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In this paper, a new data-driven learning method is investigated based on the dynamical data of the system. A regularized
regression wavelet (RRW) approach is proposed to optimize the learning result for the system fault. Based on the optimizing
results, a fault tolerant stability scheme is given.&en, the efficiency of the proposed technique is verified by a vertical take-off and
landing (VTOL) aircraft stability example.

1. Introduction

&e analysis of the data-driven learning method in this paper
aims at developing a reliable learning algorithm and ap-
plying the method to practical engineering systems. Spe-
cifically, we will show how the proposed data-driven
learning technique is applied to the dynamical system.

Stability is a fundamental property in modern engi-
neering systems. How to stabilize a system is well studied in
the past decades. Plenty of stability controllers are proposed,
for example, variable structure control [1], fuzzy control [2],
sliding mode control [3], and adaptive neural control [4].
Various undesirable effects are always existed in many en-
gineering applications, such as time-delay [4], fault [5, 6],
and uncertainty [7]. In most cases, plenty of these effects can
be observed by available measurement data; however in
some cases, they are not easily described by existing
mathematical models. In particular, these data contain
meaningful features of the engineering applications. It is
highly desirable to develop new techniques to learn the
system data and generate a reliable algorithm based on the
real data to cope with those fast changes in the complex
systems directly. In this paper, we developed a learning
model to address the issue of stabilizing dynamical systems
from a different prospective.

During the last decade, data-driven innovation has be-
come a hot topic across different research sectors and

provides new challenges associated with various network
design, such as sensor networks and telecommunication
networks. &e network data constitute infrastructural in-
formation that could be used in many ways to produce
different products and services. It provides additional in-
formation over the limitation of traditional system models
and also enables creation of knowledge that is crucial for a
new design. Recently, there are some data-driven control
research studies available in the literature. For example,
sampled data stabilization techniques for the T-S fuzzy
system were proposed in [8]. A recurrent neural network-
based data-driven control was constructed for the steady-
state analysis in [9]. In addition, a lot of research studies have
been undertaken to study the data-driven methods in in-
dustrial processes, see [10] for a survey. As one may know,
the engineering systems are generally operated under dif-
ferent industrial environments. &e classic model-based
approach could be difficult to stabilize a real system in these
types of applications. Hence, one may consider the data-
driven approach to analyze the stability of the engineering
system.

In particular, faulty issues in highly complexity dynamical
systems always exist and are strongly reflected in the collected
data. It has certainly a great effect on the safety requirement,
and thus the fault reconstruction problem is one of the main
concerns in the distributed network control design. &e fault
reconstruction problem was studied for sensor networks in
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[11], and the results were used for the room temperature
monitoring application. Recently, the fault tolerant consensus
issue was researched in multiagent systems considering un-
certainty in [12]. Data-drivenmethods formonitoring and fault
diagnosis on the benchmark Tennessee Eastman process were
investigated in [13].

In this paper, we propose a constructive data learning
approach to analyze the effect of the fault. In addition, based
on the learning result, the fault tolerant stability of the
dynamical system is well studied. &e method used in this
paper is based on the RRW technique. It should be pointed
out that the wavelet functions are used for nonlinear
transformation function. Incorporating the time-frequency
localization properties of wavelets, it has a strong learning
ability for complex nonlinear system modelling. Especially,
the wavelet approach has the advantage of dealing with rapid
changes of data [14–16]. Inspired by the approach of
multiresolution analysis, this paper provides a new data-
driven approach for studying fault tolerant stability by
applying this powerful wavelet tool. A detailed mathematical
approach is constructed to deal with the effect of faults. In
this paper, we aim to use the collected data from the dy-
namical system to stabilize the system. &e novelties and
advanced features of this paper are as follows:

(1) Compared with the existing stability problem, this
paper addresses the fault effect in the dynamical
system. In addition, the designed technique used in
this paper is a data-driven learning method which is
based on a regularized regression wavelet neural
network.

(2) It is worth noting that most of the aforementioned
literature is about data-driven stability analysis
without considering to use a wavelet neural network.
In this paper, we use the wavelet neural network-
based learning control to stabilize the dynamical
system which has the advantage of dealing with rapid
changes of the sensor data and fault.

(3) A detailed mathematical calculation for the recon-
struction of the fault in this paper has been given,
which potentially contributes to the real-world ap-
plication of this paper.

&e remainder of this paper is organized as follows: in
Section 2, some preliminaries are proposed. In Section 3,
data-driven fault tolerant stability is analyzed. In Section 4, a
VTOL aircraft stability problem is analyzed to illustrate the
effectiveness of the theoretical results. &e final section
concludes this paper.

2. Preliminaries

We consider a dynamical system described by the state
equation:

_x(t) � Ax(t) + B(u(t) + g(x(t))), (1)

where x(t) ∈Rn is the state of the system, g(x(t)) ∈Rq is
the fault, u(t) ∈Rq is the actuator control input, and
A ∈Rn×n and B ∈Rn×q are the known system parameters.

&e sensor output of this system is taken to be the same as
the state vector.

As is well known, for the fault g(x(t)), the common
assumption is that the uncertainty is norm bounded by a
constant [12, 17]. In classical fault tolerant analysis for a
dynamical system, one may use adaptive control to stabilize
those faulty systems, see [12, 17]. In addition, the afore-
mentioned fault assumptions in literature mostly require the
fault to be differential, see [11] and the reference therein.
However, due to the unpredictability of the fault, one cannot
estimate the bound of the fault g(x(t)), not to mention the
differential requirement of the fault. In this paper, we re-
leased these assumptions by using a data-driven learning
method based on the least-square regularized regression
approach.

Before we propose the main results, we first focus on the
initial data collecting procedure. Firstly, the system is as-
sumed to be normal, i.e., this system is without fault. It is
known that, to stabilize system (1) without fault, that is, to
stabilize the following system:

_x(t) � Ax(t) + Bu(t). (2)

One can define the feedback control as u(k) � −Kx(k),
with the matrix A − BK Hurwitz. &en, based on this
construction, we initially collected the data with the feedback
control u(k) � −Kx(k). However, it should be pointed out
that while the fault is considered, system (1) may be unstable.
Next, based on the data generated by the faulty system, we
will identify the fault by using the following results.

We let z(t) be the regression vector in the regression
model, z(t) � x(t). For the state sensor output x(t), we
calculate the derivative of state x(t) numerically, i.e., _x(t) �

(x(t + h) − x(t))/h mathematically, where h is the numer-
ically sampling period. &en, we can obtain y(t) as _x(t) −

Ax(t) − Bu(t) which is assumed to be the data output. We
use this relation to evaluate data samples as z(t), y(t) 

T

t�0.

3. Main Results

&e data-driven learning problem is formulated as

g ∈HT

min 1
T



T

t�1
‖y(t) − Bg(x(t))‖

2
+ ]‖g‖

2
T

⎡⎣ ⎤⎦, (3)

where g � [g1, g2, . . . , gq]T, ‖gi‖
2 � 〈gi, gi〉HT

, and the
regularization constant ] is used to make a trade-off between
the empirical approximation error and the complexity of the
model. &e solution of the above optimization problem is
expressed as

gi xv(  � 
T

t�1
cgit

K xv, x(t)( . (4)

Next, we shall consider the nonlinear function ap-
proximation method in this paper. &e reproducing kernel
Hilbert space (RKHS) is defined to be the closure of linear
span of a set of functions, with the kernel functions used for
approximation be nonlinear functions. In this paper, we use
Morlet WNN kernel:
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(5)

&e Morlet wavelet is a wavelet composed of a complex
exponential (carrier) multiplied by a Gaussian window
(envelope).&e parameterω0 > 0 represents the dilation, and
the parameter ai > 0 represents translation. &ese two pa-
rameters can be adjusted by users. One can find the theo-
retical analysis for optimal dilation and translation
parameters selection in [15]. &en, the RKHS is a space of
nonlinear functions and has good approximation perfor-
mance. We solve the above optimization problem which is
given by the following theorem.

Theorem 1. For the optimization problem (3), the solution is
obtained by the following formula:

gj(x) � 

T

t�1
ljtKWNN(x(t), x), (6)

where ljt is the solution of the following equation:

T] + IT ⊗B
T
B G Iq ⊗Tm L l � IT ⊗B

T
 y, (7)

where

Tm � Tmij 
T×T

, Tmij � KWNN(x(j), x(i)), (8)

and G and L satisfy gT � GgT and l � Ll, respectively, with

gjT � gj(x(1)), gj(x(2)), . . . , gj(x(T)) 
T ∈RT

,

gT � g1T, g2T, . . . , gqT 
T ∈RTq

,

gtT � g1(x(t)), g2(x(t)), . . . , gq(x(t)) 
T ∈Rq

,

gT � g1T, g2T, . . . , gTT 
T ∈RTq

,

lj � lj1, lj2, . . . , ljT 
T ∈RT

,

l � l1, l2, . . . , lq 
T ∈RTq

,

lt � l1t, l2t, . . . , lqt 
T ∈Rq

,

l � l1, l2, . . . , lT 
T ∈RTq

.

(9)

Proof. Introduce an orthonormal wavelet ϕp,q  in L2
ρ(X).

&eir corresponding eigenvalues are λp,q . &en, we have gi �


∞
p,q�−∞ cgip,qϕp,q for any gi ∈HWNN. &e parameters cgip,q

are to be chosen to minimize the objective function (3).
Let

P �
1
T



T

t�1
(y(t) − Bg(x(t)))

T
(y(t) − Bg(x(t))) + ]‖g‖

2
T

�
1
T



T

t�1


n

i�1
yi(t) − 

q

j�1
bijgj(x(t))

2
+ ]‖g‖

2
Tgj(x(t))

2
+ ]‖g‖

2
T.

(10)

Then, one can obtain

zP

zcgjp,q

� −
2
T



T

t�1


n

i�1
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q

j�1
bijgj(x(t))⎛⎝ ⎞⎠bijϕp,q(x(t))

+ 2
]cgjp,q
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2
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T
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n

i�1
bijyi(t) − bij 

q

j�1
bijgj(x(t))⎛⎝ ⎞⎠ϕp,q(x(t))

+ 2
]cgjp,q

λp,q

.

(11)

Considering the minimum optimization problem, we
have

cgjp,q � λp,q


T
t�1 

n
i�1 bijyi(t) − bij 

q
j�1 bijgj(x(t))ϕp,q(x(t))

T]
.

(12)

Using the fact that

KWNN(x(t), x) � 
∞

p,q�−∞
λp,qϕp,q(x(t))ϕp,q(x), (13)

we can get

gj(x) � 
∞

p,q�−∞
cgjp,qϕp,q(x)

� 
∞

p,q�−∞
λp,q


T
t�1 

n
i�1 bijyi(t) − bij 

q

j�1 bijgj(x(t)) ϕp,q(x(t))

T]
ϕp,q(x)

�


T
t�1 

n
i�1 bijyi(t) − bij 

q
j�1 bijgj(x(t)) KWNN(x(t)x)

T]

� 
T

t�1
ljtKWNN(x(t)x).

(14)
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From (9),

gjT � Tmlj,

gT � Iq ⊗Tm l,
(15)

we have

T]lt � B
T
y(t) − B

T
BgtT,

T]l � IT ⊗B
T

 y − IT ⊗B
T
B gT

� IT ⊗B
T

 y − IT ⊗B
T
B GgT

� IT ⊗B
T

 y − IT ⊗B
T
B G Iq ⊗Tm l

� IT ⊗B
T

 y − IT ⊗B
T
B G Iq ⊗Tm Ll.

(16)

&e theorem is obtained.
&e above optimization problem leads to the following

approximation results:

gi ∈HT

min
‖Bg(x(t)) − Bg(x(t))‖. (17)

&en, by using the cross-validation method, we can
estimate the approximation error e in (17) which is not
exactly known. In practice, define ς as the upper bound of the
approximation error which can be computed by the data
learning algorithm. In fact, one can find that a good ap-
proximation error at O(10− 3) or even a smaller value can be
obtained in simulations by using sufficiently large data
samples for the learning. To ensure the control design to be
robust under faulty data, the upper bound of the approxi-
mation error ς is set to be 10e in our data learning algorithm.

&at is, ‖Bg(x(t)) − Bg(x(t))‖ ≤ ς. &is construction is
explained based on the following facts: as onemay know that
the design of the control is based on future system process
which is fully unknown. &is makes the learning of future
fault very difficult. Although the cross-validation method
can estimate the error very well, there will still be some
differences between the estimated fault and the true fault.
&at is to say, the learned fault obtained by approximating
the trained data can reflect most of the parts of the fault
function, but not the exactly true fault. Nevertheless, the
parameter ς produced from training data can provide a good
result and is used to estimate the approximate error.

In the following, we will give a theorem to design the
fault tolerant control based on the approximation result. □

Theorem 2. Considering the system with the fault given in
(1), the system will be stabilized under the following control:

u(t) � B
T
Px(t) − sign B

T
Px(t) ς − g(x(t)), (18)

where P> 0 is the unique solution to the algebraic Riccati
equation (ARE):

A
T
P + PA − PBB

T
P + I � 0. (19)

Proof. Introduce the following Lyapunov candidate:

V(t) � x
T
(t)Px(t). (20)

&en, the derivative of V(t) satisfies

_V(t) � 2 Axt(t)n + qBh B
T
Px(t) − sign B

T
Px(t) ς − g(x(t)) + g(x(t), k)  

T
Px(t)

� x
T
(t) A

T
P + PA x(t) + x

T
(t)PBB

T
Px(t)

− ςsign B
T
Px(t) B

T
Px(t) + e

T
g(t)BB

T
Px(t)

≤ x
T
(t) A

T
P + PA + PBB

T
P x(t).

(21)

From (19), the theorem is obtained. □

Remark 1. In this paper, the data-driven learning method
is proposed to identify the system fault. It should be
pointed out that there exist some problems which remain
to be solved: (i) since the data are collected for learning, it
is well known that identification efficiency can be im-
proved as more data samples are collected. &e amount of
data to be collected to improve the efficiency of the al-
gorithm is still an open problem; (ii) from (3), one can find
that there exists a regularization constant, ] in (3), to
reduce the model complexity and the learning error. &e
constant is always case dependent; (iii) the choice of the
dilation ω0 and violation ai in the Morlet WNN kernel is
also case dependent. One can refer to WNN for learning
function in [14, 15].

Remark 2. In this paper, the data-driven learning method is
given to analyze the system fault. &is is different from the
classic fault tolerant analysis in the networked system.
Classically, the fault analysis used the model-based ap-
proach, see [17–19] and the reference therein, in which they
solved the fault tolerant problem in a system basis. However,
in this paper, we analyze the fault fully based on the his-
torical data, and some useful data-based results are obtained.
&is makes a new insight in applying data learning strategies
in the fault research area.

Remark 3. &e results obtained in this paper aim to solve the
stability problem in a dynamical system considering fault by
using the WNN-based method. &rough&eorem 1, we can
obtain the detailed formula for the approximation of the
system fault effect in (1). One can refer to (17) for details. In
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addition, with the given equations (6)–(9), one can easily
calculate the mathematical form of the control in (18). All
these procedures contribute to the application of the ob-
tained results in real-world engineering problems.

4. Application

In this section, the VTOL aircraft stability problem is
proposed to verify the method in &eorem 2. One typical
VTOL aircraft model can be found in Yakovlev Yak-38
which is a Soviet Navy VTOL aircraft intended for their light
carriers, cargo ships, and capital ships.&e dynamical system
is described by

_x(t) � Ax(t) + B(u(t) + g(x(t))). (22)

&e parameter matrices A and B are given as follows:

A �

−0.0366 0.0271 0.0188 −0.4555

0.0482 −1.01 0.0024 −4.0208

0.1002 0.3681 −0.707 1.42

0 0 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

B �

0.4422 0.1761

3.5446 −7.5922

−5.52 4.49

0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(23)

Based on the proposed method, we use the control
u(t) � −BTPx(t) to collect data in [5 s, 10 s], where

P �

2.2932 0.1056 0.0837 −0.9103

0.1056 0.1940 0.1357 −0.0156

0.0837 0.1357 0.2681 0.1683

−0.9103 −0.0156 0.1683 1.8079

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (24)

&e fault considered in the first 10 seconds is given by

g(x(t)) �
sin x1(t)(  − 2sin x3(t)( 

2sin x2(t)(  − sin x4(t)( 
 . (25)

&en, we can learn the fault effect Bg(x(t)) numerically
through the optimization (3) approach result in (7), see
Figure 1. In Figure 1, it can be found that the dashed lines
and solid lines are very close which means that the opti-
mization problem in (3) is well solved by using the proposed
&eorem 1. &e fault considered in the system is given in
(25). For illustration purpose, the parameter ] in (3) is 0.8.
&e dilation and violation constants in (5) are set to be
ω0 � 0.5 and a1 � a2 � a3 � a4 � 2. &e control proposed in
(18) is applied at t � 10 s with the ς equal to 0.3. &e tra-
jectory of the system is shown in Figure 2. In Figure 2, we
aim to show the effectiveness of the proposed controller in
(18). From the trajectory of x(t) in Figure 2, one can find
that the system is stabilized since the value of x(t) goes to
zero. One can see that the chattering phenomena is shown in
this figure.&is is due to the fact that the control (18) is based
on the function sign. One may use other functions to replace

the sign, which may lead to a bounded domain of the tra-
jectory, see [12].

Next, we will consider different fault effects in [0 s, 50 s].
&e fault of the aircraft in [0 s, 20 s] is

g(x(t)) �
sin x2(t)(  − 2sin x3(t)(  + sin x4(t)( 

sin x1(t)(  − 2sin x2(t)( 
 .

(26)

&e fault of this system in [20 s, 50 s] is

6 7 8 9 10

10

5

0

 –5

–10

y1 (t)
y2 (t)
y3 (t)
y4 (t)

∑b1jgj (t)
∑b2jgj (t)
∑b3jgj (t)
∑b4jgj (t)

Trajectory of learn

Figure 1: Learning result (this figure shows the learning result in
(6) which is based on the optimization problem in (3).  bijgj, i �

1, 2, 3, 4{ } represents 
q

j�1 bijgj, i � 1, 2, 3, 4{ }, see (10) for the detail
calculation).

2.0

1.5

1.0

0.5

0.0

–0.5

–1.0

–1.5

–2.0

Trajectory of x

0 5 10 15 20

x1 (t)
x2 (t)

x3 (t)
x4 (t)

Figure 2: Trajectory of the state (this figure shows the trajectory of
the dynamical system (22) with the given fault in (25) by using the
proposed learning-based control in (18)).
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g(x(t)) �
−0.5

−0.5
 . (27)

We analyze the whole process in the following sessions:

Session 1: observation time interval: [20 s, 35 s];
Session 2: data collection time intervals: [5 s, 10 s] and
[35 s, 40 s];
Session 3: data-driven learning control time intervals:
[10 s, 20 s] and [40 s, 50 s].

During the first 5 seconds, the operation system data are
collected. One may observe that the system is not stable from
the collected data. &en, we make the judgement that the
system is faulty. In the next 5 seconds, we collect the data and
use the proposed learning technique in&eorem 1 to identify
the fault. From the data learned results, one may use the
control in (18) to stabilize the system. From Figure 3, one can
see that, after the controller is applied, the system is stabilized.

Considering the changing fault at 20 s, it can be observed
that the previous control is failed to stabilize the system in
the time interval [20 s, 30 s]. &is makes us to remove the
aforementioned controller and repeat the observation-col-
lection learning progress. &e details are given as following
steps: (1) collect data in [35 s, 40 s]; (2) use the proposed
learning technique to identify the fault; (3) apply the newly
identified results into the controller (18).

From Figure 3, one can see that, after the controller is
applied at 40 s, the system goes to the stability state during
[40 s 50 s]. In Figure 3, we consider different fault effects in
different time intervals during the system operating. One can
find that if two faults are observed at different time, we can
always apply the proposed controller in (18) by using the
collected data to stabilize the system in the time intervals
[10 s, 20 s] and [40 s, 50 s].

5. Conclusion

In this paper, fault tolerant stability is given based on data-
driven learning techniques. A regularized regression wavelet
approach is proposed for the data-based fault identification.
&e data-driven scheme is investigated under the consid-
eration to minimize the error between the fault effect and
data samples. Based on the learning result, data-driven
control is proposed to stabilize the system. Finally, a sim-
ulation example is exploited to show the effectiveness of the
main result.
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control for Itô stochastic systems with a descriptor sliding
mode approach,” Automatica, vol. 49, no. 5, pp. 1242–1250,
2013.

Complexity 7


