Oλ,l
sk (·) only responds to the kth

leakage query and computes the function fj(w) for at most
poly(·) steps if 

k
j�1 lj ≤ l, where 1≤ j≤ k≤ n. Otherwise, the

oracle ignores the queries.

Remark 1. Note that l � 0 means that there is no infor-
mation leaked to the simulator in an ideal setting, whereas
l ≈ 1 means that a malicious adversary (or verifier) learns
nothing from the protocol other than obtaining the validity
of the proven statement and obtaining the leakage infor-
mation from an honest user (or prover).

Definition 7 (l-bounded adversary). LetΘ be a subset of [n].
We say that an adversary A is l-bounded, if the corruption
set PΘ: � Pi i∈Θ selected by A satisfies the following
property; for each Pi ∈ PΘ, it holds that i∈Θli ≤ l, where li
denotes the length of the output of an arbitrary (leakage)
function fi: 0, 1{ }∗ ⟶ 0, 1{ }li 

i∈Θ.

Definition 8 (leakage-resilient secret sharing, LRSS). Let S be
any secret key domain and AS be any access structure on
parties P1, . . . , Pn. We say an SSS realizing AS is
(Θ, l, ε)-leakage-resilient (or (Θ, l, ε)-LRSS), if for every
leakage protocol Leak in (θ, n, l)-BCP, and for every pair of
secrets s(1), s(2) ∈ S, the following holds:

LeakΘ,f Share s
(1)

  : s⟵ Share s
(1)

   ≈ ϵ LeakΘ,f Share(

· s
(2)

 : s⟵ Share s
(2)

 ,

(8)

whereΘ denotes the subset of [n]. 0at is, the distribution of
transcript learned by A on sharing s(1) is statistically closed
to the distribution of transcript learned byA on sharing s(2).
In particular, an SSS � (Share,Rec) is said to be
(θ, l, ε)-leakage-resilient (or (θ, l, ε)-LRSS) if it is
(Θ, l, ε)-leakage-resilient for any subset Θ⊆[n] with |Θ|≤ θ.

In our work, the notation (θ, n, l)-BCP) presented in
Definition 4 is inspired by the work [33]. We give the
program (θ, n, l)-bounded corrupted program (or
(θ, n, l)-BCP) as follows. n parities P1, . . . , Pn and θ≤ n,
where θ is an upper bound on the number of parties cor-
rupted by adversary A in any round. Let l be the leakage
bound. Let f be leakage function family f � (f1, . . . , fn),
where fj: 0, 1{ }∗ ⟶ 0, 1{ }lj and j ∈ [n]. We write f(s) �

(f1(s1), . . . , fn(sn)) for the total leakage seen by adversary
on the shares s � (s1, . . . , sn) of secret s.

(θ, n, l)-BCP ON INPUT (s,Θ, n, l)

GENERATE shares s � (s1, . . . , sn) of secret s ∈ S,
SEND si to Pi for i ∈ [n]

Leak is empty at the begining of leakage-protocol
Leak is appended with the leakage and |Leak|≤ l

COMPUTE Leak←Leak(f(sΘ)) in each round,
where sΘ: � si i∈Θ and |Θ|⩽θ

OUTPUT final transcript Leak as leakage

2.2. Zero-Knowledge

Definition 9 (negligible functions). A function μ: N⟶ R

is negligible if, for any positive polynomial poly(·), there
exists N ∈ N such that, for all n>N,

μ(n)<
1

poly(n)
. (9)

Definition 10 (probability ensemble). X denotes a countable
set. An ensemble indexed by X indicates a sequence of
random variables indexed by X. For instance, A � Ai i∈X is
an ensemble indexed by X, where each Ai is a random
variable.

Definition 11 (polynomial-time indistinguishability). Let
A � An n∈n∗ and B � Bn n∈n∗ be two difference ensembles
indexed by n∗. If

Pr D An, 1n
(   − Pr D Bn, 1n

(  


<
1

poly(n)
(10)

holds for any probabilistic polynomial-time (PPT) algorithm
D, any positive polynomial poly(·), and any sufficiently large
n, then we say that A and B are indistinguishable in poly-
nomial time.

In the following context, we use the terminology com-
putationally indistinguishable instead of indistinguishability
in polynomial time.

Definition 12. Let λ be a security parameter and let X �

X(λ) and Y � Y(λ) be the ensemble sets. Let R be a witness
relation associated with language L on X × Y, where L is
defined as L � x: ∃y s.t.(x, y) ∈ R . R is polynomially
bounded (i.e., (x, y) ∈ R implies |y|⩽poly(|x|)) and rec-
ognized in polynomial time. Given x ∈ L, an element y ∈ Y

such that (x, y) ∈ R is called a witness. Suppose that K is a
PPT algorithm, which takes as input (1λ) and outputs pairs
(x, y) with (x, y) ∈ R.

We write P and V to denote the prover and the verifier,
respectively, where P and V are two interactive probabilistic
polynomial turning machines.

Definition 13 (interactive proof system, [34]). A pair of
interactive machines (P, V) is called an interactive proof
system for a language L if machine V is PPT and the fol-
lowing two conditions hold:

Completeness: for every x ∈ L, it holds that
Pr[(P, V)(x) � 1]≥ (2/3)

Soundness: for every x ∉ L and every interactive ma-
chine M, it holds that Pr[(M, V)(x) � 1]≤ (1/3)
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Now, we consider the interactive protocol consisting of
infinitely powerful n machines P1, . . . , Pn interacting with a
PPT machine V.

Definition 14 (multiprover interactive proof system
[35]). We say that the interactive turning machines
(P1, . . . , Pn, V) in the n-prover model are called multiprover
interactive proof system for language L, if an interactive PPT
Turning machine V exists and the following two properties
are satisfied:

Completeness: for every x ∈ L, there is
Pr[(P1, . . . , Pn, V)(x) � 1]≥ (2/3)

Soundness: for every x ∉ L and all interactive machines
M1, . . . , Mn, there are
Pr[(M1, . . . , Mn, V)(x) � 1]≤ (1/3).

Definition 15 (multiprover computational zero-knowledge
[34]). Let (P1, . . . , Pn, V) be a multiprover interactive proof
system with some language L. We say that (P1, . . . , Pn, V) is
computational zero-knowledge if, for every interactive PPT
turning machine V∗, a PPTmachine M exists such that, for
all x ∈ L, ensemble View (P1, . . . , Pn, V∗)(x) x∈L and
M(x){ }x∈L are computationally indistinguishable.

In Definition 15, the ensemble
View (P1, . . . , Pn, V∗)(x) x∈L denotes the view (or output)
of the interactive machine V∗ after interacting with n in-
teractive machines P1, . . . , Pn on common input x (namely,
the transcript about the sequence of messages exchanged
between V∗ and P1, . . . , Pn). M(x){ }x∈L denotes the output
ofM on input x. In this case, we call M is a simulator for the
interaction of V∗ with P1, . . . , Pn. 0e existence ofMmeans
that V∗ does not gain any more knowledge thanM. Indeed,
M does not access P1, . . . , Pn and might not know whether
P1, . . . , Pn exists. However, it is able to simulate the inter-
action of V∗ with P1, . . . , Pn.

Succinctly speaking, an interactive proof system
(P1, . . . , Pn, V) for language L is zero-knowledge if whatever
can be efficiently computed by V after interacting with
P1, . . . , Pn on common input x ∈ L can also be directly
computed by the simulator with input x.

2.3. Identification Schemes and Security Definitions. In this
section, we first recall the standard cryptographic concepts
of -protocols presented in [36, 37] and identification
schemes (ID-scheme) presented in [20]. 0en, we present
the formal security definitions of the ID-scheme. We write
TR←(P(y), V)(x) to denote the transcript TR that was
generated through an interactive protocol (P, V), where y is
the private input of P and x is the common input of P and V.
0e notation OutV(z) denotes the output of V with input
z ∈ TR. V outputs OutV(z) � 1 if he accepts the proof and
OutV(z) � 0 otherwise.

Definition 16 ( − protocol [36, 37]). Let (P, V) be an in-
teractive proof system for language L. 0e prover P takes as
input x ∈ L and sends a witness y to verifier V. V takes as

input the common input x and the received y, and it outputs
1 if |y| � poly(|x|) and (x, y) ∈ R.

A -protocol for the relation R is a 3-round interactive
proof system (P, V) that can be described as follows:

Step P1: P first sends a commitment α to V, i.e.,
α←P(x, y)

Step V1: V responds with a challenge β based on α, i.e.,
β←V(x, α)

Step P2: P returns with c based on β, i.e.,
c←P(x, y, α, β)

Step V2: V outputs a bit b ∈ 0, 1{ }, i.e.,
b←OutV(x, α, β, c), where b � 1 if he accepts the proof
and b � 0 otherwise

Here, TR: � (α, β, c). A -protocol satisfies the fol-
lowing properties:

Completeness: the verifier V outputs 1 with probability
1, i.e., Pr[(x, y)←K(1λ); α←P(x, y); β←V(x, α);

c←P(x, y, α, β); 1←OutV(x, α, β, c)] � 1, where steps
P1, V1, andP2 can be denoted by TR←(P(y), V)(x).
2-special soundness: sssume that an extractor Extor
exists for every x ∈ L, given two valid transcripts
(α, β, c) and (α, β′, c′), where β≠ β′ and c≠ c′. 0e
Extor takes as input (α, β, c, β′, c′) and outputs a
witness y for the relation R.
Honest verifier zero-knowledge: for every PPT turning
machine V∗, a probabilistic algorithm M exists such
that the two ensembles View (P, V∗)(x){ }x∈L and
M(x){ }x∈L are computationally indistinguishable.

Definition 17 (identification scheme [20]). An identification
scheme (ID-scheme) contains four PPT procedures
ParGen,KeyGen, P, V . 0e concrete description is as
follows:

params←ParGen(1λ): the parameter generation pro-
cedure takes as input security parameter λ and returns
the system parameters of the identification scheme,
denoted by params. params are common to all users
and issued to KeyGen, P, and V as inputs.
(pk, sk)←KeyGen(): the key generation procedure
takes as input params and outputs the public key pk

and secret key sk.
P(pk, sk), V(TR, pk): P denotes a prover and V de-
notes a verifier. V returns a judgement b ∈ 0, 1{ } about
P after executing the protocol. If b � 1, then V accepts
P’s identity. b � 0 otherwise.

To obtain a secure (group) ID-scheme, we define some
security definitions and models.

Definition 18. We say that (group) ID-scheme
ParGen,KeyGen, P, V  is secure if the following two condi-
tions hold:

Completeness: for each partyPi ∈ AS, the probability of
acceptance is

Complexity 5



Pr params←ParGen 1λ ; pk1, . . . , pkn, ski( ←KeyGen(),

TR← P ski( , V(  pk1, . . . , pkm( : 1←OutV(TR) � 1.

(11)

Soundness: for any party Pi ∉ AS and any PPT algo-
rithm, the advantage of P′

Pr params←ParGen 1λ ; pk1, . . . , pkn( ←KeyGen()

TR← P′(ϕ), V(  pk1, . . . , pkn( : 1←OutV(TR) −
1
2
(12)

is negligible, where the private input ϕ of P′(·) is an empty
string and TR is defined in Definition 16 and i ∈ [m].

Before we formally define of the leakage-resilient ID-
scheme, we first consider two security games (illustrated in
Table 1), which are inspired by the work presented in [20].
0e first game called pre-emulation leakage security is
simulated by the attack game IDλ

prel(A) and allows the
adversary A to send leakage queries before the emulation
attack. 0e second game called arbitrary time leakage se-
curity is simulated by the attack game IDλ

arbl(A) and allows
the adversary A to adaptively execute leakage attacks at an
arbitrary time during an emulation attack. 0e key gener-
ation phase and test phase are the same in the games
IDλ

prel(A) and IDλ
arbl(A). 0e emulation phase is divided

into two separate games according to the definitions of
IDλ

prel(A) and IDλ
arbl(A), respectively.

Definition 19 (leakage-resilient ID-scheme). Let
KeyGen, P, V  be an ID-scheme, which is parameterized by
security parameter λ and holds the property of complete-
ness. We say that KeyGen, P, V  is secure against the pre-
emulation leakage l if the advantage of any PPTadversaryA
in the attack game IDλ

prel(A) is negligible in λ. Additionally,
it is secure against the arbitrary time leakage l if the
abovementioned adversaryA for the attack game IDλ

arbl(A)

is negligible in λ.

3. Our Protocol

3.1. Protocol 1: Fe Basic Leakproof Secret-Sharing Scheme.
For self-containedness, we recall the leakproof secret-
sharing scheme [38] as follows. Let D be a dealer, V be a
verifier, and P1, . . . , Pn be n parties.

Initialization. In this stage, all the system parameters are
generated. 0e dealer D obtains a public key corresponding
to the public key encryption scheme Enc. In addition,
suppose that D holds a private channel with every party and
that D and every party keep a broadcast channel.

Distribution protocol. 0is protocol is divided into two steps:

(1) Distribution of the shares: this step is executed by the
dealer D. First, for the master secret key s, D

generates n shares s1, . . . , sn of s and sends them to
P1, . . . , Pn through individual private channels.
Second, D calculates Enc(s) and publishes it by his
broadcast channel.

(2) Verification of the shares: every party Pj verifies the
validity of share sj received from D, where
j � 1, 2, . . . , n. If the verification condition is not
satisfied, we will say that the dealer fails, and the
protocol is aborted.

Proof protocol. 0is protocol is also divided into two steps:

(1) Proof of the secret s: let Λ be any qualified subset for
parties P1, . . . , Pn. Each Pi ∈ Λ holds the secret share
si ∈ sΛ. Parties in Λ run a multiprover zero-
knowledge argument of knowledge with the verifier
V prove that they indeed share the secret s. During
this interactive proof process, Enc(s) is a common
input of parties in Λ between V.

(2) Verification of the secret s: to check whether every
Pi ∈ Λ keeps a valid secret si, V verifies the following
condition s � F(sΛ), where F stands for some certain
deterministic polynomial-time function.

3.2. Protocol 2: Secret-Sharing Scheme via Linear Codes.
In this section, we begin to describe how our secret-sharing
scheme is constructed using linear codes in detail. First,
suppose that we have obtained an access structure realized
by linear codes C and that G is the corresponding generator
matrix.

Initialization. Let λ be a security parameter and q be a
large prime number, and p is a prime factor of q − 1. Let Fq

be a finite field. We write 〈g〉 to indicate a cyclic group
generated by an element g ∈ F ∗q with order |〈g〉| � p

and 〈g〉 ⊂ F ∗q . Let C be a linear code over Fq with length
n + 1; its generator matrix G � (gij)k×(n+1), where
0≤ i≤ k − 1, 0≤ j≤ n.

Table 1: Attack game for defining the pre-emulation leakage se-
curity and arbitrary time leakage security of IDλ

prel(A) and
IDλ

arbl(A), respectively.

Attack Game IDλ
prel(A) Attack Game IDλ

arbl(A)

(1) Key generation phase: run two algorithms
params←ParGen(1λ), (pk, sk)←KeyGen() and give (params, pk)

to the adversary A

(2) Test phase: the adversary AOλ,l

sk
(·),P(pk,sk) can access oracles

Oλ,l
sk (·) (the leakage oracle) and P(pk, sk) (an honest

prover oracle), where Oλ,l
sk (f) returns f(sk)

(3) Emulation phase: this phase is divided into two separate games
(i) For the game IDλ

prel(A): the adversary A is not allowed to
access oracles Oλ,l

sk
(·) and honest prover oracle P. A performs an

interactive protocol, denoted by (A, V(pk)) with an honest
verifier V
(ii) For the game IDλ

arbl(A): the adversary A only gets access to
the leakage oracle Oλ,l

sk (·) and performs the interactive
protocol, denoted by (AOλ,l

sk
(·), V(pk)) with an honest verifier V
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LetD be a dealer and Pn � P1, P2, . . . , Pn  be a party set.
V denotes a verifier with V ∉ Pn. Assume that a private
channel between the dealer D and each Pj(j ∈ [n]) and a
public channel between Pj1

and Pj2
exist, where j1 ≠ j2 and

j1, j2 ∈ [n]. In addition, the dealer D has a broadcast
channel. We assume that the computing power of all in-
dividuals in this protocol is polynomial-time bound.

0e encryption algorithm Enc is defined as
Enc(x) � gx(mod q), where x ∈ Fp.

0e dealer D randomly chooses s from Fp and
p>max s, n{ }. 0e master private key sk � s and the public
key pk � (p, q, g).

Distribution protocol. 0is protocol is divided into two steps:

(1) Distribution of shares:D defines s0 � s and calculates
and publishes B0 � Enc(s0) by a broadcast channel.
To distribute the master secret key s among n parties
P1, . . . , Pn, D executes the algorithm Share of SSS �

(Share,Recon) and gets s⟵ Share(s). More pre-
cisely, the algorithm Share is described by the fol-
lowing program of SECRET DISTRIBUTION:
D’s SECRET DISTRIBUTION ON INPUT
(s0, pk, B0, G):

CHOOSE random u � (u0, u1, . . . , uk− 1) ∈ Fk
p

such that uk− 1 � ((s0 − 
k− 2
i�0 uigi0)/gk− 1,0(mod p))

COMPUTE Bi � gui mod q, where i ∈ [k − 1]

COMPUTE sj � 
k− 1
i�0 uigij(mod p) and set

skj � sj, where j ∈ [n].
PUBLISH Bi, where i ∈ [k − 1].
GET a shares s � (s1, . . . , sn) of secret s0 � s

0en, D sends s1, . . . , sn to P1, . . . , Pn, respectively.

(2) Verification of the shares: for each Pj ∈ Pn, let sj

denote the private key skj. Each Pj ∈ Pn performs the
following program of SECRET VERIFICATION to
check the validity of his own share for j ∈ [n]:
Pj’s SECRET VERIFICATION ON INPUT
(sj, pk, B0, Bi, G):
GET sj from D. See if sj ∈ Fp; if not, halt.
IF pkj � gsj � B0

k− 1
i�1 B

gij

i (mod q), THEN
ACCEPT the share sj

ELSE
REJECT the share sj and repeat the program

Proof protocol. According to the abovementioned Distri-
bution protocol, B0, p, q, g, andG are common inputs
of parties in Pn between V. Every party Pj ∈ Pn has a secret
input sj for j ∈ [n]. Let Pcm

: � Pc1
, . . . , Pcm

  be a size m
subset of Pn, and every party Pci

has valid secret input sci
,

where i ∈ [m], 1≤ c1 < · · · < cm ≤ n. To reconstruct the secret
s, for all of Pc1

, . . . , Pcm
, they need to determine the existence

and uniqueness of the solutions to the system
g0 � dc1

gci
+ · · · + dcm

gcm
, where g0, gc1

, . . . , gcm
are the

column vector of the generator matrixG of [n + 1, k] code C.
0e calculation is presented in Lemma 1.

0is protocol is divided into two steps:

(1) Proof of the secret s: this step can be described as
follows:

StepP1: every party Pci
∈ Pcm

chooses a random
rci
∈ Fp, computes that xci

� grci (mod q), and
sends xi to V, where i ∈ [m]

StepV1:V chooses a random number z ∈ 1, 2{ } and
then sends z to all parties Pc1

, . . . , Pcm

StepP2: every party Pci
∈ Pcm

computes yci
� rci

−

zdci
sci

(mod p) and then sends yci
to V, where

i ∈ [m]

(2) Verification of the secret s:

StepV2: if it holds that
gyc1+yc2+···+ycm Bz

0 � 
m
i�1 xci

(mod q), then V be-
lieves that Pc1

, . . . , Pcm
share the secret s satisfying

B0 � gs(mod q); otherwise, V rejects it.

4. Security Analysis of Protocol 2

In the following context, to illustrate and analyze the ar-
gument of our interactive protocol between parties
P1, . . . , Pn and verifier V, we use prover to replace party.

4.1. Properties from PROTOCOL 2 in Random Oracle Model

4.1.1. Completeness. Assume that Pc1
, . . . , Pcm

  is a subset of
Pn � P1, . . . , Pn . Pc1

, . . . , Pcm
and V execute the above-

mentioned interactive protocol. V computes the following
equation:

g
yc1+yc2+···+ycm B

z
0 � g

yc1+yc2+···+ycm g
sz

� g
yc1+yc2+···+ycm g

z
m

i�1
sci

dci

� 
m

i�1
g

yci
+zdci

sci � 
m

i�1
g

rci � 
m

i�1
xci

(mod q).

(13)

If the last equation in equation (13) is satisfied, then V
believes that Pc1

, . . . , Pcm
share the secret s satisfying

B0 � gs(mod q).

4.1.2. Soundness. To prove the property of soundness, we
consider the following three settings.

In the first setting, for all of the Pn � P1, . . . , Pn , let Pc0
be the only one prover corrupted by adversary A. Pco

pretends to be an honest prover Pj ∈ Pn, where i ∈ [n]. After
interacting with V in StepP1, he randomly selects ri ∈ Fp

and computes xj � grj (mod q); then, he sends xj toV. Next,
V sends the challenge z to Pco

, who randomly chooses
yj ∈ Fp, because he does not know the secret sj (held by the
honest prover Pj), where j ∈ [n]. 0en, the success prob-
ability of equality
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g
y1+y2+···+yn B

z
0 � 

n

j�1
xj(mod q) (14)

is (1/q). If the interactive protocol executed for K times, the
success probability is (1/qK).

In the second setting, the adversaryA chooses a subset of
Θ⊆ [n] with |Θ| � θ and get their shares. Let
PΘ: � Pc1

, . . . , Pcθ
  denote the subset of Pn, the adversary

A chooses to corrupt in consecutive rounds. 0e honest
parties are denoted by P[n]\Θ. Assume that V knows the total
number of all provers. Each Pci

∈ PΘ disguises himself as the
honest provers Pj ∈ P[n]\Θ to follow the interactive protocol
with V, where i ∈ [θ], j ∈ [n]\Θ. In StepP1, Pci

chooses a
random element rci

∈ Fp, calculates xci
� grci (mod q), and

sends xci
to V; in StepV1, V returns a challenge z ∈ 1, 2{ } to

Pci
; in StepP2, after receiving the challenge z, Pci

randomly
chooses yci

from Fp, since he does not know the secret key sci

of honest Pj; and in StepV2, V computes

g
y1+y2+···+yn B

z
0 � 

n

j�1
xi(mod q) (15)

with probability (1/q). 0at is, the corrupted provers
Pc1

, . . . , Pcθ
choose yc1

, . . . , ycθ
, respectively, such that



θ

i�1
yci

� 
θ

i�1
rci

− 
θ

i�1
zdci

sci
(modp), (16)

with probability (1/q). If P[n]\Θ∪PΘ and V sequentially
perform the PROTOCOL 2 for K times, then the success
probability of the following equality

g
y1+y2+···+yn B

z
0 � 

n

j�1
xj(mod q) (17)

falls to (1/qK).
In the third setting, the verifier V is not certain of the

number of all provers. In this case, θ corrupted provers
pretend to be ](≠θ) honest provers. Based on the proof of
the second setting, we can prove that the prover set
P[n]\Θ ∪ Pc1

, . . . , Pc]
  shares a secret s such that

B0 � gs(mod q) with the success probability (1/qK).
In light of the foregoing, for all sufficiently large K, the

probability (1/qK) is negligible. Consequently, the property
of soundness is matched.

4.1.3. Zero-Knowledge. To prove the property of zero-
knowledge, we consider passive scenarios according to the
power of the adversary.

A passive verifier V does not randomly choose zη in the
ηth time when running the protocol. 0us, he can use some
1, 2{ }-valued function f to compute zη in deterministic
polynomial time [39]. 0erefore, we define
f(p, q, g, B0, G, h, Vη− 1, x1,η, . . . , xn,η) � zη, where h is a
secret input; Vη− 1 denotes all data viewed when V executes
the protocol in the η − 1-th time; x1,η, . . . , xn,η denotes a
message sent toV in StepP1 when running PROTOCOL 2 in
the ηth time. Suppose that a simulator M has been con-
structed with the input p, q, g, h, B0, andG and has

successfully simulated PROTOCOL 2 η − 1 times, then M

will simulate the ηth time according to the following
program:

DO FOREVER
zη′: � a random number of 1, 2{ }

yi,η: � a random number of Fp for i ∈ [n]

di,η: � a random number of Fp for i ∈ [n − 1]

si,η: � a random number of Fp for i ∈ [n − 1]

COMPUTE ri,η: � yi,η + zη′di,ηsi,η(modp), xi,η: �

gri,η(mod q)

for i ∈ [n − 1], and xn,η � (gy1,η+y2,η+···+yn,η

B
zη′
0 /

n− 1
i�1 xi,η)(mod q)

IF zη′ � f(p, q, g, h, B0, Vη− 1, x1,η, . . . , xn,η) THEN
OUTPUT

(x1,η, x2,η, . . . , xn,η, zη′, y1,η, y2,η, . . . , yn,η) and HALT
ELSE

GO back to the first step and repeat again
END DO

Let (P1, . . . , Pn, V) be an interactive protocol performed
among (P1, . . . , Pn) and V. Suppose that (P1, . . . , Pn, V)

have been executed m times. According to the description
of Vη− 1, Vη is denoted by (x1,1, · · · , xn,1, z1, y1,1
, . . . , yn,1), . . . , (x1,η, . . . , xn,η, zη, y1,η, . . . , yn,η), and the
mth output is denoted by OutVm

� View
(P1(c1s1), . . . , Pn(cnsn)), V(h) (p, q, g, B0, G) � Vm (if
m � 0, OutV0

denotes an empty set). Suppose that the output
of M for m times after the simulation is denoted by
M(p, q, g, h, B0, G) � (x1,1, . . . , xn,1, z1′, y1,1, . . . , yn,1), . . . ,

(x1,m, . . . , xn,m, zm
′, y1,m, . . . , yn,m).

According to Definition 15, we can determine whether
ensembles M(p, q, g, h, B0, G) and View (P1(c1s1), . . . ,

Pn(cnsn)), V(h)} are computational indistinguishability, and
then the protocol which we constructed is zero-knowledge.
Hence, to prove that M(p, q, g, h, B0, G) and
View (P1(c1s1), . . . , Pn(cnsn)), V(h) (p, q, g, B0, G) are
computational indistinguishability, we use a mathematical
induction method to perform the following steps:

(1) Let the probability of OutVη
be denoted by PMV,η if

OutVη
⊆M(p, q, g, B0, G) and the probability of

OutVη
be denoted by PrP1 ,...,Pn,V,η if OutVη

⊆View (P1(d1s1),... ,Pn(dnsn)),V(h) (p,q,g,B0,G).

(2) When η � 0, in the initial state of interactive proof
system (P1, . . . , Pn, V) there is PrMV,0 � PrP1 ,...,Pn,V,0
and |PrMV,0 − PrP1 ,...,Pn,V,0|< 3F5, where ε> 0 is an
arbitrarily small constant.

(3) In the η − 1th operation, we assume that |PrMV,η− 1 −

PrP1 ,...,Pn,V,η− 1|< ε is satisfied for each η≥ 1.
(4) In the ηth operation, we consider two models:
(I) In the real model, we consider (P1, . . . , Pn, V).

Assume that V chooses zη � 1 with probability ϑ;
then, V chooses zη � 2 with probability 1 − ϑ. Every
prover Pi ∈ Pn selects ri ∈ Fp with probability (1/p)

for i ∈ [n]. Additionally, the probability of yi,η is
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(1/p) since yi,η is computed from ri, where i ∈ [n].
0erefore, the probability of all messages that V
viewed in the ηth time, i.e., (x1,η, . . . ,

xn,η, zη, y1,η, . . . , yn,η) is (ϑ/pn) when zη � 1 and
((1 − ϑ)/pn) otherwise when zη � 2.

(II) In the ideal model, we consider the simulator M. In
the ηth simulation, M takes as input
p, q, g, h, B0, andG and chooses y1,η, y2,η, . . . ,

yn,η ∈ Fp with a probability of (1/pn). Later, V and
M choose zη � 1 and zη′ � 1 with a probability of
(ϑ/2), respectively. Meanwhile, V and M choose
zη � 2 and zη′ � 2 with the probability of (1 − ϑ/2),
respectively. Suppose that zη � zη′ � 1 or zη � zη′ �
2; then, M outputs the effective output (x1,η, . . . ,

xn,η, tη′, y1,η, . . . , yn,η) in the ηth time with proba-
bility (1/2). Hence, the probability of (x1,η, . . . ,

xn,η, 1, y1,η, . . . , yn,η) as an effective output of M is
ϑ

pn
·
1
2

+
ϑ
pn

·
1
22

+
ϑ

pn
·
1
23

+ · · ·

�
1
2

·
ϑ

pn
1 +

1
2

+ · · ·  �
ϑ
pn

,

(18)

and the probability of (x1,η, . . . , xn,η, 2, y1,η, . . . , yn,η) as
an effective output of M is

1 − ϑ
pn

·
1
2

+
1 − ϑ

pn
·
1
22

+
1 − ϑ

pn
·
1
23

+ · · ·

�
1
2

·
1 − ϑ

pn
1 +

1
2

+ · · · 

�
1 − ϑ

pn
.

(19)

In fact, zη and zη′, y1,η, . . . , yn,η are selected randomly
and independently, the case z � 1 yields that
PrP1 ,...,Prn,V,η � PP1 ,...,Pn,V,η− 1 · (ϑ/pn), and z � 2 results in
PrP1 ,...,Prn,V,η � PrP1 ,...,Pn,V,η− 1 · (1 − ϑ/pn).

Suppose in the (η − 1)th time that |PrMV,η− 1−

PrP1 ,P2 ,...,Pn,V,η− 1|< ε; then, in the ηth time, we have

PrMV,η − PrP1 ,...,Pn,V,η





� PrP1 ,...,Pn,V,η− 1 ·
ϑ

pn
− PrP1 ,...,Pn,V,η− 1 ·

1 − ϑ
pn





� PrMV,η− 1 − PrP1 ,...,Pn,V,η− 1



 ·
max ϑ, 1 − ϑ{ }

pn

� ε ·
max ϑ, 1 − ϑ{ }

pn
.

(20)

0is is a negligible amount; thus, we know that
M(p, q, g, h, B0, G) and View (P1(d1s1), . . . ,

P1(dnsn)), V(h)}(p, q, g, h, B0, G) are computationally
indistinguishable.

4.2. Feorems from PROTOCOL 2

Theorem 1. PROTOCOL 2 is an n-prover computational
zero-knowledge proof system.

Proof. According to the context of Section 4.1 and Defi-
nition 15, PROTOCOL 2 satisfies completeness, soundness,
and zero-knowledge. Consequently, PROTOCOL 2 is an
n-prover computational zero-knowledge proof system. □

Theorem 2. Let C ⊂ Fn+1
q be linear [n + 1, k] code. An ad-

versaryA is l-bounded. Fe corruption parties chosen byA is
PΘ: � Pc1

, . . . , Pcθ
 , where Θ is a subset of [n] with |Θ| � θ.

Let f denote the family of leakage functions (f1, . . . , fn),
where fi: Fq⟶ 0, 1{ }li with i∈Θ ≤ l. Suppose
l: � max li i∈Θ and constl � (2l sin(π/2l)/q sin(π/q))< 1
(when 2l < q). If li <l, then add “0” on the left of the codeword
fi(di) such that the length of codeword is equal to the length
of l. Fere is

f(C){ }≈ ϵ f Un+1(  , (21)

where Un+1 is the uniform distribution on Fn+1
q and ϵ �

(1/2)qn+1− kl
k
. Fat is,

fi di(  i∈[n]: d0
���� d ⟵C  ≈ ϵ fi di(  i∈[n]: d0

����d ⟵Un+1 .

(22)

Proof. Our secret-sharing scheme is a linear (also additive)
secret-sharing scheme, and the detailed proof is similar to
0eorem 4.5 in [24]. □

Theorem 3. Under the bounded-leakage model, PROTO-
COL 2 is an (θ, l, ϵ)-LRSS.

Proof. Let C be an [n + 1, n] linear code. 0e secret s ∈ Fq is
shared into n shares s � (s1, . . . , sn) such that s � 

n
i�1 si. Let

f � (f1, . . . , fn) be family of leakage functions where
fi: Fq⟶ 0, 1{ }li , l: � maxi∈[n] li . For 0 ∈ Fq, Share(0) is
uniformly distributed on C and sample z⟵ Share(0). Note
that e � (1, 0, . . . , 0) and compute s · e � (s, 0, . . . , 0). 0en,
we can obtain the coset of Share(0) for the distribution
Share(s). For any secret s ∈ F q, there is

f(Share(s)) � f(Share(0) + se) � f′(Share(0)), (23)

where f′ � (f1′, f2′, . . . , fn
′) with f1′(x) � f1(z + s) and

fi
′ � fi, for i � 2, . . . , n.
For the uniform distrubtion U[n+1] over C,

f U[n+1]  � f′ U[n+1] − se . (24)

0en, statistical distance between f′(Share(0))

and f′ (U[n+1] − se) is |f′(Share(0)) − f′(U[n+1] − se)|SD≤
(1/2)ql

n
. According to the triangle inequality |A − B|≤ |A −

X| + |X − B| and two secrets s(1), s(2) ∈ Fq, there is
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f Share s
(1)

   − f Share s
(2)

  


SD

≤ f Share s
(1)

   − f U[n+1] 
 SD



+ |f U[n+1]  − f Share s
(2)

  
SD

≤ ql
n
.

(25)

Let the leakage protocol Leak is denoted by
LeakΘ,f(s) � (sΘ, f(‖sΘ‖s[n]\Θ)). 0en,

LeakΘ,f(s): s←Share s
(1)

   ≈ ε LeakΘ,f(s): s⟵Share s
(2)

  ,

(26)

where ε � (1/2)ql
n
. □

5. Group Identification via PROTOCOL 2

According to Def. 17 in Section 2.3 and PROTOCOL 2, we
can construct a group identification protocol GID-scheme
with the following properties: the valid identities can be
believed by the verifier only for the qualified groupmembers,
not the unqualified members; the verifier gains nothing
other than believing that the qualified members have valid
identities. Let Pn � P1, . . . , Pn  be a group set, and let
(Pn, V) be an n-prover interactive proof system. 0e GID-
scheme ParGen,KeyGen, Pn, V  can be constructed by
Table 2.

According to the work presented in [37, 40], our GID-
scheme is secure against (classical) passive attacks.

Theorem 4. Let (ParGen,KeyGen, Pn, V) be a GID-scheme
and R � (pk, sk) | sk � s0 ∪ si 

n

i�1, pk � pk0 ∪ pki �

gskimod q}n
i�1} be a hard relation with key generator KeyGen.

We write (Pn, V) to denote the prover set and the verifier in a
-protocol for R with 2-bit challenges. Suppose that the
-protocol is complete, 2-special sound, and honest verifier
zero-knowledge. Fen, our GID-scheme is secure against
emulation under active attacks.

Proof. If we write (pk, sk)⟵KeyGen by the notation
(x, y)⟵K(1λ) and the transcript (xi, t, yi) by the notation
(αi, βi, ci), then the  − protocol and our GID-scheme are
equal, where i ∈ [n]. For details, see 0eorem 5 of [41].

In the bounded-leakage model, we have the following
theorem. □

Theorem 5. Under the discrete logarithm assumption, our
GID-scheme is actively secure under pre-emulation attacks
with leakage l � (n − 1)log(q) − λ⩾(1 − (2/n))|sk| bits. It is
secure against an arbitrary time leakage attack with l∗ �

(1/2)l bits.

Proof. 0rough the contradiction assumption, in the pre-
emulation leakage attack game IDλ

prelA
∗ there is an adver-

sary A∗ with a nonnegligible advantage. 0en, we need to
detect two different secret keys sk and sk

∗ for a public key
pk, for the randomly chosen params∗, since params is not
known. In fact, in the test phase, M randomly chooses the
(pk, tsk) key pair and utilizes sk to model the leakage oracle

Oλ,l

sk
(·) and an honest prover oracle P for the adversary A∗.

Later, in the emulation phase, Mperforms A∗ twice (for
attack games IDλ

prel
A∗, IDλ

arbl
A∗), with two distinct ran-

domly chosen challenges β, β∗. Because A∗ generates two
valid transcripts (α, β, c), (α, β∗, c) with a nonnegligible
advantage, M can recover or find a secret key sk

∗ by using
these two transcripts, according to the 2-special soundness
property of the -protocol.

We now need to analyze the probability of sk � sk
∗.

Table 3 presents three experiments that are performed by the
adversary A∗. In experiment Ext0, A

∗ obtains pk and can
access the oracle Oλ,l

sk
(·), P(pk, tsk); in experiment Ext1, A

∗

obtains pk and only accesses the oracle P(pk, tsk); in ex-
periment Ext2, A∗ only obtains pk. According to the con-
struction of Ext0,Ext1, and Ext2, we obtain the following
inequality:

H∞ sk |Ext0 ≥ H∞ sk |Ext1  − l

≥ H∞ sk |Ext2  − l � H∞(sk | pk) − l

≥ (n − 1)log(q) − l≥ λ.

(27)

where H∞(X) � − log(maxx∈XPrX(x)) denotes the mini-
entropy of a random variable X with probability distribution
PrX over X, and H∞(X | Ext) � − log(maxAPrAExt(·) (x))

denotes the (average-) conditional mini-entropy of a ran-
dom variable X conditioned on experiment Ext. 0e detailed
proof of equation (27) can be found in [20]. Due to the above
mentioned equation, M outputs sk � sk

∗ with the upper
bound of probability 2− λ. 0erefore, M generates two dif-
ferent secure keys sk and sk

∗ with a nonnegligible advantage.
For an arbitrary time leakage game IDλ

arbl(A), in the
emulation phase, M can access the leakage oracle with l∗

bits. Based on two distinct challenges, M performs the
emulation phase twice; thus, the leakage bit is 2l∗. Conse-
quently, only l∗ � (1/2)l bits of arbitrary time leakage can be
handled. □

5.1. Comparisons with Other Schemes. In this section, we
compare our ID-scheme with several previous works.
According to the construction of the GID-schemes, we sum-
marize the main parameters in Table 4. 0e first column
presents the compared related works. 0e second column
indicates the size of the public parameters shared by all parties.
0e third and fourth columns indicate the size of the public key
and secret key, respectively.0e fifth column denotes the size of
each party’ s communication complexity. 0e last column
shows the size of allowed leakage l, which wasmeasured in bits.

0e comparison of schemes in Table 4 is summaried as
follows:

0e Okamatoλm scheme in [42] uses m generators and
can tolerate the leakage bit l � (1 − (1/m))|sk|, where λ
denotes the security parameter. 0is scheme only
provides an adequate method for relative
leakage1 − (1/m), not for large absolute leakage l, and it
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does not provide a proportional increase in commu-
nication complexity.
As an extension of the Okamatoλm scheme, the re-
searchers in [20] propose two schemes (DirProdλn,m,t

and ComDirProdλn,m,t), which add two additional pa-
rameters n (the number of Okamatoλm key pairs stored)
and t (≈O(mλ), the number of Okamatoλm keys used).
DirProdλn,m,t and ComDirProdλn,m,t can tolerate leakage
bits (1 − (1/m) − O(t/λ))|sk| and (1 − (1/m) − O

(t/λ))|sk|, respectively.
In [38], the authors constructed a leakproof SSS by
using threshold SSS, and they also proved that the
master secret s can be shared an arbitrary number of
times. However, their schemes do not consider the
security of the scenario where there is some infor-
mation leaked.

Local LRLSS [24] provides a local leakage-resilience of
(additive or (n, t)-Shamir) SSS over field Fp (p is a large
prime), which is secure under local leakage attacks
when log(p/4) bits are leaked from every share.
Inspired by the work of [38], in our scheme, we
construct a secret-sharing scheme by using linear codes
for realizing a access structure, in which the master key
can be shared as many times as designed in the random
oracle model. Moreover, our scheme is (θ, l, ϵ)-LRSS
under the bounded-leakage model. Based on our LRSS
scheme, we construct a GID-scheme, which is proven
to be leakage-resilient under the attacks IDλ

prel(A) and
IDλ

arbl(A).

6. Conclusions and Future Work

We proposed a secret-sharing scheme that realized access
structure based on linear codes. According to the definitions
of zero-knowledge proof system and security model, we
proved that our protocol is a multiprover zero-knowledge
proof system in the random oracle model. Our protocol is
also leakage-resilient secret-sharing scheme (LRSS) in the
bounded-leakage model. In our LRSS, the security is
guaranteed even if the adversary learns leakage information
is bounded by l bits.

Moreover, we presented a GID-scheme from our LRSS
scheme, and it is leakage-resilient under the leakage attacks
IDλ

prel(A) and IDλ
arbl(A) in the bounded-leakage model. In

our leakage-resilient GID-scheme, any authorized party sets
can prove to the verifier that they share the secret key
without leaking any information about their individual
shares to adversary and can guarantee security even though l
bits are retrieved by the malicious adversary; any authorized
parties can prove themselves to keep the corresponding valid
secret share.

In future work, we want to construct a practical dynamic
secret-sharing scheme. In this dynamic secret-sharing
scheme, there are more than one access structure, and we
want to enable only one of them to be active to reconstruct
the predefined secret.

Data Availability

No data were used to support this study.

Table 3: Experiments performed by the adversary A∗.

Ext0 Ext1 Ext2

(i) A∗ holds the public key pk

(ii) A∗ allows access to the leakage oracle Oλ,l

sk
(·) and an

honest prover oracle P(pk, tsk)

(i) A∗ holds the public key pk

(ii) A∗ only allows access to the honest
prover oracle P(pk, tsk)

(i)A∗ only obtains access to the
public key pk

Table 4: Comparison of our scheme with other schemes.

Scheme params pk sk Comm. Leakage l bits
Okamatoλm [42] m 1 m m + O(1) ≈(1 − (1/m))|sk|

[20] DirProdλn,m,t m 1 mn O(tm) ≈(1 − (1/m) − O(t/λ))|sk|

ComDirProdλn,m,t m 1 mn m + O(1) ≈(1 − (1/m) − O(t/λ))|sk|

LpSS [38] n 1 n O(n logp) �0
Local LRLSS [24] n 1 n O(n) �log(p/4)

Our scheme n 1 n O(n log q) ≈(1 − (2/n))|sk|

Table 2: Our GID-scheme.

– params⟵ParGen(1λ): perform the Initialization of PROTOCOL 2 in Section 3, and set params � (B0, p, q, g, G)

(i) (pk, sk)⟵KeyGen: execute the distribution protocol of PROTOCOL 2 in Section 3, and set sk � s0 ∪ si 
n

i�1 and
pk � pk0 ∪ pki � gskimod q 

n

i�1, where sk � s � s0, pk0 � gs0mod q and ski � si for i ∈ [n]

(ii) P, V: the PPT turning machines P, V run the following protocol:
Step P1: for i ∈ [n], every Pi chooses ri ∈ Fq, and sends αi � grimod q to V
Step V1: choose a random number βi ∈ 1, 2{ } and send the challenge βi to every Pi. Set βi � z, for any i, j ∈ [n]

Step P2: for i ∈ [n], every Pi computes ci � ri − zdiski mod p and sends ci to V
Step V2: for i ∈ [n], V accepts the identification of Pi if and only if the transcript (αi, βi, ci) is satisfied OutV(αi, βi, ci)�

? 1
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