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Complex fuzzy sets are the novel extension of Zadeh’s fuzzy sets. In this paper, we comprise the introduction to the concept of
ξ-complex fuzzy sets and proofs of their various set theoretical properties. We define the notion of (α, δ)-cut sets of ξ-complex
fuzzy sets and justify the representation of an ξ-complex fuzzy set as a union of nested intervals of these cut sets. We also apply this
newly defined concept to a physical situation in which one may judge the performance of the participants in a given task. In
addition, we innovate the phenomena of ξ-complex fuzzy subgroups and investigate some of their fundamental algebraic at-
tributes. Moreover, we utilize this notion to define level subgroups of these groups and prove the necessary and sufficient
condition under which an ξ-complex fuzzy set is ξ-complex fuzzy subgroup. Furthermore, we extend the idea of ξ-complex fuzzy
normal subgroup to define the quotient group of a group G by this particular ξ-complex fuzzy normal subgroup and establish an
isomorphism between this quotient group and a quotient group of G by a specific normal subgroup GAξ .

1. Introduction

,e competency of fuzzy logic to articulate steady adapta-
tions from membership to nonmembership and the other
way around has played an effective role to solve many
physical problems. It provides us not only the powerful and
meaningful representations of measuring uncertainty but
also a useful approach to view the vague concepts expressed
in the natural language. Despite all of the advantages of this
logic, we still face immense complications to counter various
physical situations based on a real-valued membership
function. It is therefore quite necessary to propose an ad-
ditional development of fuzzy set theory on account of set of
complex numbers which is indeed an existing augmentation
of real numbers. ,e complex fuzzy logic is linear aug-
mentation of traditional fuzzy logic, which also allows a
natural development of the difficulty based on the fuzzy logic
that is impracticable to solve with superficial membership

function. ,is particular set has a paramount part in nu-
merous executions, in particular, advanced control systems
and predicting of the periodic events, where multiple fuzzy
variables are interrelated in a complex manner that cannot
be effectively characterized by simple fuzzy operations. In
addition, these sets are also used to solve several problems,
especially the numerous periodic aspects and forecast
problems. One of the far-reaching significances of studying
the CFS is that they illustrate the data with uncertainty and
periodicity in a much effective way.

Considering the inaccuracy in decision-making, Zadeh
[1] popularized the concept of fuzzy sets for the first time, in
1965. Roenfeld [2] used Zadeh’s work to invent the approach
of fuzzy subgroups in 1971. Mukherjee and Bhattacharya [3]
initiated the study of the fuzzy cosets along with fuzzy
normal subgroups in 1984. Mashour et al. [4] studied many
important features of normal fuzzy subgroups. For more
details about the recent development of fuzzy subgroups, we
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refer to [5–7]. In addition, another important aspect of fuzzy
sets is the level sets of this notion. ,ese level sets have an
incredible significance as they set up a connection between
concepts of crisp and fuzzy sets.,is phenomenon is utilized
to generalize various ideas and techniques for crisp set
hypothesis as well as fuzzy sets. In the succession of fuz-
zification of subgroups, the idea of level subgroup was
initiated by Das [8]. Yuan and Li [9] studied the impact of
these level sets in the field of intuitionistic fuzzy sets. To see
more on the level sets and level subgroups, we refer to
[10–12]. Buckley [13] proposed the study of complex fuzzy
numbers in 1989. ,e author [14] applied the theory of
complex fuzzy numbers to set up new techniques of dif-
ferentiation. Moreover, some fundamental properties of
fuzzy counter integral in the complex plane were interpreted
by the same author in [15]. Zhang [16] established many
important properties of complex fuzzy numbers in 1992.
Ascia et al. [17] designed a competent specific fuzzy pro-
cessor which effectively deals with the complex fuzzy in-
ference system. In [18], Ramote et al. launched the study of
CFS in 2002. ,e two novel operations, namely, reflection
and rotations, of these sets were introduced in [19]. Zhang
et al. [20] formulated the δ-equalities of CFS. In 2011, Chen
et al. [21] developed the adaptive neuro complex fuzzy in-
ference system. In [22], Fu and Shen utilized CFS to design a
new approach of linguistic evaluation of classifier perfor-
mance. Tamir and Kandel [23] provided granted bases for
first order estimation, complex class theory, and complex
fuzzy logic in the same year. Ma et al. [24] defined product
sum accruement operator for these particular sets in 2012. Li
et al. [25] presented a new self-learning complex neuro fuzzy
system using the same idea. In 2014, Alkouri and Salleh [26]
illustrated many important multiple distance measures
defined on CFS. In 2015, Tamir et al. [27] reintroduced the
concept of CFS and complex fuzzy logic in a more logical
way. Al-Husban and Salleh [28] interpreted the study of
complex fuzzy hyper structure over complex fuzzy space in
2016. ,e phenomenon of CFSG over complex fuzzy space
was discussed in [29]. ,e operator theory has an important
role in modern mathematics because it is extensively used in
fuzzy theory for approximate reasoning. ,e techniques of
t-norms and t-co-norms with respect to complex fuzzy sets
were presented by Nagarajan et al. [30]. For more on fuzzy
set theory, we suggest reading of [31–35].,e competency of
the complex fuzzy set has played an effective role to solve
many physical problems. It provides us the meaningful
representations of measuring uncertainty and periodicity.
Despite all of these advantages, we still face vast compli-
cations to counter various physical situations based on a
complex-valued membership function. ,is motivates us to
define the notion of ξ-complex fuzzy set (ξ-CFS) through
which one can have multiple options to investigate a specific
real-world situation in much efficient way by choosing
appropriate value of the parameter ξ.

In this article, we propose the idea of ξ-CFS as a powerful
extension of classical fuzzy set and use this idea to define the
notion of the cut sets of these particular sets. We explore the
importance of these cut sets by proving the decomposition
theorems for a ξ-CFS. Moreover, we introduce the

phenomenon of ξ-complex fuzzy subgroup (ξ-CFSG) over
an ξ-complex fuzzy set and investigate some of their fun-
damental algebraic attributes.

After a brief discussion about the historical background
and significance of CFS, the rest of the article is organized as
follows. Section 2 contains some definitions of the basic
introduction of the concept of ξ-CFS and the study of
(α, δ)-cut sets and strong (α, δ)-cut sets of this newly defined
notion. In addition, we establish the importance of defining
these ideas by viewing an ξ-CFS as a union of nested se-
quence of both (α, δ)-cut sets and strong (α, δ)-cut sets,
respectively. Moreover, we apply ξ-CFS to a physical situ-
ation in which one may select the most suitable performance
of a participant. In Section 4, we utilize the concept of ξ-CFS
to propose the study of the idea of ξ-CFSG and prove that
each CFSG is ξ-CFSG. Moreover, we extend the importance
of these fuzzy subgroups by introducing the notions of
ξ-complex fuzzy cosets and ξ-complex fuzzy normal sub-
group (ξ-CFNSG) and investigate their many important
algebraic aspects.

2. Preliminaries

,is section contains a brief review of the notion of CFS and
related ideas, which are quite essential to understand the
novelty of this article.

Definition 1 (see [19]). A CFS A defined on a universe of
discourse U is characterized by a membership function
μA(m) that allocates each element of Uto a unit circle C∗ in
complex plane and is written as rA(m)eiωA(m), where rA(m)

denotes the real-valued function from U to the closed unit
interval and eiωA(m) is a periodic function whose periodic law
and principal period are 2π and 0< argA(m)≤ 2π,
respectively.

Note that ωA(m) � argA(m) + 2kπ, k ∈ Z and argA(m)

is the principal argument.

Definition 2 (see [8]). Let 0≤ α≤ 1 and 0≤ δ ≤ 2π. ,en, the
(α, δ)-cut set of CFS A is denoted by A(α,δ) and is defined as
A(α,δ) � m ∈ U: rA(m)≥ α,ωA(m)≥ δ􏼈 􏼉.

Definition 3 (see [31]). Let A and B be any two CFS of a
universe U. ,en,

(1) A is homogeneous CFS if rA(m)≤ rA(n) implies
ωA(m)≤ωA(n) and vice versa ∀m, n ∈ U

(2) A is homogeneous CFS with B if rA(m)≤ rB(n)

implies ωA(m)≤ωB(n) and vice versa ∀m, n ∈ U

Definition 4 (see [31]) A homogeneous CFS A of G is said to
be a CFSG if μA(mn)≥min μA(m), μA(n)􏼈 􏼉 and
μA(m− 1)≥ μA(m) ∀m, n ∈ G.

Definition 5 (see [5]). Let A be a CFSG (G) and m ∈ G.,en,
the complex fuzzy left coset of A in G is represented by
mAand is given by mA(g) � μA(m−1g): g ∈ G􏼈 􏼉.

Similarly, one can define complex fuzzy right coset of
Ain G.
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Definition 6 (see [5]). A CFSG A of a group Gis CFNSG (G)
if mA � Am,∀m ∈ G.

3. Decomposition Theorems of ξ-Complex
Fuzzy Sets

In this section, we initiate the idea of ξ-CFS as a powerful
extension of classical fuzzy sets. We also define the concepts
of (α, δ)-cut sets and strong (α, δ)-cut sets of ξ-CFS and
establish fundamental properties of these phenomena. We
also prove three decomposition theorems of ξ-CFS.

Definition 7. Let A be a CFS of a universe U and ξ � αeiδ be
an element of a unit circle with 0≤ α≤ 1 and 0≤ δ ≤ 2π.,en,
the CFS Aξ is called the ξ-complex fuzzy set (ξ-CFS) with
respect to CFS A and is expressed as μAξ(m) � min
μA(m), ξ􏼈 􏼉, ∀m ∈ U.

,e family of all ξ-CFS defined on the universe U is
denoted by Fξ(U).

Definition 8. For any Aξ and Βξ ∈ Fξ(U),

(1) ,e union of ξ-CFS Aξ and Βξ is denoted by Aξ ∪Βξ
and is defined as follows:

μAξ ∪Βξ(m) � rAξ ∪Βξ(m)e
iω

Aξ ∪Βξ (m)

� max rAξ(m), rΒξ(m)( 􏼁e
imax ω

Aξ (m),ω
Bξ (m)( ),

∀m ∈ U.

(1)

(2) ,e intersection of ξ-CFS Aξ and Bξ is denoted by
Aξ ∩Bξ and is defined as follows:

μAξ ∩Bξ(m) � rAξ ∩Bξ(m)e
iω

Aξ ∩Bξ (m)

� min rAξ(m), rBξ(m)( 􏼁e
imin ω

Aξ (m),ω
Bξ (m)( ),

∀m ∈ U.

(2)

(3) ,e complement of ξ-CFS Aξ is denoted by Aξ’ and is
described as follows:

μ
Aξ’ (m) � r

Aξ’ (m)e
iω

Aξ’ (m)

� 1 − rAξ(m)( 􏼁e
i 2π−ω

Aξ (m)( ), ∀m ∈ U.
(3)

(4) ,e product of ξ-CFS Aξ and Bξ is represented by
Aξ ∘Bξ and is expressed as follows:

μAξ ∘Bξ(m) � rAξ ∘Bξ(m)e
iω

Aξ ∘Bξ (m)

� rAξ(m).rBξ(m)( 􏼁e
i2π ω

Aξ (m)/2π( ). ω
Bξ (m)/2π( )( ),

∀m ∈ U.

(4)

(5) Let Aξ
n, n ∈ N be ξ-CFS of a universe U. ,en,

the Cartesian product of ξ-CFS Aξ
n is represented by

A
ξ
1 × A

ξ
2 × · · · × Aξ

n and is defined in the following
way:

μ
A
ξ
1×A

ξ
2×...×A

ξ
n
(m) � r

A
ξ
1×A

ξ
2×...×A

ξ
n
(m)e

iω
A
ξ
1×A

ξ
2×...×A

ξ
n

(m)

�

min r
A
ξ
1

m1( 􏼁, r
A
ξ
2

m2( 􏼁, . . . , r
A
ξ
n

mn( 􏼁􏼒 􏼓e
imin ω

A
ξ
1

m1( ),ω
A
ξ
2

m2( ),...,ω
A
ξ
n

mn( )􏼒 􏼓
,

(5)

where m � (m1, m2, · · · , mn), mi ∈ Ui, i ∈ N.

Definition 9. Let Aξ and Bξ be any two ξ-CFS of a universe
U. ,en,

(1) Aξ is homogeneous ξ-CFS if rAξ(m)≤ rAξ(n) implies
ωAξ(m)≤ωAξ(n) and vice versa ∀m, n ∈ U

(2) Aξ is homogeneous ξ-CFS with Bξ if rAξ(m)≤ rBξ(n)

implies ωAξ(m)≤ωBξ(n) and vice versa ∀m, n ∈ U

,e next result illustrates that the intersection of any two
ξ-CFS is also ξ-CFS.

Proposition 1. For any two ξ-CFS Aξand Bξ, (A∩B)ξ �

Aξ ∩Bξ

Proof. Consider μ
(A∩B)ξ

(m) � min μA∩B(m), ξ􏼈 􏼉, m ∈ U.

By applying Definition 8 (2), we have μ
(A∩B)ξ

(m) �

min(μAξ(m), μBξ(m)) � μAξ ∩Bξ(m). □

Remark 1. ,e union of any two ξ-CFS is also ξ-CFS.

Definition 10. ,e (α, δ)-cut set of ξ-CFS Aξ is represented
by A

ξ
(α,δ) and is defined as follows:

A
ξ
(α,δ) � m ∈ U: rAξ(m)≥ α,ωAξ(m)≥ δ, 0≤ α≤ 1, 0≤ δ ≤ 2π􏼈 􏼉.

(6)

Definition 11. For any Aξ ∈ Fξ(U) strong (α, δ)-cut set of
Aξ is defined as A

ξ
+(α,δ) � m ∈ U: rAξ(m)> α,ωAξ􏼈

(m)> δ, 0≤ α≤ 1, 0≤ δ ≤ 2π}.
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Definition 12. ,e level set ΩAξ of Aξ can be described as
ΩAξ � m ∈ U: rAξ(m) � α,ωAξ(m) � δ􏼈 􏼉, where α ∈ [0, 1]

and δ ∈ [0, 2π].

Theorem 1. Let Aξ and Bξ be any two ξ-CFS. <en, the
following attributes hold for any α, α′ ∈ [0, 1] and
β, β′ ∈ [0, 2π].

(1) A
ξ
+(α,δ) ⊆A

ξ
(α,δ)

(2) α≤ α′, δ ≤ δ′ implies A
ξ
(α’,δ’) ⊆A

ξ
(α,δ)

(3) (Aξ ∩Bξ)(α,δ) � A
ξ
(α,δ) ∩B

ξ
(α,δ)

(4) (Aξ ∪Bξ)(α,δ) � A
ξ
(α,δ) ∪B

ξ
(α,δ)

(5) A
ξ’
(α,δ) � (Aξ’ )+(1−α,2π−δ)

Proof

(1) In view of Definition 10, for any element m ∈ U,
rAξ(m)> α and ωAξ(m)> δ. It means that rAξ(m)≥ α
and ωAξ(m)≥ δ. ,us, A

ξ
+(α,δ)⊆ A

ξ
(α,δ).

(2) Let m ∈ U, and by applying Definition 10, we have
rAξ(m)≥ α,ωAξ(m)≥ δ. ,erefore, A

ξ
(α′ ,δ′)⊆A

ξ
(α,δ).

(3) For any m ∈ (Aξ ∩Bξ)(α,δ), we have rAξ ∩Bξ(m)≥ α
and ωAξ ∩Bξ(m)≥ δ. ,is implies that min rAξ(m),􏼈

rBξ(m)}≥ α and min ωAξ(m),ωBξ􏼈 (m)}≥ δ. ,en,
clearly, rAξ(m)≥ α, rBξ(m)≥ α and ωAξ(m)≥ δ,ωBξ

(m)≥ δ. ,erefore, m ∈ A
ξ
(α,δ) ∩B

ξ
(α,δ), and ulti-

mately, we obtain

A
ξ ∩B

ξ
􏼐 􏼑

(α,δ)
⊆Aξ

(α,δ) ∩B
ξ
(α,δ). (7)

Let m ∈ A
ξ
(α,δ) ∩B

ξ
(α,δ).

By applying Definition 10, in the above relations, we
obtain

rAξ(m)≥ α,ωAξ(m)≥ δ, rBξ(m)≥ α,ωBξ(m)≥ δ. (8)

,is shows that min rAξ(m), rBξ(m)􏼈 􏼉≥ α and min ωAξ􏼈

(m),ωBξ(m)}≥ δ.
Consequently,

A
ξ
(α,δ) ∩B

ξ
(α,δ) ⊆ A

ξ ∩B
ξ

􏼐 􏼑
(α,δ)

. (9)

From (7) and (9), the required equality holds.
(4) For any m ∈ (Aξ ∪Bξ)(α,δ), we obtain rAξ ∪Bξ(m)≥ α

and ωAξ ∪Bξ(m)≥ δ. ,erefore, max rAξ(m), rBξ􏼈

(m)}≥ α and max ωAξ(m),ωBξ(m)􏼈 􏼉≥ δ. ,is means
that rAξ(m)≥ α, rBξ(m)≥ α and ωAξ(m)≥ δ,

ωBξ(m)≥ δ.
Consequently,

A
ξ ∪B

ξ
􏼐 􏼑

(α,δ)
⊆Aξ

(α,δ) ∪B
ξ
(α,δ). (10)

Now, suppose that m ∈ A
ξ
(α,δ) ∪B

ξ
(α,δ); then, m ∈ A

ξ
(α,δ)

or m ∈ B
ξ
(α,δ). By applying Definition 10 in the above

relations, we get rAξ(m)≥ α,ωAξ(m)≥ δ or
rBξ(m)≥ α,ωBξ(m)≥ δ. It further shows that

max rAξ(m), rBξ(m)􏼈 􏼉≥ α and max ωAξ(m),ωBξ􏼈 (m)}

≥ δ.
Consequently,

A
ξ
(α,δ) ∪B

ξ
(α,δ)⊆ A

ξ ∪B
ξ

􏼐 􏼑
(α,δ)

. (11)

From (10) and (11), the required equality is satisfied.
(5) Let m ∈ A

ξ′
(α,δ), then μ

Aξ′(m) � 1 − rAξ(m)

ei(2π−ω
Aξ (m)) implying that 1 − rAξ(m)≥ α, 2π − ωAξ

(m)≥ δ.

It follows that rAξ(m)≤ 1 − α, ωAξ(m)≤ 2π − δ which
shows that m ∉ (Aξ)+(1−α,2π−δ).

,erefore, m ∈ (Aξ′)+(1−α,2π−δ) and hence

A
ξ′
(α,δ)⊆ A

ξ′
􏼒 􏼓

+(1−α,2π−δ)
. (12)

Now, suppose m ∈ (Aξ′)+(1−α,2π−δ); then, m ∉ (Aξ)+

(1 − α, 2π − δ).
,is implies that 1 − α≥ rAξ(m), ωAξ(m)≤ 2π − δ,

α≤ 1 − rAξ(m), and δ ≤ 2π − ωAξ(m).
It means that m ∈ A

ξ′
(α,δ); therefore,

A
ξ′

􏼒 􏼓
+(1−α,2π−δ)

⊆Aξ′
(α,δ). (13)

From (12) and (13), the required result is satisfied. □

Theorem 2. Let Aξ and Bξ be any two ξ-CFS. <en, the
following attributes hold for all α, α′ ∈ [0, 1] and
δ, δ′ ∈ [0, 2π]

(1) α≤ α′, δ ≤ δ′ implies A
ξ
+(α′ ,δ′)⊆A

ξ
+(α,δ)

(2) (Aξ ∩Bξ)+(α,δ) � A
ξ
+(α,δ) ∩B

ξ
+(α,δ)

(3) (Aξ ∪Bξ)(α,δ) � A
ξ
(α,δ) ∪B

ξ
(α,δ)

Theorem 3. <e following properties hold for any family of
ξ-CFS A

ξ
i , i ∈ I.

(1) ∪ i∈I(A
ξ
i )(α,δ)⊆∪ i∈I(A

ξ
i )(α,δ)

(2) ∩ i∈I(A
ξ
i )(α,δ) � ∩ i∈I(A

ξ
i )(α,δ)

Proof

(1) Let m ∈ ∪ i∈I(A
ξ
i )(α,δ); in view of Definition 10, we

get r
A
ξ
io

(m)≥ α and ω
A
ξ
io

(m)≥ δ.
,e above relation holds only if Supr

A
ξ
i

(m)≥ α and
Supω

A
ξ
i

(m)≥ δ, that is, ∪ i∈I(r
ξ
i )(m)≥ α and

∪ i∈I(ω
ξ
i )(m)≥ δ.

It follows that m ∈ ∪ i∈I(A
ξ
i )(α,δ).

(2) Let m ∈ ∩ i∈I(A
ξ
i )(α,δ); by using Definition 10, we

obtain r
A
ξ
io

(m)≥ α, ω
A
ξ
io

(m)≥ δ.

,e above inequality holds only if infr
A
ξ
i

(m)≥ α,
infω

A
ξ
i

(m)≥ δ, that is, ∩ i∈I(r
ξ
i )(m)≥ α and ∩ i∈I(ω

ξ
i )(m)

≥ δ. ,is implies that m ∈ ∩ i∈I(A
ξ
i )(α,δ). Hence, ∩ i∈I

(A
ξ
i )(α,δ)⊆∩ i∈I(A

ξ
i )(α,δ). Now, suppose that m ∈ ∩ i∈I

(A
ξ
i )(α,δ). Again, by applying Definition 10, we get

4 Complexity



r
A
ξ
i

(m)≥ α, ω
A
ξ
i

(m)≥ δ. ,en, obviously m ∈ ∩ i∈I(A
ξ
i )(α,δ).

Consequently, ∩ i∈I(A
ξ
i )(α,δ)⊆∩ i∈I(A

ξ
i )(α,δ). □

Theorem 4. Any family of ξ-CFS A
ξ
i : i ∈ I admits the fol-

lowing properties:

(1) ∪ i∈I(A
ξ
i )+(α,δ) � ∪ i∈I(A

ξ
i )+(α,δ)

(2) ∪ i∈I(A
ξ
i )+(α,δ)⊆∪ i∈I(A

ξ
i )+(α,δ)

Theorem 5. Any two ξ-CFS Aξ and Bξ satisfy the following
relations:

(1) Aξ⊆Bξ if and only if A
ξ
(α,δ)⊆B

ξ
(α,δ)

(2) Aξ � Bξ if and only if A
ξ
(α,δ) � B

ξ
(α,δ)

Proof

(1) Suppose Aξ⊆Bξ . Assume that there exist αo ∈ [0, 1]

and δo ∈ [0, 2π] such that A
ξ
(αo,δo)⊆B

ξ
(αo,δo).

It means that mo ∈ U such that mo ∈ A
ξ
(αo,δo), but

mo ∉ B
ξ
(αo,δo). ,en, rAξ(mo)≥ αo, ωAξ(mo)≥ δo, rBξ

(mo)< αo, and ωBξ(mo)< δo. Hence, rBξ(mo)<
rAξ(mo) and ωBξ(mo)<ωAξ(mo), which is contra-
diction to our supposition.
Conversely, let A

ξ
(α,δ)⊆B

ξ
(α,δ). Consider Aξ⊆Bξ , im-

plying that mo ∈ U, such thatrAξ(mo)> rBξ(mo),
ωAξ(mo)>ωBξ(mo). ,is further shows that
mo ∈ A

ξ
(α,δ) and mo ∉ B

ξ
(α,δ), which contradicts our

assumption.
(2) In a similarway,we can obtain the required equality. □

Theorem 6. Any two ξ-CFS Aξ and Bξ satisfy the following
characteristics:

(1) Aξ⊆Bξ if and only if A
ξ
+(α,δ)⊆B

ξ
+(α,δ)

(2) Aξ � Bξ if and only if A
ξ
+(α,δ) � B

ξ
+(α,δ)

Theorem 7. Every ξ-CFS Aξ satisfies the following relations:

(1) A
ξ
(α,δ) � ∩

α′ < α
δ′ < δ

A
ξ
(α′ ,δ′)

(2) A
ξ
+(α,δ) � ∪

α<α′
δ < δ′

A
ξ
(α′ ,δ′)

(3) A
ξ
(α,δ) � ∩

α′ < α
δ′ < δ

A
ξ
+(α′,δ′)

(4) A
ξ
+(α,δ) � ∪

α<α′
δ < δ′

A
ξ
+(α′ ,δ′)

Proof

(1) In view of ,eorem 1 (2),

A
ξ
(α,δ) ⊆ ∩

α′<α
δ′<δ

A
ξ
α′ ,δ′( )

,
(14)

for all α′ < α and δ′ < δ.
Next, suppose m ∈ ∩ α′ < α

δ′ < δ
A

ξ
(α′ ,δ′). Again, by applying

,eorem 1 (2), we have rAξ(m)≥ α’ and ωAξ(m)≥ δ’.
,e application of the given condition in the above

relation yields that rAξ(m)≥ α and ωAξ(m)≥ δ. ,is implies
that m ∈ A

ξ
(α,δ).

Hence,

∩ α′ < α
δ′ < δ

A
ξ
α′ ,δ′( )
⊆Aξ

(α,δ). (15)

From (14) and (15), the required equality holds. ,e
remaining parts can be proved in a similar manner. In the
following definitions, we present a new approach to define
ξ-CFS which is quite necessary to establish the proofs of
decomposition theorems. □

Definition 13. Let A
ξ
(α,δ) be a (α, δ)-cut set of Aξ ∈ Fξ(U).

,en, the ξ-CFS A
ξ∗
(α,δ) with respect to A

ξ
(α,δ) is defined as

follows:

A
ξ∗
(α,δ)(m) �

αe
iδ

,

0,

if m ∈ A
ξ
(α,δ),

otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(16)

Definition 14. Let A
ξ
+(α,δ) be a strong (α, δ) cut set of

Aξ ∈ Fξ(U). ,en, the ξ-CFS A
ξ∗
+(α,δ) with respect to A

ξ
+(α,δ)

can be described as follows:

A
ξ∗
+(α,δ)(m) �

αe
iδ

,

0,

if m ∈ A
ξ
+(α,δ),

otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

,e subsequent result illustrates the decomposition of an
ξ-CFS as a union of ξ-CFS A

ξ∗
(α,δ).

Theorem 10 (first decomposition theorem). For every
Aξ ∈ Fξ(U), Aξ � ∪

α∈[0,1]
δ∈[0,2π]

A
ξ∗
(α,δ).

Proof. Suppose rAξ(m) � u andωAξ(m) � v for a particular
m ∈ U; then,

Complexity 5



∪
α∈[0,1]

δ∈[0,2π]

A
ξ∗
(α,δ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(m) � Sup

α∈[0,1]

δ∈[0,2π]

A
ξ∗
(α,δ)(m)

� max Sup
α∈[0,u]

δ∈[0,v]

A
ξ∗
(α,δ)(m), Sup

α∈(u,1]

δ∈(v,2π]

A
ξ∗
(α,δ)(m)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(18)

Choose any α ∈ (u, 1] and δ ∈ (v, 2π], then
rAξ(m) � u< α andωAξ(m) � v< δ. ,erefore, A

ξ∗
(α,δ)

(m) �

0ei0. On the contrary, for any choice of α ∈ [0, u] and
β ∈ [0, v], we have rAξ(m) � u≥ α andωAξ(m) � v≥ δ.

,erefore, A
ξ∗
(α,δ)(m) � αeiδ, which implies that

∪
α∈[0,1]
δ∈[0,2π]

A
ξ∗
(α,δ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (m) � Sup α∈[0, u]

δ∈[0, v]

αeiδ � ueiv � μAξ (m).

,e following result describes the decomposition of Aξ as a
union of A

ξ∗
+(α,δ). □

Theorem 11 (second decomposition theorem). For every
Aξ ∈ Fξ(U), Aξ � ∪ α∈[0, 1]

δ∈[0, 2π]

A
ξ∗
+(α,δ).

Proof. Suppose rAξ(m) � u andωAξ(m) � v for a particular
m ∈ U, then

∪
α∈[0,1]

δ∈[0,2π]

A
ξ∗
+(α,δ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠(m) � Sup α∈[0,1]
δ∈[0,2π]

A
ξ∗
+(α,δ)(m)

� max Sup α∈[0,u]
δ∈[0,v]

A
ξ∗
+(α,δ)(m), Sup α∈[u,1]

δ∈[v,2π]

A
ξ∗
+(α,δ)(m)⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

� Sup α∈[0,u)
δ∈[0,v)

αe
iδ

� ue
iv

� μAξ(m).

(19)

,e decomposition of ξ CFS Aξ as a union of level sets
can be established by the following result. □

Theorem 12 (third decomposition theorem). For every
Aξ ∈ Fξ(U), Aξ � ∪ α∈ΩAξ

δ∈ΩAξ

A
ξ∗
(α,δ).

Proof. ,e proof is analogous to that of ,eorem 10.
,e following example illustrates the algebraic fact stated

in first decomposition theorem. □

Example 1. Consider the ξ-CFS:

A
ξ

�
0.2e

i0.5π

m1
+
0.4e

iπ

m2
+
0.6e

i1.2π

m3
+
0.8e

i1.8π

m4
􏼨 􏼩. (20)

For α � 0.2 and δ � 0.5π, ξ-CFS A
ξ∗
(α,δ) with respect to

ξ-CFS Aξ is given by

A
ξ∗
(0.2,0.5π) �

0.2e
i0.5π

m1
+
0.2e

i0.5π

m2
+
0.2e

i0.5π

m3
+
0.2e

i0.5π

m4
􏼨 􏼩.

(21)

Corresponding to α � 0.4 and δ � π, we have

A
ξ∗
(0.4,π) �

0e
i0

m1
+
0.4e

iπ

m2
+
0.4e

iπ

m3
+
0.4e

iπ

m4
􏼨 􏼩. (22)

Corresponding to α � 0.6 and δ � 1.2π,

A
ξ∗
(0.6,1.2π) �

0e
i0

m1
+
0e

i0

m2
+
0.6e

i1.2π

m3
+
0.6e

i1.2π

m4
􏼨 􏼩. (23)

Also, for α � 0.8 and δ � 1.8π,

A
ξ∗
(0.8,1.8π) �

0e
i0

m1
+
0e

i0

m2
+
0e

i0

m3
+
0.8e

i1.8π

m4
􏼨 􏼩. (24)

Consequently, Aξ � ∪A
ξ∗
(α,δ).

In the following example, we apply the concept of ξ-CFS
to judge the performance of an artist in an art competition.

Example 2. Let X� {a, b, c, d, e, f} be the list of 10 artists
competing in an art competition. After the initial screening
based on sketch designing, the performance of each artist is
given in Table 1.

Table 1: Performance of all artists after initial screening.

Artists Performance of the artists
rA(a) 0.2
rA(b) 0.91
rA(c) 0.5
rA(d) 0.7
rA(e) 0.4
rA(f) 0.61
rA(g) 0.72
rA(h) 0.3
rA(i) 0.8
rA(j) 0.9
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,e graphical interpretation of the above performance of
the artists is displayed in Figure 1.

Let ξ � αeiβ be a parameter to select a candidate based on
the performance to draw a sketch of a healthy environment.
,e judgment procedure has two phases α and β, where α
denotes the level of roughness of the drawing and β denotes
the use of inappropriate color in the drawing. Table 2 in-
dicates the performance of the artists after the first phase for
α � 0.7.

,e graphical interpretation of the qualified artists of
stage one is presented in Figure 2.

Table 3 indicates the performances of the qualified artists
for phase two.

,e graphical interpretation of the artists of stage two is
presented in Figure 3.

,e following outcomes indicate the performance of the
qualified artists after phase two for β � 0.5π are
ωAξ(a) � 0.5πa dm ωAξ(h) � 0.4π and final score is μAξ(a) �

0.2ei0.5π and μAξ(h) � 0.3ei0.4π . At this stage, we will use the
score function to compare the performance of the artists. For
this, we may take |a| � 0.2276 and |h| � 0.2998. ,e above
information shows that artist “h” may be considered the best
of all the artists.

4. Algebraic Attributes of ξ-Complex
Fuzzy Subgroups

In this section, we innovate the notion of ξ-CFSG defined on
ξ-CFS and establish fundamental algebraic characteristics of
this phenomenon.

Definition 15. A homogeneous ξ-CFS Aξ of a group G is
called ξ-complex fuzzy subgroup (ξ-CFSG) if Aξ admits the
following conditions:

(1) μAξ(mn)≥min μAξ(m), μAξ(n)􏼈 􏼉

(2) μAξ(m− 1)≥ μAξ(m), ∀m, n ∈ G

,e family of all ξ-CFSG defined on the group G is
denoted by Fξ(G).

Proposition 2. Each ξ-CFSG (G) Aξ satisfies the following
properties:

(1) μAξ(m)≤ μAξ(e)

(2) μAξ(mn− 1) � μAξ(e)⟹ μAξ(m) � μAξ(n),
∀m, n ∈ G

Proof

(1) Let m ∈ G; then,

μAξ(e) � μAξ mm
− 1

􏼐 􏼑

≥min μAξ(m), μAξ m
− 1

􏼐 􏼑􏼐 􏼑

� μAξ(m).

(25)

(2) Let m, n ∈ G; then,

μAξ(m) � μAξ mn
− 1

n􏼐 􏼑

≥min μAξ mn
− 1

􏼐 􏼑, μAξ(n)􏽮 􏽯

� min μAξ(e), μAξ(n)􏼈 􏼉

� μAξ(n).

(26)

In the following result, we investigate the condition
under which a given CFS is ξ-CFSG. □

Proposition 3. Let A be a CFS (G), such that μA(m− 1) �

μA(m) ∀m ∈ G.
Moreover, ξ ≤ q, where q � inf μA(m): m ∈ G􏼈 􏼉. <en, Aξ

is ξ-CFSG (G).

Proof. By using the given conditions for any m ∈ G, we
obtain μA(m)≥ ξ. ,e application of Definition 7 in the
above inequality yields that μAξ(m) � ξ. ,erefore,
μAξ(mn) � min μA(mn), ξ􏼈 􏼉 and μAξ(mn)≥min μAξ􏼈

(m), μAξ(n)}, for all m, n ∈ G. Moreover, by using the given
condition μA(m− 1) � μA(m), we get μAξ(m− 1) � μAξ(m).
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Figure 1: A graphical overview of Table 1.

Table 2: Performance of the artists after the first phase.

Artists Roughness of the sketch
rAξ (a) 0.2
rAξ (c) 0.5
rAξ (d) 0.7
rAξ (e) 0.4
rAξ (f) 0.61
rAξ (h) 0.3
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,e following result shows that every CFSG is always
ξ-CFSG. □

Proposition 4. Every CFSG A is ξ-CFSG of a group G.

Proof. By using Definition 7, for all m, n ∈ G, we have
μAξ(mn) � min μA(mn), ξ􏼈 􏼉. ,e application of Definition
13 in the above relation gives us μAξ(mn)≥min
μAξ(m), μAξ(n)􏼈 􏼉.

Moreover,

μAξ m
− 1

􏼐 􏼑 � min μA m
− 1

􏼐 􏼑, ξ􏽮 􏽯

≥min μA(m), ξ􏼈 􏼉

� μAξ(m).

(27)

Hence, A is a ξ-CFSG (G). □

Remark 2. ,e converse of Proposition 4 does not hold in
general. ,is algebraic fact may be viewed in the following
example.

Example 3. ,eCFS A defined on a G � 1, −1, i − i{ } is given
as

A(m) �
0.2e

iπ

1
+
0.4e

iπ

−1
+
0.4e

i1.2π

−i
+
0.3e

i0.9π

i
􏼨 􏼩. (28)

,e ξ-CFSG (G) corresponding to the value ξ � 0.1ei0.5π

is given by

A
ξ
(m) �

0.1e
i0.5π

1
+
0.1e

i0.5π

−1
+
0.1e

i0.5π

−i
+
0.1e

i0.5π

i
􏼨 􏼩.

(29)

Moreover, A is not CFSG (G) as A does not satisfy
Definition 4.

,e following result indicates that intersection of any
two ξ-CFSG is also ξ-CFSG.

Proposition 5. For any two Aξ, Bξ ∈ Fξ(G), (A∩B)ξ � Aξ

∩Bξ .

Proof. By using Proposition 1, for any two elements
m, n ∈ G,

μ
(A∩B)ξ(mn) � μAξ∩Bξ(mn)

� min μAξ(mn), μBξ(mn)􏼈 􏼉.
(30)

,e application of Definition 13 in the above relation
gives that

μ
(A ∩Β)ξ(mn) � min μ

(A∩Β)ξ(m), μ
(A∩Β)ξ(n)􏽮 􏽯. (31)

Moreover,
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Figure 2: A graphical interpretation of Table 2.

Table 3: Performance of the artists after the second phase.

Artists Performance of the artists
ωA(a) 0.5π
ωA(c) 0.6π
ωA(d) 1.5π
ωA(e) 0.6π
ωA(f) 0.7π
ωA(h) 0.4π
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μ
(A∩Β)ξ m

− 1
􏼐 􏼑 � μAξ∩Βξ m

− 1
􏼐 􏼑

≥min μAξ(m), μΒξ(m)􏼈 􏼉

� μ
(A∩Β)ξ(m).

(32)

,is concludes the proof. □

Theorem 13. Aξ is a ξ-CFSG (G) if and only if Aξ′ is a
ξ-CFSG (G).

Proof. Let Aξ be a ξ-CFSG. ,en,

μ
Aξ′(mn) � 1 − rAξ(mn)e

i 2π−ω
Aξ (mn)( ). (33)

By using Definition 13, we obtain

μ
Aξ′(mn)≥ 1 − min rAξ(m), rAξ(n)􏼈 􏼉e

i 2π−min ω
Aξ(m),ω

Aξ(n){ }( )

� max 1 − rAξ(m)( 􏼁, 1 − rAξ(n)( 􏼁􏼈 􏼉e
imax 2π−ω

Aξ(m)( ), 2π−ω
Aξ(n)( ){ }

≥min 1 − rAξ(m)( 􏼁, 1 − rAξ(n)( 􏼁􏼈 􏼉e
imin 2π−ω

Aξ(m)( ), 2π−ω
Aξ (n)( ){ }.

(34)

By using Definition 8 (3) in the above relation, we get
μ

Aξ′(mn) � min μ
Aξ′(m), μ

Aξ′ (n)􏽮 􏽯.
Moreover,

μ
Aξ′ m

− 1
􏼐 􏼑 � 1 − rAξ m

− 1
􏼐 􏼑e

i 2π−ω
Aξ m−1( )( )

� 1 − rAξ(m)e
i 2π−ω

Aξ (m)( )

� μ
Aξ′ (m).

(35)

Conversely, let Aξ′ be a ξ-CFSG. Assume that

μAξ(mn) � rAξ(mn)e
iω

Aξ (mn)

� 1 − 1 − rAξ(mn)e
i 2π− 2π−ω

Aξ (mn)( )( )􏼒 􏼓

≥ 1 − min 1 − rAξ(m)( 􏼁, 1 − rAξ(n)( 􏼁􏼈 􏼉e
i2π−min 2π−ω

Aξ (m)( ), 2π−ω
Aξ (n)( ){ }

� max rAξ(m), rAξ(n)( 􏼁􏼈 􏼉e
imax ω

Aξ (m),ω
Aξ (n){ }

≥min rAξ(m), rAξ(n)( 􏼁􏼈 􏼉e
imin ω

Aξ (m),ω
Aξ (n){ }

μAξ(mn) � min μAξ(m), μAξ(n)􏼈 􏼉.

(36)

Moreover,
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Figure 3: A graphical interpretation of Table 3.
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μAξ m
− 1

􏼐 􏼑 � 1 − 1 − rAξ m
− 1

􏼐 􏼑e
i2π− 2π−ω

Aξ m−1( )( )􏼒 􏼓 � rAξ(m)e
iω

Aξ (m)
� μAξ(m). (37)

□
Definition 16. Let Aξ ∈ Fξ(G), α ∈ [0, 1], and δ ∈ [0, 2π].
,en, the subgroup A

ξ
(α,δ)

with rAξ(e)≥ α and ω
Aξ(e)≥ δ is

called the level subgroup of ξ-CFSG Aξ .
In the subsequent result, we establish necessary and

sufficient condition for an ξ-CFS to be ξ-CFSG.

Theorem 14. A ξ-CFS Aξ of G is a ξ-CFSG (G) if and only if
each of its level set ΩAξ with rAξ(e)≥ α and ω

Aξ(e)≥ δ is a
subgroup of G.

Proof. Suppose ΩAξ with rAξ(e)≥ α and ω
Aξ(e)≥ δ is a

subgroup of G. Assume that rAξ(m) � α, rAξ(n) � α1,
ωAξ(m) � δ, and ωAξ(n) � δ1, for any elements m, n ∈ G. By
using Definition 10 in the above relations, we have m ∈ ΩAξ

and n ∈ Ω
A
ξ
1
. By applying ,eorem 1 (2) for α< α1 and

δ < δ1, we have n ∈ ΩAξ , since ΩAξ is a subgroup of G.
,erefore, mn ∈ ΩAξ . It shows that rAξ(mn)≥min
rAξ(m), rAξ(n)􏼈 􏼉 � α and ωAξ(mn)≥min ωAξ(m),ωAξ􏼈

(n)} � δ.
In view of Definition 10, we have

rAξ m
− 1

􏼐 􏼑≥ α � rAξ(m),

ωAξ m
− 1

􏼐 􏼑≥ δ � ωAξ(m).
(38)

Consequently, Aξ is a ξ CFSG (G). Conversely, suppose
Aξ ∈ Fξ(G). Let ΩAξ be an arbitrary level subgroup of Aξ .
Obviously, ΩAξ is nonempty as e ∈ ΩAξ , where e is the
identity element of G. For any elements m, n ∈ ΩAξ and
using the fact that Aξ ∈ Fξ(G), we have rAξ(mn)≥
min rAξ(m), rAξ(n)􏼈 􏼉 � α and ωAξ(mn)≥min ωAξ(m),􏼈

ωAξ(n)} � δ. It follows that mn ∈ ΩAξ . Moreover, for any
element m ∈ Aξ and using the fact that Aξ ∈ Fξ(G), we have
rAξ(m−1)≥ rAξ(m) � α andωAξ(m−1)≥ωAξ(m) � δ. ,ere-
fore, m−1 ∈ ΩAξ implying that ΩAξ is a subgroup of G. □

Definition 17. Let Aξ be a ξ-CFSG (G) and m ∈ G. ,en, the
ξ-complex fuzzy left coset of Aξ in G is represented by
mAξand is given by mAξ(g) � min μA(m− 1g), ξ􏼈 􏼉:􏼈

g ∈ G} � μAξ(m− 1g).
Similarly, one can define the ξ-complex fuzzy right coset

of Aξ in G.

Definition 18. A ξ-CFSG Aξ of a group G is ξ-complex fuzzy
normal subgroup (ξ-CFNSG) of G if mAξ � Aξm, ∀m ∈ G.

,e following result illustrates another characteristic of
ξ-CFNSG.

Proposition 6. Every ξ-CFNSG Aξ admits the following
property:

μAξ(mn) � μAξ(nm) for allm, n ∈ G. (39)

Proof. By using Definition 16, we have mAξ � Aξm,∀m ∈ G

By using Definition 15, the above equation gives that

mA
ξ

􏼐 􏼑n
− 1

� A
ξ
m􏼐 􏼑n

− 1∀n ∈ G,

μAξ(nm)
− 1

� μAξ(mn)
− 1

.
(40)

,is shows that μAξ(nm) � μAξ(mn). In the following
consequence, we explore the condition under which an
ξ-CFSG is ξ-CFNSG (G). □

Proposition 7. For any Aξ ∈ Fξ(G) with ξ ≤ q, where
q � Inf μA(m): m ∈ G􏼈 􏼉, then Aξ is a ξ-CFNSG (G).

Proof. By using the given condition for any m ∈ G, we have
μA(m)≥ ξ. ,e application of Definition 7 in the above
inequality yields that μAξ(m) � ξ.

,erefore,

A
ξ
m(g) � mA

ξ
(g) for allg ∈ G. (41)

Hence,

A
ξm � mA

ξ for allm ∈ G. (42)

,e following result shows that every CFNSG (G) is
ξ-CFNSG (G). □

Proposition 8. Every CFNSG (G) A is ξ-CFNSG (G).

Proof. By using Definition 6 for element m ∈ G, we have
mA(g) � Am(g). By applying Definition 5, the above re-
lation gives that μA(m− 1g) � μA(gm− 1). So, min μA􏼈

(m− 1g), ξ} � min μA(gm− 1), ξ􏼈 􏼉 implying that mAξ(g) �

Aξm(g). Consequently, mAξ � Aξm. □

Remark 3. ,e converse of Proposition 8 does not hold in
general. ,is algebraic fact may be viewed in the following
example.

Example 4. ,e CFNSG Adefined on a group G � 〈a, b:

a2 � b2 � (ab)2 � 1, ba � a2b〉 is given by

A(m) �
1e

i2π

1
+
0.9e

i1.8π

a
+
0.7e

i1.7π

a
2 +

0.5e
i1.6π

b
+
0.4e

iπ

ab
+
0.3e

i0.7π

a
2
b

􏼨 􏼩.

(43)

,e ξ-CFNSG (G) corresponding to the value
ξ � 0.3ei0.7π is given by

A
ξ
(m) �

0.3e
i0.7π

1
+
0.3e

i0.7π

a
+
0.3e

i0.7π

a
2 +

0.3e
i0.7π

b
+
0.3e

i0.7π

ab
+
0.3e

i0.7π

a
2
b

􏼨 􏼩. (44)
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Moreover, A is not CFNSG (G) because

μA(ab) � 0.4e
iπ ≠ 0.3e

i0.7π
� μA(ba). (45)

Theorem 15. For any two ξ-CFNSG Aξ and Bξ ,
(A∩B)ξ � Aξ ∩Bξ.

Proof. By using Proposition 1 for any element m ∈ G, we
have

μ
(A∩B)ξ

gm
− 1

􏼐 􏼑 � μ Aξ ∩Bξ( ) gm
− 1

􏼐 􏼑

� min μAξ gm
− 1

􏼐 􏼑, μBξ gm
− 1

􏼐 􏼑􏽮 􏽯.
(46)

,e application of Definition 16 in the above relation is
given as

μ
(A∩B)ξ

gm
− 1

􏼐 􏼑 � min μAξ m
− 1

g􏼐 􏼑, μBξ m
− 1

g􏼐 􏼑􏽮 􏽯

� μ Aξ ∩Bξ( ) m
− 1

g􏼐 􏼑.
(47)

,us, μ
(A∩B)ξ

(m− 1g) � μ
(A∩B)ξ

(gm− 1). □

Theorem 16. Aξ is a ξ-CFNSG if and only if Aξ′ is a
ξ-CFNSG.

Proof. Let Aξbe a ξ-CFNSG. ,en,

mA
ξ′

� μ
Aξ′ m

− 1
g􏼐 􏼑

� 1 − rAξ m
− 1

g􏼐 􏼑e
i 2π−ω

Aξ m−1g( )( ).
(48)

By using Definition 16, we obtain

mA
ξ′

� 1 − rAξ gm
− 1

􏼐 􏼑e
i 2π−ω

Aξ gm−1( )( )

� μ
Aξ′ gm

− 1
􏼐 􏼑.

(49)

Hence, mAξ′ � Aξ′m.
Conversely, let Aξ′ be a ξ-CFNSG. Assume that

mA
ξ

� μAξ m
− 1

g􏼐 􏼑

� rAξ m
− 1

g􏼐 􏼑e
iω

Aξ m−1g( )

� 1 − 1 − rAξ m
− 1

g􏼐 􏼑e
i 2π− 2π−ω

Aξ m−1g( )( )( )􏼒 􏼓

� 1 − μ
Aξ′ m

− 1
g􏼐 􏼑

� 1 − μ
Aξ′ gm

− 1
􏼐 􏼑

� μAξ gm
− 1

􏼐 􏼑.

(50)

,us, mAξ � Aξm. □

Proposition 9. Let Aξbe a ξ-CFSG (G). <en, the set GAξ �

m ∈ G: μAξ(m) � μAξ(e)􏼈 􏼉 is a normal subgroup of G.

Proof. Obviously, GAξ ≠∅ as e ∈ GAξ . By applying Defini-
tion 13 for any two elements m,n ∈ G, we have

μAξ mn
− 1

􏼐 􏼑≥min μAξ(m), μAξ n
− 1

􏼐 􏼑􏽮 􏽯

� μAξ(e).
(51)

,is shows that μAξ(mn− 1)≥ μAξ(e), but μAξ(mn− 1)≤
μAξ(e). Consequently, mn− 1 ∈ GAξ . Furthermore, in view of
Definition 16 for any element m ∈ GAξ and g ∈ G, we obtain

μAξ g
− 1

mg􏼐 􏼑 � μAξ(m)

� μAξ(e).
(52)

,is implies that g− 1mg ∈ GAξ . Hence, GAξ is a normal
subgroup of G. □

Proposition 10. Every ξ-CFNSG satisfies the following
relation;

If mAξ � uAξ and nAξ � vAξ, then mnAξ � uvAξ .

Proof. Since mAξ � uAξ and nAξ � vAξ , therefore
m− 1u, n− 1v ∈ GAξ .

Consider

(mn)
− 1

(uv) � n
− 1

m
− 1

u􏼐 􏼑v � n
− 1

m
− 1

u􏼐 􏼑 nn
− 1

􏼐 􏼑v

� n
− 1

m
− 1

u􏼐 􏼑n􏽨 􏽩 n
− 1

v􏼐 􏼑 ∈ GAξ .
(53)

It follows that (mn)− 1(uv) ∈ GAξ . Consequently,
mnAξ � uvAξ . □

Proposition 11. Every ξ CFNSG Aξ admits the following
characteristics:

(1) mAξ � nAξ if and only if m− 1n ∈ GAξ

(2) Aξm � Aξn if and only if mn− 1 ∈ GAξ

Proof

(1) Let mAξ � nAξand m, n ∈ GAξ . ,en, by applying
Definition 7, we have

μAξ m
− 1

n􏼐 􏼑 � min μA m
− 1

n􏼐 􏼑, ξ􏽮 􏽯

� mA
ξ
(n).

(54)

By using the given condition in the above equations, we
obtain

μAξ m
− 1

n􏼐 􏼑 � nA
ξ
(n)

� min μA n
− 1

n􏼐 􏼑, ξ􏽮 􏽯

� min μA(e), ξ􏼈 􏼉.

(55)

So, μAξ(m− 1n) � μAξ(e), implying that m− 1n ∈ GAξ .
Conversely, suppose that m− 1n ∈ GAξ . ,is implies that
μAξ(m− 1n) � μAξ(e). By applying Definition 16 for any el-
ement z ∈ G, we have
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mA
ξ
(z) � min μA m

− 1
z􏼐 􏼑, ξ􏽮 􏽯

� μAξ m
− 1

z􏼐 􏼑

� μAξ m
− 1

n􏼐 􏼑 n
− 1

z􏼐 􏼑􏼐 􏼑.

(56)

By using Definition 13 in the above equation, we obtain

mA
ξ
(z) � min μAξ(e), μAξ n

− 1
z􏼐 􏼑􏽮 􏽯

� μAξ n
− 1

z􏼐 􏼑.
(57)

Consequently, mAξ(z) � (nAξ)(z). ,e remaining part
can be proved as the first part. □

Definition 19. For any ξ-CFNSG Aξ of G, we define the set of
all ξ-complex fuzzy left cosets of G by Aξ as
G/Aξ � mAξ: m ∈ G􏽮 􏽯. ,is set forms a group under the
following binary operation (mAξ)(nAξ) � mnAξ . ,is
particular quotient group is called quotient group of G by
ξ-CFNSG Aξ .

In the following result, we establish a natural epi-
morphism between group and its quotient group defined in
Definition 17.

Theorem 17. For any ξ-CFNSG Aξ of G, there exist a natural
epimorphism φ: G⟶ G/Aξ, defined by m⟶ mAξ , m ∈ G

with kerφ � GAξ .

Proof. ,e surjectivity of the function φ is quite obvious.
Moreover, for any elements m, n ∈ G, we have
φ(mn) � mAξnAξ � φ(m)φ(n). ,erefore, φ is an epi-
morphism. Moreover, obvious φ is surjective. Now,

kerφ � m ∈ G: φ(m) � eA
ξ

􏽮 􏽯

� m ∈ G: mA
ξ

� eA
ξ

􏽮 􏽯

� m ∈ G: me
− 1 ∈ GAξ􏽮 􏽯

� GAξ .

(58)

In the following result, we establish an isomorphic
correspondence between quotient group of G by ξ-CFNSG
Aξ and quotient group G by GAξ . □

Theorem 18. Let Aξ be ξ-CFNSG and GAξ be normal sub-
group of G. <en, there exist an isomorphism between G/Aξ

and G/GAξ .

Proof. Define a mapping φ: G/Aξ⟶ G/GAξ as
φ(mAξ) � mGAξ . For any xAξ , yAξ ∈ G/Aξ , we have

φ mA
ξ
nA

ξ
􏼐 􏼑 � φ mnA

ξ
􏼐 􏼑

� mnGAξ

� mGAξnGAξ

� φ mA
ξ

􏼐 􏼑φ nA
ξ

􏼐 􏼑.

(59)

,is shows that φ is homomorphism.

Moreover, for any mAξ , nAξ ∈ G/Aξ , we have

φ mA
ξ

􏼐 􏼑 � φ nA
ξ

􏼐 􏼑,

mGAξ � nGAξ ,

n
− 1

mGAξ � GAξ ,

(60)

which shows that n− 1mGAξ ∈ GAξ .
By applying,eorem 16 in the above relation yields that

mAξ � nAξ . Moreover, the surjective case is quite obvious.
Consequently, φ is an isomorphism between G/Aξ and
G/GAξ . □

5. Conclusion

In this paper, we first present the ξ-CFS which is completely
a new notion. We have utilized this phenomena to define the
(α, δ)-cut sets and strong (α, δ)-cut sets and have proved the
representation of an ξ-CFS in the framework of these sets.
Moreover, the notions of ξ-CFSG and level subgroups of
these groups have also been defined in this article. In ad-
dition, a necessary and sufficient condition for an ξ-CFS to
be a ξ-CFSG has also been investigated. Moreover, an iso-
morphism has been established between the quotient groups
of a group G by its ξ-CFNSG and a normal subgroup GAξ .
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