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In this paper, a stochastic delayed model is constructed to describe chronic hepatitis B infection with HBV DNA-containing
capsids. At first, the existence and uniqueness of the global positive solution are obtained. Secondly, the sufficient conditions are
derived that the solution of the stochastic system fluctuates around the disease-free equilibrium E;, and the endemic equilibrium

E*. In the end, some numerical simulations are implemented to support our analytical results.

1. Introduction

Hepatitis B virus (HBV) infection, which is a typical liver
disease, has raised great attention all over the world [1]. It is
generally divided into acute and chronic. In particular, it is
likely to suffer from other diseases such as cirrhosis of the
liver for those patients who have been sustained infected by
Hepatitis B virus [2, 3]. The essence of HBV infection lies in
the transformation of the DNA molecule of HBV [2, 4, 5].

The majority of mathematical models whose research
objects are classified as common three compartments has
been investigated by numerous scholars [6-8]. In order to
better explore the mechanism of HBV infection, Manna and
Chakrabarty for the first time came up with the model of
chronic HBV infection including HBV DNA-containing
capsids [9], and their model is given below:

dH (1) =m—aH )V (t) - uH (t),
dt
% =aH ()V (1) - 81 (1),
] (1)
dD® _ 11y~ BD(1) - 8D (1),
dt
dv(t)
= BD(t) —cV (t),

where H (t),1(t), D(t), and V (t) denote the healthy hepa-
tocytes that are not infected by the viruses, the unhealthy
hepatocytes which are infected by the viruses, intracellular
HBV DNA-containing capsids, and hepatitis B viruses, re-
spectively. Furthermore, the meaning of each parameter is
shown as follows:

(i) m stands for the constant recruitment rate of the
uninfected hepatocytes

(ii) p is the natural death rate of the uninfected
hepatocytes

(iii) o denotes the rate that these healthy hepatocytes are
infected by the viruses and infected hepatocytes
come into being

(iv) 6 is the rate of infected hepatocytes that are
eliminated and also is the natural death rate for the
capsids

(v) 1 represents the rate of production of intracellular
HBV DNA-containing capsids

(vi) f3is the rate at which the capsids are exported to the
blood, producing the virion

(vii) ¢ is the natural death rate for the viruses
These parameters all are positive constant.

In fact, the process that healthy hepatocytes are infected
by the viruses and then transformed into the infected
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hepatocyte population is not instantaneous, so the time
delay cannot be ignored. Manna and Chakrabarty [10]
considered the following model with delay:

(AHO _  sH @OV @) - uH (),
dr
O ettt -0v (- - 8100,

] (2)

dlzt(t) =nl(t) - BD(t) -6 D (1),
v )

In system (2) [10], the basic reproduction number is
R, = (afym)/ (cOu (B + 5)). If Ry <1, then system (2) has
only the disease-free equilibrium E; (H®,0,0,0) which is
globally asymptotically stable, where H® = m/u. If R, >1,
system (2) has two equilibria: E,(H%0,0,0) and
E*(H*,I",D*,V*), and E* is globally asymptotically stable,
where H*>0,I*>0,D* >0, and V* > 0.

It is worth pointing out that all biological processes are
inevitably affected by numerous unpredictable environ-
mental white noise. Hence, the deterministic models have
some limitations in predicting the future dynamics of the
system accurately; stochastic models produce more valuable
real benefits and can predict the future dynamics of the
system accurately than deterministic models, and after one
studies a deterministic model, extending the results to the
stochastic case becomes a hot issue. To understand the
impacts due to such randomness and fluctuations, stochastic
differential equation (SDE) approach is widely used in many
kinds of branches of applied science; many stochastic models
have been proposed and studied, such as in the population
ecology [11-16] and in the epidemiology [17-27], as well as
in other fields [28-30]. Many valuable and interesting results
were obtained.

On the basis of the abovementioned works, to make
model (2) more reasonable and realistic, including the
stochastic perturbation on the natural death rate with white
noise, we establish a delayed stochastic model as an ex-
tension of system (2) as follows:

dH (t) = [m - «H ()V (t) — uH (£)1dt + o, H (£)dB, (¢),
dI(t) = [aH (t - T)V (t - 7) — ST (1)]dt + 0,1 (£)dB, (),
dD(t) = [yI (t) - BD(£) — 8 D (1)]dt + 05D (£)dB; (£),
dV () = [BD(t) - ¢V (£)1dt + o,V (£)dB, (1),

(3)

where B = (B, (t), B, (t), B; (t), B, (), t >0) is a real-valued
standard Brownian motion. It is defined on a complete
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probability space (€, %,P) including a filtration {#,},.,
according with the general conditions, that is, it is increasing
and right continuous nevertheless & incorporates all
P-null sets. o; (i = 1,2, 3,4) represents the intensities of the
white noise, and they are positive. All the other parameters
have the same meaning as that of system (2).The initial
conditions of system (3) are

[ H(0) =y, (6),
1(0) = y,(0),

1 D(0) =y5(0), (4)
V(0) =y, (0),
(V¥ vsvy) €C,

where C means the space in which all functions are con-
tinuous, which is expressed as C([-7,0]; R‘i), where
RY = {(x}, x5, x5, x,) € R*: x;,>0,i=1,2,3,4}.

This paper is organized as follows: in the Section 2, it is
proved that there is a unique global positive solution of
system (3) with initial value (4). The asymptotic behavior of
the solution of stochastic system (3) around the equilibrium
E, of deterministic model (2) is discussed in Section 3. In
section 4, we show that the solution of the stochastic system
(3) oscillates around the infected equilibrium E* of deter-
ministic model (2) under certain conditions. Numerical
simulations are carried out in Section 5 to illustrate the main
theoretical results. A brief discussion is given in Section 6 to
conclude this work.

2. Existence and Uniqueness of the Global
Positive Solution

In this section, we will prove that there is a unique global
positive solution of system (3) with initial value (4).

Theorem 1. If we give any initial value (4), then there is a
unique positive solution (H (t),I(t),D(t),V (t)) forallt> -
for system (3). Furthermore, the solution will remain in R with
probability one. In brief, (H (t),1(t), D(t),V (t)) € R? for all
t > —1 almost surely (a.s).

Proof. According to the theory of stochastic differential
equations, we draw the conclusion that system (3) exists as a
unique local solution (H(¢),I1(¢),D(t),V(t)) on
t € [-7,71,), thereinto 7, is called as the explosion time [31].
However, we want to illuminate that there is a global so-
lution for system (3). So, it is necessary for us to prove that
7, = 00 a.s. For this purpose, we assume k, >1 to be large
enough. Under the circumstances, H (6), I(68), D(6), and
V (0) (0 € [-7,0]) all are contained in the interval [1/k,, k]
In the following, we introduce the definition of the stopping
time:

T = inf{t € [0.7,): H(1) ¢ (%k) orI(t) ¢ (% k) orD(t) ¢ (%k) orV (1) ¢ (% k)} (5)
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and we let inf@ = co(in general, & expresses the empty set).
Obviously, 7y is increasing as k — co. At this time, assume
To, = lim,_,  7;; hence, we can get that 7, < 7, a.s. In order
to finish the proof, we must prove that 7, = co a.s. If this
assertion is false, then there are constants T >0 and € € (0, 1)
such that

P{r, <T}>e (6)

So, there exist an integer >k, satisfying the following
inequality:

P{r,<T}>¢, forallk>k,. (7)

Define a C*>— function W: R — R, as follows:

W(H,I,D,V)z(H—b—bln %>+(I—1—ln1)+fD
Ff(V=1-InV)+ Jt_ «H OV (0L,
(8)

where the positive constants band f will be determined
later.
Using It6 formula to W, we obtain

aw :(1 _E)dH +(1 ——)dI+de+f(1 ——)dV+2 —(dH)’ Eﬁ(dn
+%fﬁ(dv) +[aH (V () — aH (t — 1)V (¢t — 7)]dt
= ’ b o1 + 102
= 1_ﬁ (m-aHV — yH)+ 201 +<1——>[ocH(t—r)V(t—T) I]+502 9)

+f(;11—/5D—8D)+f(1—%)(/BD—CV)+%aif+ocHV—ocH(t—T)V(t—T) dt

+0,(H - b)dB, (t) + 0, (I - 1)dB, (t) + fo,DdB, (t) + fo,(V — 1)dB, (t)

= LWdt + o, (H — b)dB, (t) + 0, (I - 1)dB, (t) + fo,DdB; (£) + fo,(V — 1)dB, (t),

where

LW:m—yH—%b+ocbV+yb—8I—

- f(B+8D+ fBD— fcV -

aH(t-1)V(t-1)

+6+ fyl

fﬁ +fc+ ab+ 02+ 04f (10)

1 1 1
Sm+yb+6+fc+(ocb—fc)V+(f11—6)I+fc+50fb+Ea§+Eaif.

Choose the parameters f = §/n and b = c¢/an such that
ab— fc=0and fnn-6 =0, then

1 1 1
LW£m+‘ub+6+fc+Eafb+Ea§+Eoif:=K. (11)

The following proof is similar to the method in
the literature [20], so it is omitted. The proof is
completed. O

3. Asymptotic Behavior around the Disease-free
Equilibrium E, of Equation (2)

If R, <1, then system (2) has only the disease-free equilib-
rium E, (H’,0,0,0) which is globally asymptotically stable.
However, system (3) does not exist in the equilibrium. In the
following, we establish the sufficient conditions to ensure that
the solution of system (3) oscillates around E, of system (2).



Theorem 2. Assume that (H(t),1(t),D(t),V (t)) is the
solution of system (3) with the initial value (4). If R, < 1 and
the following conditions are satisfied,

o7 <ph
03 <,
(12)
oL <P+,
3
2
<2c——,
0y <2c 5
then
27702
lim sup — [EJ H(() d{gl 5
t—00 0 _(71
2 20'2H02 1 #2+82 2
hrm—?;lop [EJOI(Od{_8IJ§ p-o2\ 28 to )+l
t
lim sup — [EJ Dz(()d(<
t—00 0
lim sup — [EJ V? (C)d(s—
t—00 0 /\2
(13)

where A, A,, Ay, and A, are positive constants, and they are
defined in the proof.

Proof. Since E,, is the disease-free equilibrium of system (2),
then m = uH°.

On account of system (3), we can obtain

dI(t+ 1) =[aHV =8I (t + 1)]dt + 0,1 (t + 7)dB, (1),

dD(t+7) = [nI(t + ) — (B+ 8)D(t + 1)]dt + 03D (¢ + 7)dB,4 (1),
AV (t+7) = [BD(t + 1) — ¢V (t + 1)t + 0,V (t + T)dB, (£).
(14)
Letting
_ )2
5, - H-H) (15)

2
Using It6 formula, one can obtain that
LS, = —u(H-H')' —a(H - H')'V - aH"(H - H)V

1
+ —(ﬁH2
2

~u(H-HY -~ aH(H-H°)V + o}(H-H)’

o
~(u-?)(H-H") ~aH"(H - H)V + ?H",
(16)

where the conclusion that (a+b)*<2a®+2b* for any
a,b € R is employed.
Similarly, setting

Complexity

) S(B+6 t
Su,=1(t)+-D()+ (b )V(t) + ocJ. H(OV(0)dd,
n Bn -t
(17)
then
c8(ﬁ + 8)
LS, =aHV —
12 ﬁrl
= a(H - H')V + aHV - «F+9),,
Bn (18)
=a(H-H")V + 0(F+9) (R, - 1)V
Bn
<a(H-H")V.
Now, we define
S, =S, +H’S,,. (19)
According to (16) and (18), we can calculate that
1, < ~(u-o)(H-H") +o?H". (20)

Integrating (20) from 0 to t and then taking the ex-
pectation on both sides, by virtue of Theorem 1.5.8 (ii) [32],
it yields

0<ES, (t)<$,(0) —(u— 07 )E J; (HQ)-H")d + oI H"t.

(21)
Thus, we have
¢ 5 2 H
timsup € [ ((0) - 1)< (22)
t—00 0 u— 03
Similarly, setting
_H° 2
813 _ [H H’ + I(t + T)] ) (23)

2

we have
LS;; = —u(H - H") =8I (t+ 1) — (u+ &)(H - H)I(t + 1)

lo2 1o
+501H +£021 (t+1)

-u(H —H°)2 — O8I (t+7) +§Iz(t +17)

IA

(M +0)?
28

(- 1)

2 1
+ af(H—HO) + (7§H02 +Eaglz(t +7)

2 2
:(ﬂ 0 +01>(H Y -L(o-a)P e n s an”,
(24)

where we have used the following inequality:
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1) +0)? 2 1 !
—(;4+8)(H—HO)I(t+T)§EIZ(t+T)+ (“28 ) (H-H)" OsESz(t)ssz(O)—E(é—ai)E JOIZdC
(28)
(29 2,02 1 /42"'52 2
Define +o01H i o? 23 +o] | +1]t
1
1 ‘u2+82 5 1 5 t+1 , )
S, =8+ Pl By +oy S+ 5(8 - 02) J I (O)dC. Therefore, we can summarize that
p ,
2 ZHOZ 1 2 2
(26) htm_iip [EJ rd¢< 80 p [”_0% (y 24;6 +0f)+1].
By means of (20) and (24), we obtain (29)
18, < (8- )P (1) + o2 H | — R In the following, letti
2S5 —02)1 (t) + o1H —a\ 2 +o0] | +1]. n the following, letting
1 2
27) 5, - [H-H°+1(t+71)+(8/n)D(t+71)] ’ (30)
2

Let us take the integral of (27) from 0 to t and then take the

expectation on both sides, by Theorem 1.5.8 (ii) [32] yield then we use It6 formula and arrive at

6(/3+8+/4)(

, H-H*)D(t+7) - u(H - H)I(t + 1)

LS, = u(H-H°) -

SF(p+8) &
n 21

8B+
1

I(t+T)D(t+T)—[ 03]D (t+71)+ crH + 021 (t+71)

F(P+9) (B+8+p)’
TD (t+T)+W

F(PB+9)
drp?

< —u(H-H")"+ (H-H) +%(H—HO)2

+ul (t+ 1)+ ———D*(t+ 1) + (B+ OI* (t + 7) - —————D*(t + 1) (31)

52(/3+6)
,72
82
+af(H—H) +0H + 021 (t+r)+—a3D (t+71)
22

4(B+9)° +5H(ﬁ+8)+4;4 )
i 4(B+9) ](H H')’ (#+ﬁ+5+50§>12(t+7)

2

_2_’72(/3 +08-03)D*(t+71) + 01H”,

where we have applied the following inequality:

(ﬁ+6+y)
B+46

—u(H-H)I(t + )< L(H - H°) 4+l (t + 1), (32)

S(B+08+u) 8 (B+9) 2
_7H(H—HO)D(1§+T)ST12DZU+T) (H—HO) ,

n

82(ﬂ+8)

I(t+1)D(t+71)< D(t+r)+(ﬁ+6)1 (t+1),

8(B+9)
1

(a+b)* <2a® + 20, for any a,b € R.
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We define

~ 1 [4(B+0) +5u(f+08)+4u> 2 1,
53—514+# 2[ 4(B+9) + 0] S1+8_70%<H+ﬁ+5+£02>

_0'1

(33)
1 pr+ 5 52 e
P i) oo [ oo
From (20), (24), and (31), we have
8’ N H? [4(B+8)* +5u(B+08) +4u>
LS3_—F(ﬁ+8—a3)D 0+ = 1G9 + 0}
202 H™ 1 [y + 6 (34)
+6—0'2<[J+ﬁ+5+ 0'2)[#—0%(7‘*'0%) + 1] +O€H02
= -\, D*(t) + A,.
Let us take the integral of (34) from 0 to t and then take Next choose that
the expectation on both sides, next relying on Theorem 1.5.8 H-HO+1 S/mD 5(B+ 8BV
(i1) [32], we can attain S5 = [ I+ )+ (On) (t; D)+ (0B + Of (HT)]
t
ES, (£) - S, (0) < —A,E j DX(Q)d( + Ayt. (35) (37)
’ then taking advantage of It6 formula and attaining that
Therefore, we have
. 1 (" > A
limsup —E J D (()d{ <—. (36)
t—00 t 0 Al

LS5 = _A“(H - HO)2 - A“(H - HO)I(t +7) _%(H - HO)D(t +7)

_M(H HO)V(t+T)—w1(f+7)V(f+7)‘%;(S)D(”T)V(HT)
Br B P

_‘Szcgji;‘sv (t+1)+ aH +2021 (t+71)+ ‘:(731) (t+7)+ 62;73;2(5)20?2(”7)
s—#(H—HO)Z+§(H—H°)2+#12(t+7)+ (ﬁﬂ”)D (t+7 >+ﬁ 5(H 1)’
+%Vz(t+r)+(y+c)2(H—Ho)2 6;73;6)V (t+7) + T (t+7) (38)
+%225)2v2(t+1) %D (t+7) - MV 2t+1)+ o} (H-H)
+0§H02+10§12(t+1)+2‘;20313 (t+7)+ 5222’7 oV (t+71)

4([3+6)(y+:)(ﬁ:zg; —3y(/5+8) ](H H) <H+CZ+%o§)12(t+T)

2 ) 5
+6—2(ﬁ +0+4ct+205)D% (1 + 1) ‘w@c ->- 0i>V2 (t+1)+ 0 H,
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in which we have applied the following inequality:

y(H H)I(t+1)< (H H) +y12(t+1),

yw+& 2

1
_#(H—HO)D(t+1)< — D (t+T)+ﬁi 6(H_H0)2’

OB+ (u+o)
B

BB oy gy (e L EFY
Pn 4pn?

2 2 2 ’
_éﬁ%%!aDU+Tﬂ“t+ﬂ£§é%%?4ﬂU+T) %jD(t+ﬂ

8% (B + 0)>
(H—HO)V(t+T)SfL/5f-;2)

— LVt + 1)+ A (E+ 1),

Let

2
Sy = Sis+— [4$+5ﬂﬂ+zﬁ:§f—hdﬁ+&+aﬂa

[3+8+4c +20% S 1 4(ﬁ+8)2+5/4([3+6)+4[4
2Bro-a) M e

I SB[ 3 o\ [T
ooz | e (eie ) o

By means of (20), (24), (31), and (38), we can calculate
that

¥w+&< 3

2c - —
e AV O

LS, < -
4 5 :

4(B+9)

VA(t+ 1)+ (u+ o (H-H),

2
1B +0) ]S1 P <y+ﬁ+8+ 02)

oTH" [4(ﬁ+6)(y+c) +4u? —3y([5’+8)+0

2

2 U =07

202H"% 1 1 2452 2FH02(B + § + 4¢2 + 202
+ 20 <y+c + 02> ¢ +0f +1]+2 (B ¢ )

8-03 2(B+06-203)

GIH"™ (B+ 8+ 4c> +203) [4(B+ 8) +5u(B+ ) + 4>
2(u-0?)(B+6-202%) 4(B+9) 1

+a§H°2(,u+ﬂ+8+ 1/202) (B + 8 + 4c® +20%) [ 1 (,u2+82 +U§)] + 2H™

(0-03)(B+0-03) 26

= —L, V(1) + A,

2
U =071

(39)

(40)

(41)
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In a similar way, we have
. 1 ("2 A,
limsup - E J Vo(Odl <= (42)
t—co [ 0 A2
The proof is completed. O

Remark 1. For the deterministic systems (1) and (2), when
R, <1, the equilibrium E, is globally asymptotically stable.
This means that the disease will be extinct. However, the
stochastic system (3) does not exist in the equilibrium.
Therefore, the significance of proving the asymptotic behavior
of the solution of the stochastic system (3) around the equi-
librium E,, of system (1) is to show that diseases will be extinct.

4. Asymptotic Behavior Around the Endemic
Equilibrium E* of Equation (2)

In the literature [10], if R > 1, the endemic equilibrium E*
of system (2) is globally asymptotically stable. However,
system (3) does not have the endemic equilibrium E*. In this
section, we show that the solution of system (3) oscillates

Complexity

then

t
lim sup %[E Jo (H(©) —H*)zd(S%,

t—00 1

t—00

lim su 1[E Jt (I(¢)- I*)Zd(<&
P t 0 _mz’
(44)
I l[Er (D) - s7)de <
im sup — - <=2,
t—»oop t 0 ms
1 ¢ B
lim sup —[EJ (V(()—x*)zd(S—4,
t—oo L Jo my

where m; and B;, i = 1,2, 3,4, are positive constants, and they
are defined in the proof.

Proof. Note that E* is the endemic equilibrium of system
(2), so

m=aH"V* +uH",

around E* of system (2) under certain conditions. aH'V" =0T, (45)
nl* =(B+90)D",
Theorem 3. Assume that (H(t),I(t),D(t),V (t)) is the BD" = V"
solution of system (3) with the initial value (4). If R, > 1 and '
the following conditions are satisfied Letting
2
oy < W, H
ek Sy =H-H"-H'ln—, (46)
2l
2y by use of It6 formula, we arrive at
EPLal)
2
3
2
0'4 <c-— Z’
my \my  \ms  \my
= (H* —HO + 12+ D2 1 V2,
(43)
H* 1 217%
LS, =|1- o (m—-aHV — uH) +501H
mH* . N O
=m-aHV - uH - +aHV+uH +-0iH
2
X H H~ - H H*
=uH"(2-— - +aH' V[ 2-—- (47)
H* H H* H
.. ./V H HV 1, .,
+ocHV(—+ - —1>+—01H
Vs H* H*V* 2

(H-H*)

=~(utaV')—0p

* * 1 *
a(H-H")(V-V )+§a§H.
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then by means of It6 formula, we can obtain

Taking
S I-I"-TI"1 [
= —_— _ n_
22 I*

s [f [HWOV H()V
+0¢HVI V@ _ | HOVQO o
T H*V* H*V*
(48)
I"H(t-1)V(t - P P
LSy, = aH (t— 1)V (t—17) - 61 - ( IT) Gl + 20
x| HV  H@-1)V(t-1) HV H({t-1)V(t-1)
+aH'V - —1In +1n
v x| HE=T)V(t - I H{t-1)I*V(t- 1,5,
gy |[HUZOVEZD T HE-DI VE—T) +-021
H*V* I* H*I 1% 2
| HV  H{-17)V(t-1) HV H(t-1)V(t—1)
+aH'V - —1In +1n
e x| HE=T)V (t - I H(t-1)V(t-1)I" 1,5,
oy | BUZVEZD) T HE-OVE=ol) 1,
H*V* I* H*V*I 2
(49)
| HV  H{-17)V(t-1) HV H(t-1)V(t—-1)
+aH'V - —1In +1In
H*V* H*V* H*V* H*V*
v < | HE -1V (t - I I* H({t-1)V(t- 1,..
gyt | HEEOVEED L, I HEZDVE=D) Lo,
H*V* I* 1 H*V* 2
x| HV  H@-1)V(t-1) HV H({t-1)V(t-1)
+aH'V - —1In +1In
* *I *y ok HV *y % I 1 2 r%
=aHV —aH V' ——aH V' In +aH V' In —+-051
I* H*V* I 2
=aHV -aH' V' ——=aH V' In —-aH V'In —+aH V' In —+-051
I* H* v I* 2
_L _ _ *i * 1 2
Defining LSy =— [r]] (B+®D ~ D' =+ (B+&)D ]+2’1[*0'3D
Sp=—r(D-D"-D'n ) el (pp-v-pr i) Lo
nl* D+ g \PD -V -pV g e 28D+
(50)
! e vm Y L ID VDV L
+ﬁD* (V—V -V 11‘1 W), _I* I* D v+ D* V +1+2111*03D +2ﬂD*U4V
we have LYV L —In bV PRI SN S P
v I* D DV ) oqpl*’? 2BD* 4
i—1—1 i+lnl+ D" + ! A
I V= I* v+ 2nl* 3 ZﬁD* 4
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Set in the inequality above, we make use of the equality
= vV H H H H* H H*
$1=Sp + aH' V'S, (52) -1-In—=—-1+ln—<—+—-2
H* H* H* H H* H
According to (49) and (51), we can calculate that (54)
LS, <aHV — aH'V'In - —amv Ly Lo2pe _HoHY
o o - —+§ 5 HH"
aH*V* , . aH'V* , Choosing
oo P ppe Y (H-H*)?
" 5= 2 (55)
v H \%4 | H
=aH'v (H*_l)<F_1>+“HV (H* nH*> we can obtain
L, ol . aH'V LS, = -u(H-H")Y —a(H-H")’V
+=oy] + 03 o,V
2 2l 2pD* 1,
~aH' (H-H'")(V -V") + 20H
S(XHV( —1><——1)+(XHV + -2 " * * 2 %2
H* v+ H* H < —(u-0})(H-H") —aH" (H-H")(V-V")+01H".
Lo GHV L aHV (56)
oI + 03D + o,V .
"2 2nl* 2BD* Taking
av*® U
H-H*) 1 S, =——=5,,+5, +——=S,.. 57
= a(H—H*)(V—V*)+aV*7( 0 ) +§O'§I* P uavett ave (57)
. «HV* 5, . oV - By virtue of (47), (53), and (56), we obtain
O' O- b
2l 3 2BD* 4
(53)
* * V* *
LSzg— ( 1)[ O-HT]+—* 22 227
+aVv* 2(p+av)
1 H*V* H*V*
+=a3l* + a—aéD* “—aiV* (58)
2 2l 2pD*
= —m,[H(t) - H*]* + B,.
t %12 B]
Let us take the integral of (58) from 0 to f and then take htm_ilop [E Jo [H()-H]"d{< m_l (60)
the expectation on both sides, and we derive
t Set
ES, () - S Os—m[EJ- H(()-H']’d{+Byt. (59) . .
2() 2() 1 0[ (() ] C 1 s _[H—H +I(t+T)—I]2 (61)
31 = .

Therefore, we have

2

At this point, one obtains
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LSy = —u(H-H")Y = 8[I(t+ 1) -I']" = (u+ &) (H-H")[I(t + 1) - I"]
1 2H2 1 212
+501H” 4503 (t+1)

(4 +0)°

5 (H-HY (62)

< —y(H—H*)Z—8[I(t+r)—I*]2+§[I(t+r)—l*]2+

+ot(H-H)Y +aH? + 2 [I(t+1) - I']* + oI

2

26

2
=—%(8—202)[I(t+r)—1*]2+(‘u +9

where we have applied the following inequality to the
abovementioned inequality, that is,

—(;4+8)(H—H*)[I(t+r)—I*]Sg[l(t+T) -1
2

(63)

1
p—oai

1
LSy < - 5(6 —20)[I(t)-I"" + [afH*2 +oil* ¢

pr+ 5
28

aH*V* (u+ aV*)

+ af) (H-H*) +0’H*? + 021",

Define

V* 2 62
Sy =8y, + LT (HTO 52,
u(p-or)\ 20

+%(8—20§)J

By means of (58) and (62), we derive

(64)

[1())-TI"]d¢.

t

V* 2 82
+af)afH*2 R > (;4 - +af)afH*
2u(u-oi)\ 26

p+av (!42+52 2) »
2

+ + 0 0.
u(p—ot)\ 20 ! 2nul* (u— 1)

= —m,y[I1(t) - I"]’ + B,

Let us take the integral of (65) from 0 to t and then take
the expectation on both sides; next according to Theorem
1.5.8 (ii) [32], we have

ES, (£) = S (0) < — myE JO (1) - I"PdC+ Byt (66)

Therefore, we can summarize that

2 2
+6
b +af>agp* "

H*V* V* 2 62 .
. V) (18

2BuD" (u-07) \ 20 aY

(65)
t
lim sup ~E j (1) - 1" <22, (67)
t—c0 £ Jo m,
Writing

- [H-H*+I(t+7)-I*+8/n(D(t + 1) - D]’

32 — 2 >
(68)

we arrive at
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LS;, = _P‘(H_H*)

Z‘WW—H")[D(HT)-D*] ~u(H=H)[1(t+7)-I]

KGR 87 (B +9)

1,]2

2

[I(t+7)-I"][D(t+7)-D"] - [D(t+71)-D"|

1, 0 120 & 5
+501H +5021 (t+T)+ﬁO'3D (t+71)

8 (B+9)

4n?

2, (Bro+p?
[D(t+T)—D] +W

< —u(H-H)+ (H—H*)2+%(H—H*)2

8 (B+9)

+ullt+7)-T"] + =

[Dt+1)-D' ] +B+O)[I(t+1)-I"]

P B+

],12

[D(t+1)-D' | +o*(H-H'Y +?H? + 2 [I(t + 1) - I']

2 %2 62 2 %72 82 2 y*2
+ 051 +?a3[D(t+r)—D] +?03D

B 4B+ +5uB+O)+ 4>, ) 5 -

- 4(B+9) +o [(H=H") +(u+p+8+0)[I(t+D-T]
_52 2 #12 27 %2 P ) 8 2 %2
_2’12(/3+8—203)[D(t+‘r)—D] +0 H " + 051 +?03D ,

where we have applied the following inequality:

(B+8+w)’

2
—76(ﬁ+8+‘u)(H—H*)[D(t+r)—D*]£8(ﬂ+8) ~hro

, o [D(t+r)—D*]2+

—w(H-H)[I(t+7)-T"] s%(H HY +u[lt+ 1) -]

8 (B +90)

ro [Dt+7)-D P +B+O[It+1)-I"].

[I(t+7)-I"][D(t+71)-D"]<

8(B+9)
1

Define

pt+av* [4(B+08)% +5u(f+08)+ 44
u(p-ot) 4(B+9)

Y+ aVv* (y2+82 2)
u(p—oi)

2
Sy =S85+ +af]$2+8_20%(,u+ﬂ+6+a§)

82 t+1 .
g]+zﬁm+a—zﬁ)1 [D() - DAL,

t

X [531 +

According to (58), (62), and (69), we obtain

(H-H")",

Complexity

(69)

(70)

(71)
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LS, < 62 6 2 2 D D* 2 ZH*Z 21*2 52 ZD*Z
4_—2—’12(ﬁ+ - 03)[ (t)-D*]"+{0H " +0, +?a3
;4+0cV* 4(ﬁ+8)2+5y([3+8)+4;42 2 U 22 aVv* 1, aH*V* 5 . aH'V* ,_
Tl 01)[ 4(B+9) IRt +2(;4+0¢V*)01H +yol = TP ppe Y
(y+/3+6+02) PH™ + 21 prav: (i2+8 U w2
8- 203 aH "+l "+ plu—-o3)\ 26 i y+ocV*alH
aV* 5 aH*V* 5 . a«aH*'V* ,
+2(y+ocV*)alH +2 2I + ol 03D" + 2D o,V >”»
= —my[D(t) - D*]” + B,.
(72)
f %72 B3
Integrating (72) from 0 to t and then taking the ex- htm Solip [E JO [D({)-D*]"d{ S (74)
pectation on both sides, we have }
t X Define
E&U%&A@s—mﬁj[D@%Jf]M+B¢ (73)
0
Therefore, we have
S o [H-H*+I(t+71)-I"+(8/n)(D(t+1)—D*)+(8(B+ 0P (V(t +71) - V*)]2 (75)
33 =

2 b
and we can derive
LSy = —u(H-HY —u(H-H)[I(t+1) -I'] - ; (H H*)[D(t + 1) - D"]

—78(ﬂ+237(”+c) (H-H)[V(t+1)-V']-

2
) C;‘;*‘” [D(t+7) - D] [V(t+7)-V"] -

dc(B+9)

B

8c(B+ )
W%

2

9y 8 (B+
+§(7sz+50512(t+r)+2—’120§D2(t+1)+ ﬁ V (t+71)

[I(t+7)-I"][V(t+71)-V"]

[V(t+7)-V*]

2
S Ll (R fnj‘”[p(tﬂ)_p’f]z
2 2
*ﬁpfg(H—H*)Zﬁfgiﬂs)[V(w -V P+ I+ I +(u+c) (H-H)
n*
2 2 2 2 2 (76)
+81(£+28) %[V(”ﬂ—"*]z+6,7—§2[D(t+r>—D*]2

g Vit+D) -V |+ (H-H ) +H? + 3 [I(t +1) - I'] + 031"
m

[V(t+7) —V*]2 +

& . 87 5, & . 8’ 8 5 .

+?0§[D(t+r)—D]z+?a§D2+ (/577 o[V (t+ V]2+%afy2
2 2

. 4w+éﬂﬂ+ﬁﬁi§;—ﬁﬂﬁ+&+aﬂ(H—fff+0uwz+éﬂlu+n—lﬂz

8 (B+9) 3 .
—%(n—z—zﬁ)[vuw)—v]z
S (B+0) 5 .

8 .
+4—,12(,8+6+452+a§)[D(t+r)—D &

82
+ 0 H? + o3I + 02D
Uk
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in which we have applied the following inequality:
ﬂwH—}fMut+ﬂ—Iﬂs%u{—HUZ+yuu+ﬂ—11{
) \ o 0(B+0 : § ,
-%HH—H)wU+ﬂ—D]gig;lwu+ﬂ—D]ﬂ-igH—H){
S(B+0)(u+c) . 8 (B +9) .
_T(H—H)[V(t+r)—V]_W[V(t+T) VP +(ure)(H-H"), 77)
2
—Qﬂ&ﬂﬁua+ﬂ—fﬂhqryn—v]_é—éiﬁ{va+ﬂ VP I+ - T
B 4%
8 c(B+9) . 8% (B +9) P 2
_T[D(t-FT)—D ][V(t+T)—V ]_W[V(t+‘t’)—V ] +’1—[D(t+T) ]
Let
3 U+av* 4(ﬁ+8)(;4+c)2+4‘142—3;4(/3+8) 2
SS‘S”W(u—o%)[ 4(+9) *"1]32
2 +aV* (12 +8°
+6——2a§(#+62+0§)[831+:(yf0%) #26 +af)82]
(78)
ﬁ+6+4c + 03 pt+aVvs [4(B+0) +5u(B+0) +4u> 2
T2(Bro- 2a§){ wi— 01)[ 4(p+0) N Ry (“ﬁ*‘“"z)

p+ave (12 +8
X[S31+#(‘u_0%)< 7 +o] S|+

By means of (58), (62), (69), and (76), we obtain

8 (B +0)*

LS. < -
’ 2%

62(ﬁ+6)

62(ﬁ+8)2< 3

U+av*

2 t+1 w12
e 2-2-207) Jt [V(O) - V' ]2dL,

3 * * 62 *
(26‘5—202)[vm—w12 + 0 H” + 31" + —~03D™

;,12

B 7%

« v
-

U+ ocV*(71

u(u-oi)

4(B+0) !

[4(ﬁ+8)(y+c)2 + 442 —3y(/3+8)+az]

u(u-oi)

; . +aV* [(u*+ &
2(y+c2+a§){afH 2+a§1 24 s <H +02>
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4 2 2 2 5
+ﬂ—+8+ ¢ +203 «[cer*2 +a§1*2 +6—20§D*2 +7#+OCV2
2(B+0-203) n u(u—ot)
4(B+08)7*+5 0) + 4u? V*
“ (B+0)" +5u(f+6)+4u ‘o PH™ o H
4(B+9) y+av* 2(p+av)
. 1051* s aH*V*agD* . aH*V*aiV* (B+8+4c? J; a3)(u+p +26 +0%)
2 2nI* 2BD* (6-203)(B+6-203)
V(U + 8 V* 1
x{a?H*2+0§I*2+ pro 5 (‘u "0 4o )[ﬂ *afH*2+7a —o1H +-0,1"
p(u—o)\ 26 p+aV 2(p+av) 2
aH*V* » . aH'V* ,
+ 05D +——0,V
241+ 2BD*
= —m,[V(t) -V %]*+B,. (79)

In a similar way, we have

1_(! B
lim sup —[EJ VO -V <=t (80)
t—o0 L 0 my
The proof is completed. O

Remark 2. For the deterministic systems (1) and (2), E* is
globally asymptotically stable when R > 1; this means that
the disease will be persistent. However, the stochastic system
(3) does not have equilibrium E*. So, the sense of proving
the asymptotic behavior of the solution of the stochastic
system (3) around the equilibrium E* of system (2) is to
illustrate that the disease will be persistent.

5. Numerical Simulations

In this section, we will carry out some numerical simulations
to demonstrate the theoretical results obtained in this paper.

Example 1. We choose the parameters as follows:

m=2.6x10,
a=3x10"",
u =0.01,
8 =0.053,
n =150,
o
c=23.38,
o, = 0.03,
o, =0.1,
03 =0.2,

o, =0.1,

where the value of parameters m, a, y, 8, 77, 3, and c are from
the literature [9] and the rest of the parameters are assumed.
In addition, we assume that the initial values of system
(3) are

H(6) = 3.412 x 10°%,
1() = 1.32x 10%
D(6) = 2.144 x 10", (82)
V(6) = 4.92 x 10°,
6 € [-1,0].

For the deterministic model (2), by calculating, we
obtain R, = 0.5476 < 1; therefore, it shows that the infec-
tion-free equilibrium E, = (2.6 x 10%,0,0,0) is globally as-
ymptotically stable (see Figure 1).

For the stochastic model (3), we have

o7 =0.0009 <y = 0.01,

07 =0.01 <8 = 0.053,

(83)
07 =0.04<f+8=0923,

) 3
0 =0.01<2c->=6.1.
2

So, the conditions of Theorem 2 are satisfied, one can see
the asymptotic behavior around the infection-free equilib-
rium E; of system (2), that is, the infected hepatocytes I,
intracellular HBV DNA-containing capsids D, and hepatitis
B viruses V will become extinct almost surely. The results are
supported in Figure 1.

Example 2. We choose the parameters as follows:
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x10%

Uninfected hepatocytes H (t)

0 50 100 150 200
Time (t)
—— Stochastic solution
——~ Deterministic solution
(a)
1010
o0 3 X
=
£
<
5 25+
[}
(]
<3S 2
ZAq
s 1.5
%
T &
5 O 1t
=
T 05f
g
E 0 —
100 150 200
Time (t)

—— Stochastic solution
——~ Deterministic solution

(c)

x107

—
S

Complexity

—
[3S]

Ju—
(=}
T

Infected hepatocytes I (f)

100
Time (t)

—— Stochastic solution
——~ Deterministic solution

(b)

x10°

200

Hepatitis B virions V (f)

100
Time (t)

—— Stochastic solution
——~ Deterministic solution

(d)

200

FIGURE 1: Numerical simulations of the solutions of systems (2) and (3). It is shown that the solution of (3) fluctuates around E, of (2).

m = 0.8,
a=0.8,
u = 0.6,
§=04,
n = 1.5,
B =0.87,
c=1.0,
o, =0.03,
0, =0.03,
03 = 0.03,
o, =0.03,

where the value of parameters m, «, 4, 6, and # are from the

literature [20] and f is from the literature [9] and the rest of

the parameters are assumed. Assume that the initial values of

system (3) are

H(0) =0.1,
I(0) =12,
D(0) = 1.0,
V() =0.8,

0 ¢ [-7,0].

(85)

For the deterministic model (2), by calculating, we
obtain R, = 2.74 > 1; therefore, the endemic equilibrium
E* = (0.4866,1.2701,1.5001, 1.3051) is globally asymptoti-

cally stable (see Figure 2).

For the stochastic model (3), by a simple computation,

we have
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0
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Time (t)
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- -~ Deterministic solution
()

x10M1
3

25 ¢

Intracellular HBV DNA-containing
capsids D (t)
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150 200 250 300

Time (t)

350

—— Stochastic solution
- -~ Deterministic solution

(c)
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x10°
2

1.8 | R

14+ R
1.2+ R

Infected hepatocytes I (f)

0 50 100 150 200 250 300 350
Time (t)
—— Stochastic solution
- - - Deterministic solution
(b)
x1010
6
51 ]
4t J
31 J

Hepatitis B virions V (1)

100 200 250 300

—— Stochastic solution
- -~ Deterministic solution

(d)

FIGURE 2: Numerical simulations of the solutions of systems (2) and (3). It is shown that the solution of the stochastic system oscillates

around the endemic equilibrium E*.

07 =0.0009 <y = 0.8,
) )
03 =0.0009 <> =02,

p+6

07 = 0.0009 <*—— = 0.635,
2

2 3
0, =0.0009 <c——=0.25,
4

max{VA, VB, VM, VN } = max{0.0740,0.1621,1.1872,2.2392}

<d(E*,E,)

= \(H* —HOY + 12+ D2 4 V22
= 2.5067.
(86)

So, the conditions of Theorem 3 are satisfied. In Figure 2,
one can see that the asymptotic behavior around the en-
demic equilibrium E* of system (2), that is, the infected
hepatocytes I, intracellular HBV DNA-containing capsids D,
and hepatitis B viruses V will become persistent almost
surely (see Figures 2(b)-2(d)).

Example 3. Based on Example 2, we choose ¢, = 1.0,0, =
1.0,0, = 1.0, and 0, = 1.0 and other parameters do not
change. Here, we have R, =274>1, oi>u, 03>0/2,
03>B+98/2, and 02 > c — 3/4. From the numerical simula-
tions given in Figure 3, we can see that large noise may result
in infected hepatocytes, intracellular HBV DNA-containing
capsids, and hepatitis B viruses of (3) become extinct almost
surely, although the endemic equilibrium E* of system (2) is
globally asymptotically stable.
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Complexity
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1
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Time (t)
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%1010
= 5
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8 S
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= 1
0 v A
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F1GURe 3: Numerical simulations of the solutions of system (3). It is shown that the larger intensity of white noise set may help to eliminate

I(t), D(t), and V (¢).

6. Conclusions

This paper discusses a stochastic delayed model for
chronic hepatitis B infection with HBV DNA-containing
capsids. At first, we illustrate that there exists a unique
global positive solution for system (3) with the initial
value (4). Then, we obtain sufficient conditions to guar-
antee that the solution of the stochastic system fluctuates
around the disease-free equilibrium E; and the endemic
equilibrium E*. At last, we carry out the numerical
simulation in order to confirm the analytical results.
Numerical simulations further reveal that the larger in-
tensity of white noise may help to eliminate the infected
hepatocytes, intracellular HBV DNA-containing capsids,
and hepatitis B viruses (see Figure 3), and we leave these
cases as our future work.
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