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-e preferential attachment mechanism that forms scale-free network cannot display assortativity, i.e., the degree of one node is
positively correlated with that of their neighbors in the network. Given the attributes of network nodes, a cultural trait-matching
mechanism is further introduced in this paper. Both theoretical analysis and simulation results indicate that the higher selection
probability of such mechanism, the more obvious the assortativity is shown in networks. Further, the degree of nodes presents a
positive logarithm correlation with that of adjacent ones. Finally, this study discusses the theoretical and practical significances of
the introduction of such a cultural trait-matching mechanism.

1. Introduction

-e concept of assortativity was introduced by Newman in
2002 [1]. Note that Newman [1] put forward assortativity in
the context of social networks rather, some scholars in-
vestigated assortative mating, characterized as “self-seeking
like,” and assortation in broader contexts beyond networks
(see Schwartz’s work [2] for a review), such as mate selection
strategies, evolution of sex, choice of pets, genetic algo-
rithms, and emergence and maintenance of social cooper-
ation. In this study, we limit the implications of assortativity
to social networks [1]. Namely, the high-degree nodes in
social networks are, on average, connected to other nodes
with high degree, and low degree nodes are, on average,
connected to other nodes with low degree [1, 3, 4]. In short,
similarity breeds connection [5]. Henceforth, assortative
behaviors have been widely quantified and mimicked in a
variety of real-world networks, e.g., Internet, World-Wide
Web, Facebook, physics coauthorship, mathematics coau-
thorship, company directors, nand eutral network (see [6]
for a review). Meanwhile, scale-free networks, given by
Barabasi and Albert [7, 8], are formed by the preferential
attachment mechanism. However, Newman proved that the

assortativity coefficient of a network formed by preferential
attachment mechanism tended to be zero when the network
reached a very large scale [1]. Such a phenomenon is not
consistent with the properties of real-life social networks.
-erefore, a lot of scholars have investigated the issues as to
the formation and characteristics of assortativity [5, 9–19].
Yet, our understanding of the role of cultural characteristics
in the formation of social network assortativity is fairly
limited.

With respect to the formation of assortativity, Newman
and Park [9] introduced a network model based on the
formation mechanism of community networks. Using this
model, they proved that since a social network could be
divided into communities, community structure in turn
resulted in positive correlation of node degree. In contrast,
nonsocial networks did not usually present such structures.
-ey therefore argued that the assortativity of social net-
works, which could not be found in nonsocial networks, may
be attributable to community structure. Catanzaroa et al.
[10, 11] established a mathematical model to reproduce the
assortativity of collaborative networks between scientists
specializing in condensed matter physics, wherein the
networks were regarded as being derived from two
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mechanisms. One is the preferential attachment mechanism
of the BA model, and the other is the mechanism allowing
for the connection probability being determined by the
similarity of the degrees of two nodes in embordering two
unconnected nodes. Guo et al. [12] developed a combined
(scale-free small-world) network with adjustable assorta-
tivity coefficients, which overcame the defect of the assor-
tativity of a network tending to zero when the network scale
became large. Vázquez [14] asserted that the local-world
connection mechanism was important in the formation of
degree correlation. Xulvi-Brunet and Sokolov [15] proposed
an algorithm that could produce arbitrary sized assortativity
coefficients to explore the assortativity in networks. -ey
further applied this algorithm to the BA model and con-
cluded that the network assortativity positively correlated
with the shortest network path.

Rather than the formation of assortativity, some scholars
explored the characteristics of assortativity. For example,
existing research of assortativity mainly focused on one
dimension of attributes at a time, Block and Grund [16],
instead, investigated multidimensional assortativity (also
called as homophily in the study) in the context of network
dynamics. -ey found that main effects for assortativity on
various dimensions were positive, while the interaction of
assortativity effects was negative. Peel et al. [17] argued that
the distribution of assortativity in many real-world networks
was skewed, overdispersed, and multimodal. Similarly,
Piraveenan et al. [18] introduced a measure of local assor-
tativity and found the various distribution of local assor-
tativity in biological, social, and technological networks.
Further, based on scalar assortativity, the extension of
assortativity proposed by Newman [3], Piraveenan et al. [19]
found scalar assortativity carried information about network
dynamics.

Recent literature reviewed above, however, is mainly
from the perspective of physical evolution mechanisms and
physical description, and limited attention has been paid to
the role of social attributes of nodes in network assorta-
tivity. Notably, a recent study of Cantwell and Newman [4]
indicated that assortativity captured only the average
mixing behavior of nodes, neglecting individual difference
in networks. -ey introduced a generative stochastic model
to unveil the individual variation in mixing patterns,
further argued that traditional average measures of
assortative mixing offer an incomplete description of
network structure. In line with this argument, Altenburger
and Ugander [20] concentrated on the variability of
assortativity. In the study of Facebook membership, they
found that some individuals with extreme preferences for a
particular attribute possibly unrelated to their own attri-
bute, which was called as monophily. -erefore, the in-
dividual attributes of nodes should be emphasized in
assortativity research. Actually, assortativity have been
applied to some social attributes of nodes, including race
[21], language [22], age [23], nationality [24], and social
status [25]. As an example, employing sociological theory,
Postmes et al. [25] pointed out that, although ordinary
people expected to establish connections with celebrities or
industry elites, these celebrities or industry elites preferred

to communicate or cooperate with those of perceived equal
social standing. Such phenomenon resulted in the positive
correlation of node degree. Hence, positive degree corre-
lation could only possibly be observed in such competitive
scenarios. In contrast, online social networks, which broke
competitive and social class, showed disassortativity [25].
Furthermore, Postmes et al. [25] speculated that positive
correlation also depended on the irreplaceability of two
collaborative parties, i.e., the research subject and
knowledge background of researchers or the performing
style of entertainers. Meanwhile, Liu et al. [13] designed a
weighted network model by integrating the mutual selec-
tion mechanism between nodes and the self-learning
mechanism. -ey proposed that, in the case of high
probability of self-learning and low value of mutual se-
lection, the assortativity of social networks emerged.

On the other hand, empirical research also suggested
that a social network was composed of individuals with
various cultural characteristics. -ese individuals built re-
lationships according to own cultural characteristics. -e
relationships were thus developed into a network group with
different structures and characteristics [5, 26].

Above two lines of arguments indicate that relation-
ships between social individuals are not established
completely in accordance with the preferential attachment
mechanism. In other words, social individuals are not
always prone to select nodes with higher connection
degrees. Instead, they refer to the mechanisms that in-
cluding more social characteristic, for example, cultural
characteristics [27]. In sum, this study constructs a social
network using cultural characteristic matching as its
connection mechanism. Moreover, it explains the assor-
tativity of a social network from the perspective of social
attributes.

2. A New Network Model with Cultural Trait-
Matching Mechanism

2.1. Cultural Traits and Features. Culture traits and features
are described using the social individual culture charac-
terizations proposed by Axelrod [27].

(1) Cultural traits refer to the society’s cultural symbols
as selected by individuals. For example, social in-
dividuals can select one language (e.g., Chinese,
English, and Korean) as their communication tool;
each language is thus an independent cultural trait.

(2) Cultural features are abstract concepts of different
cultural traits of individuals. For example, Chinese,
English, and Korean can be abstractly defined as
languages; Buddhism, Taoism, and Christianity can
be defined as religious beliefs [28]. In turn, language
is a cultural feature, and individuals can choose
Chinese, English, or Korean as their own cultural
traits. As noted by Axelrod [27], “. . .it describes a
culture as a list of features or dimensions of culture.
For each feature there is a set of traits, which are the
alternative values the feature may have.”
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2.2.ModelAssumption. Social individuals are heterogeneous
[29, 30]. Merely from the viewpoint of culture, each social
individual has his/her different cultural traits. -ese specific
cultural traits lead to the differences between social indi-
viduals [27].

Connections of social individuals are built by two se-
lection mechanisms. One is the preferential attachment
mechanism [31], in which individuals mainly focus on the
degree of nodes being connected. To be concrete, they are
more concerned about the influences of target connection
nodes, rather than whether or not the cultural traits of the
target node match theirs. -is phenomenon is widespread.
In many cases, for instance, the connections between social
individuals are a result of blind follow or demand on the
influences of the other party, such as power or reputation.
-e other is the cultural trait-matching mechanism. With
this mechanism, individuals are more likely to connect with
nodes bearing higher matching degree with their cultural
features [5, 25, 27]. -is phenomenon is also common in
practice. For example, amongst three people, two people
who share a love of calligraphy are more likely to establish a
connection and further become friends.

2.3. Network Formation. Employing Axelrod’s cultural
diffusion model [27], each individual or agent i has its
cultural features defined as a vector of F; each feature takes
its integer values from a range of q possible cultural traits
[28]. -us, qF different cultural trait vectors are obtained
[32, 33]. To be concrete, the formation mode of cultural
features by individual i is represented as vector
ci � (αi1, αi2, . . . , αiF), where αi,f ∈ Cf, i � 1, 2, . . . , N;

f � 1, 2, . . . , F; Cf � 1, 2, 3, . . . , q − 1, q , |Cf| � q [33].-e
formation steps of networks are as follows:

(1) Initialize a fully connected network with m0 nodes,
and assign a cultural feature vector for each node.

(2) At each time step t, a new node is added and
connected with nodes available in the network. -is
new node has a cultural feature vector ct and m edges
(m≤m0) [7, 8].

(3) -e new node selects a preferential attachment
mechanism with the probability p and adopts a cultural
trait-matching connection mechanism according to
probability 1 − p. If the new node chooses a preferential
attachment mechanism, it is connected to the existing
node i with the probability in equation (1), where j
denotes arbitrary node in the network except the newly
introduced one [31]. Besides, if the new node chooses a
cultural trait-matching connection mechanism, it is
necessary to firstly calculate the cultural trait-matching
degree between the new node and the existing one i by
using equation (2). Further, the new node is connected
to the nodes in the network with the probability in
equation (3):

 ki(  �
ki

jkj

, (1)

Mti � 
F

f�1
λαtf,αif

,

λαtf,αif
�

1, if αtf � αif,

0, if αtf ≠ αif,


(2)

P Mti(  �
Mti

jMtj

. (3)

(4) Repeat steps (2) and (3) until the network scale
reaches N.

3. Theoretical Analysis

3.1. Degree Distribution. At each time step, a node with a
cultural feature vector enters the network. Assuming that the
elements in Cf are selected with equal probability 1/q, not
only within a cultural feature Cf but also between across
different cultural feature sets [32]. As a consequence, a
selection cycle emerges, i.e., T � qF, it can be considered that
at each time T, and all cultural feature vectors are uniformly
selected once and enter the network along with the asso-
ciated nodes [32, 33]. -erefore, at time t, when a new node
enters the network, the cultural trait-matching degree be-
tween the original node and this new one develops from
completely mismatching, matching only one culture feature,
to full matching. -e matching degree can be numerically
represented as [0, (1/F), (2/F), . . . , 1] [27, 28]. Accordingly,
at time t, the sum of matching degree between original nodes
and the new node is S � (((m0 + t))/qF) × s0, where s0 can be
expressed by equation (4) [28]. It refers to the theoretical
sum of matching degree in one selection cycle.-ematching
degree of the new node with original nodes in the network is
set as a random, time independent variable:

s0 � C
0
F(q − 1)

F
× 0 + C

1
F(q − 1)

F− 1
×
1
F

+ · · · + C
F
F(q − 1)

F− F
× 1.

(4)

According to mean field theory and the k continuum
hypothesis [7, 8], the dynamical equation of the degree ki of
node i can be obtained:

zki

zt
� A ki( ,  ki(  � 

1
ki(  + 

2
ki( , (5)

where the value of A is m � 2. 1(ki) and 2(ki) are the
probabilities of preferential attachment and culture trait
matching, respectively:

zki

zt
� m p

ki

2mt + m0
+(1 − p)

Lq
F

m0 + t( s0
 . (6)
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where L is the matching degree of new added node with its
arbitrary original node. -e expected value of L is E(L) �

((C0
F(q − 1)F/qF) × 0) + ((C1

F(q − 1)F− 1/qF) × (1/F)) + · · · +

((CF
F(q − 1)F− F/qF) × 1), thus

zki

zt
≈ p

ki

2t
+(1 − p)

mLq
F

ts0
. (7)

Let G � (LqF/s0), the degree of node i at time t can be
calculated by equation (7):

ki(t) � m +
2m(1 − p)G

p
 

t

ti

 

(p/2)

−
2m(1 − p)G

p
. (8)

According to the definition of degree distribution,

P(k, t) �
zP ki(t)< k 

zk
. (9)

Substituting equation (8) into equation (9), we obtain

P(k, t) �
2

pm + 2m(1 − p)G

2m(1 − p)G + pk

pm + 2m(1 − p)G
 

(− (2+P)/P)

.

(10)

(1) When p � 1, such a model completely transforms
into the BAmodel, in which the power law index of k
is c(p) � ((2 + p)/p) � 3.

(2) When p � 0,

P(k, t)p�0 � lim
pim

2
mp + 2m(1 − p)G

2m(1 − p)G + kp

mp + 2m(1 − p)G
 

− (2/p)

.

(11)

Let [((2m(1 − p)G + kp)/(mp + 2m(1 − p)G))] − (2/p) �

V,

lim
p⟶i

lnV � − lim
p⟶i

ln [((2m(1 − p)G + kp)/(pm + 2m(1 − p)G))]2

p
 

p

� lim
pim

[((mp + 2m(1 − p)G)/(2m(1 − p)G + kp))]
2

[(2m(1 − p)G + kp)/(mp + 2m(1 − p)G)]
2

 
p

1
.

(12)

By solving equation (12), we can find

V �
m − k

2m
2
G
2. (13)

Hence, when p � 0, the degree distribution is

P(k, t)p�0 �
1

mG
e

− k/2m2G2( )+ 1/2mG2( ). (14)

3.2. Degree Correlation. Let δ � (p/2) and Zs(t) is the sum
of the degrees of adjacent nodes of node s. For arbitrary node
j in adjacent node set ϑ(s) of node s, there is

Zs(t) � 
j∈ϑ(s)

kj(t).
(15)

-us, the mean degree of adjacent nodes of node s is

knn(s) �
Zs(t)

ks(t)
. (16)

-e rate equation of Zs(t) [34] is

dZs( t )

dt
� m m 

s

( k{ }, t)⎡⎣ ⎤⎦ + m 
j∈ϑ( s )


j

( k{ }, t). (17)

In equations (15), (16), and (17),
k{ } � k1(t), k2(t), . . . , kt− 1(t) . -e first section on right-
hand side of equation (17) denotes that, when new node t is
directly connected to node s, the degree of adjacent nodes of
node s increases by m units. -e second section on the right-
hand side of equation (17) delineates that, when new node t

is directly connected with the adjacent nodes of node s, the
degree of adjacent nodes of node s increases by one unit.
-erefore, to solve the rate equation, the boundary condi-
tions should be obtained, i.e., the sum of degrees for all the
adjacent nodes of node s at time s:

Zs(s) � m 
s

j�1


j

( k{ }, s) kj(s) + 1 . (18)

-is implies that, at time s, new node s is connected to an
available node with degree of kj(s) in the network.
According to this analysis, the probability of node s being
connected to the available node is


s

( k{ }, t) � p
ki

2mt + m0
+(1 − p)

Lq
F

m0 + t( s0
. (19)

Substituting equation (19) into the rate equation (17), we
obtain
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dZs(t)

dt
� m

2 pks(t)

2mt + m0
+(1 − p)

G

m0 + t
 

+ m 
j∈ϑ(s)

pkj(t)

2mt + m0
+(1 − p)

G

m0 + t
 

≈ δ
(m + κ)ks(t) + κm

t
+ δ

Zs(t)

t
,

(20)

where κ � (2mG(1 − p)/p). By solving the rate equation, the
general solution of Zs(t) becomes

Zs(t) � B0(s)t
δ

+ β(m + κ)
2 t

s
 

δ
ln t + κ2. (21)

where B0 is given by boundary conditions:

Zs(s) � m 
s

j�1
p

kj(s)

2m + m0( t
+(1 − p)

G

m0 + t
  kj(s) + 1 

� δκ + 2mδ(κ + 1) +
δ
s



s

j�1
k
2
j(s).

(22)

Substituting kj(s) � (m + κ)(s/j)(p/2) − κ into equation
(22) gives

Zs(s) � m(1 − κ) + δ(m + κ)
2
s
2δ− 1



s

j�1
j

− 2δ
. (23)

(1) When p � 1, κ � 0, and c � 3 [31], the result indi-
cates that the network evolved from the model is a
scale-free network. Ignoring the fact that the limit is
zero when t and s are large, as independent variables,
since 

s
j�1 j− 1≃ ln s, Zs(s)≃(m2/2)ln s is obtained,

Zs(t)≃
m

2

2

�
t

s



ln s. (24)

Under the limiting condition that when k and N are
large, s is replaced by the function of s in k, we get
s � tk− (1/β)(m + a)(1/β). Using the final scale N of the
network to replace t, when t � N, according to equa-
tion (16), we find that

knn(k, N)≃
m

2
lnN. (25)

Obviously, the degree correlation of two nodes in a
scale-free network is related with the scale of net-
work but independent of the degrees of the nodes.
-us, the assortativity coefficient of a scale-free
network is zero [1].

(2) When 0<p< 1, namely, κ> 0, c> 3, we get


s
j�1 j− 2δ≃(s1− 2δ/(1 − 2δ)), thus

Zs(t)≃δ(m + κ)
2 t

s
 

δ
ln

t

s
 

+ m(1 − κ) +
δ(m + κ)

2

1 − 2δ
− κ2 

t

s
 

δ
.

(26)

-erefore, the degree correlation function of a given
node is

knn(k, N)≃[m + κ]ln
k

m + κ
. (27)

Equation (27) shows that, under these conditions, as for
any node, the mean degree function of its adjacent nodes
presents a positive logarithmic correlation with node degree
but is unrelated to network scale. -erefore, the network
displays assortativity.

4. Simulation Analysis

-e initial network in this paper includes 10 nodes with fully
connected. Besides, at each time step, we induce two edges
into the network. With MATLAB® and Monte Carlo sim-
ulation method, we use the algorithm of roulette wheel
selection to set the mode of node connection. Further, we
run the program under each condition for 10 times and get
the final results from averaging the values at each point.

4.1. Degree Distribution in Social Networks. Based on
equation (8), we depict the variation characteristics of degree
distribution under N� 5000 and different parameters in
Figure 1, where p � 1, p � 0, and p � 0.4, respectively,
describe the network degree distribution generated totally by
the preferential attachment mechanism of BA network,
wholly by the cultural trait-matching connection mecha-
nism, and by the combination of above two mechanisms
with a probability of 0.4 and 0.6. According to the char-
acteristics of degree distribution, we can see clearly that, with
the influence of cultural trait matching, the social network
generated shows a wide degree distribution and follows a
power law.

4.2. InfluencesofConnectionMechanismpon theAssortativity
of Social Networks. Figure 2 describes the variation char-
acteristics of assortativity coefficient c under different net-
work scales and selection probabilities of preferential
attachment when q � 5 and F � 6. It can be found that,
under the same network scale, the larger p is, the smaller c is;
under the same preferential attachment mechanism selec-
tion probability p, c decreases with increasing network scale
N. However, when p is small, variations in c diminish.

-e assortativity coefficient c is calculated by equation
(28) [1, 12], which is employed to analyze the causes of
variation in Figure 2, where ji and ki represent the degrees of
two nodes connected by the ith edge and M refers to the
number of edges in the network:
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c �
M

− 1
ijiki − M

− 1
i(1/2) ji + ki(  

2

M
− 1

i(1/2) j
2
i + k

2
i  − M

− 1
i(1/2) ji + ki(  

2.

(28)

Given equation (28), both the numerator and the de-
nominator minus one same term, the network assortativity
coefficient is thus determined by the relationship of jiki and
(1/2)(j2i + k2

i ), where j2i + k2
i ≥ 2jiki. Moreover, when and

only when ji � ki, j2i + k2
i � 2jiki. -erefore, it can be found

that the closer the degrees of two nodes connected by one
edge, the larger the assortativity coefficient of the network,
and vice versa.

Besides, under the preferential attachment mechanism,
new nodes are more likely to connect with nodes, which have
higher degree in the network. Such phenomenon is called as
Matthew effect (i.e., the rich get richer). Further, with the

increasing of network size, this effect is enlarged. -erefore,
a small number of hubs with very large degrees are gen-
erated. Given that a few hubs are connected with a large
amount of nodes bearing very low degrees, the network’s
assortativity coefficient is thus very low. However, when the
matching mechanism of cultural traits is introduced, the
formation of hubs by preferential attachment mechanism is
weakened. Moreover, due to the heterogeneity of cultural
traits, node selection is no longer limited to the influence of
node degree. -us, the degrees of nodes are relatively
uniform and the network’s assortativity coefficient is higher.

4.3. Simulation of Degree Correlation of Nodes. Figure 3
shows the comparison of simulated and theoretical results
of degree correlation under different parameters when
N � 5000 (L is approximated using its expected value). It can
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Figure 1: Degree distribution for different probabilities of the connection mechanism.

500 1500 2000 2500 3000 3500 4000 4500 50001000
N

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

G
am

m
a

p = 0
p = 0.1
p = 0.3

p = 0.5
p = 0.7
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be seen that the actual simulation results were basically fit
with theoretically derived results.

5. Conclusions

In this paper, we have considered the problem of assorta-
tivity in networks. Assortativity has a long history of study;
however, little research investigated its formation by con-
sidering cultural traits of nodes. To fill the gap, this study
established an assortative social network using two under-
lying mechanisms, i.e., preferential attachment and culture
traits. Results indicated that the assortativity of a network
was reduced due to the hubs formed by the preferential
attachment mechanism. Such conclusion is in line with
Newman [1]. Meanwhile, the higher the selection probability
of culture trait-matching mechanism, the higher the
assortativity of a network is. Hence, it is conclude that, to
some extent, cultural similarity of nods formats assortativity
in networks.

To further analyze the assortativity in detail, this study
theoretically investigated the degree correlation of nodes. A
conclusion was drawn that node degree presented a positive
logarithmic correlation with the mean degree of adjacent
nodes. Further, the actual simulation results were fitted with
theoretically derived results. -erefore, it is considered that
the introduction of a cultural trait-matching mechanism
interpreted the formation mechanism of network

assortativity. -is study is valuable with regards to two
aspects. On the one hand, our conclusions can be used to
explain the origin of assortativity in social networks. Al-
though it has been a common knowledge that preferential
attachment is one of core mechanisms underlying building
networks [7, 8], in the context of network assortativity, such
mechanism functions negatively. Instead, cultural similarity
forms the backbone of breeding assortativity. Hence, it is
appropriate to interpret assortativity from a sociological
perspective.

On the other hand, from the point view of cultural
characteristics of nodes, the established network model
effectively reflects the characteristics of real-life networks.
-emodel is computationally efficient, with using theMonte
Carlo simulation method, which puts applications to more
social networks. -e present study thus contributes to lit-
erature on assortativity by introducing a cultural trait-
matching mechanism.

-is study is not without its limitations. First, we only
account for assortativity by degree of the nodes in social
networks. Assortativity has, however, been applied to other
topology-related characteristics of nodes as well, such as
coreness, node betweenness, and node weight [6]. Second,
we have here considered only the cultural traits of nodes,
neglecting other sociology-related characteristics of nodes,
e.g., race, gender, and age. Future research may generalize
our method by taking account of more topology-related and
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Figure 3: Comparison of simulated and theoretical mean degree of adjacent nodes at (a) q � 2 and F � 3 and (b) q � 4 and F � 3.

Complexity 7



sociology-related features of nodes. -ird, we only inves-
tigate assortativity in the context of scale-free networks. -e
small average distance and large clustering coefficients of
small-world networks also affect the formation of assorta-
tivity [12]. Future research could discuss this topic to extend
the study of assortativity.
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