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In this paper, we study an avian (host) stage-structured West Nile virus model, which incorporates seasonality as well as stage-
specific mosquito biting rates. We first introduce the basic reproduction number R0 for this model and then show that the disease-
free periodic solution is globally asymptotically stable when R0 < 1, while there exists at least one positive periodic solution and
that the disease is uniformly persistent if R0 > 1. In the case where all coefficients are constants, for a special case, we obtain the
global stability of the disease-free equilibrium, the uniqueness of the endemic equilibrium, and the permanence of the disease in
terms of the basic reproduction number R0. Numerical simulations are carried out to verify the analytic result. Some sensitivity
analysis of R0 is performed. Our finding shows that an increase in juvenile exposure will lead to more severe transmission.
Moreover, we find that the ignorance of the seasonality may result in underestimation of the basic reproduction number R0.

1. Introduction

West Nile virus (WNV) is a flavivirus commonly found in
Africa, West Asia, and the Middle East. *e virus can infect
humans, birds, mosquitoes, horses, and some other mam-
mals. It was believed that WNV is maintained in nature in a
mosquito-bird-mosquito transmission cycle [1–4]. Since the
first outbreak in New York in 1999, West Nile virus remains
an annual public health concern.*erefore, it is important to
understand the transmission dynamics of WNV in the
mosquito-bird population.

Mathematical models have played a significant role in
understanding and analyzing the WNV transmission dy-
namics. Wonham et al. [5] presented a single-season
susceptible-infectious-removed (SIR) model for WNV
transmission in the mosquito-bird population. Lewis et al.
[6] developed a reaction-diffusion model for the spatial
spread of WNV, established the existence of traveling
waves, and calculated the spatial spread rate of infection.
Liu et al. [7] formulated a patchy model and studied the
impact of directional dispersal of birds on the spatial
spreading of WNV. Cruz-Pacheco et al. [8] studied the

impact of seasonal variations on the dynamics of WNV
infection. Seasonality of WNV has also been discussed in
[9, 10]. In a more recent work by Fan et al. [11], they
formulated and analyzed a single-season model for the
transmission of WNV between vector mosquitoes and
avian hosts, and their model incorporated maturation delay
for mosquitoes. Further work has also been carried out to
model the WNV transmission dynamics; see, e.g., Jiang
et al. [12], Bergsman et al. [13], Zhang et al. [14], Xu et al.
[15], Lin and Zhu [16], Chen et al. [17], and the references
therein.

*ough mathematical modelling for the transmission of
WNV has been studied extensively, the effect of within-
species variability, such as differences among host age
groups, along with species-specific host feeding preferences
of vectors seem to have received little attention. It is obvious
that since newly hatched, or nestlings, have little feather
coverage, are largely immobile, and have more exposure to
mosquito bites relative to older birds. *e fledglings that
have left the nest have nearly complete feather coverage and
exhibit some antimosquito defensive behaviors. *e fledg-
lings are more exposed to vectors than mature adult birds,
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but less than nestlings [18]. Also, the climate effect on the
dynamics of vector population and the biting rate from
mosquitoes to birds cannot be neglected. Transmission of
WNV inmost regions of the United States is highly seasonal.
Seasonality is strongly influenced by climatic factors. Due to
these reason, in [18], Robertson and Caillou€et [18] developed
a host-vector model for WNV transmission dynamics across
a single season, which incorporated the host stage-structure
as well as stage-specific biting rates of vectors on avian hosts.
*ey mainly studied the model from the numerical simu-
lation point of view.

In this paper, by taking into account the seasonality, the
avian stage-structure and within-species heterogeneity, we
derive a periodic model to describe the dynamics of WNV
transmission.*e rest of the paper is organized as follows. In
Section 2, we present themodel rigorously and study its well-
posedness, and then we introduce the basic reproduction
number R0. In Section 3, we study the threshold dynamics in
terms of R0. In Section 4, for a special case, we study the
autonomous case of the periodic model and prove the global
stability of the disease-free equilibrium and the permanence
of the system. In Section 5, we carry out numerical simu-
lations to illustrate the obtained results. A brief discussion
section completes the paper.

2. Model Formulation

Our model was built on the framework of [18]. *e host
population is divided into three stages, nestlings, fledglings,
and adults. Each stage the birds are classified into three
categories: the susceptible class (NS, FS, AS), infectious class
(NI, FI, AI), and recovered class (NR, FR, AR). *e total
number of nestlings, fledglings, and adults are denoted by
NT � NS + NI + NR, FT � FS + FI + FR, and AT � AS +

AI + AR, respectively. *e mosquito population is divided
into three epidemiological classes: the susceptible class MS,
exposed class ML, and infectious class MI. *e total number
of mosquito population is denoted by M, and then
M � MS + ML + MI.

Susceptible nestlings are produced at rate b(t), mosquito
bites are distributed among the avian stage classes. *e

fraction of bites going to nestlings, fledglings, and adults is
given by αN(t), αF(t), and αA(t), respectively:

αN(t) �
aN(t)NT(t)

aN(t)NT(t) + aF(t)FT(t) + aA(t)AT(t)
,

αF(t) �
aF(t)FT(t)

aN(t)NT(t) + aF(t)FT(t) + aA(t)AT(t)
,

αA(t) �
aA(t)AT(t)

aN(t)NT(t) + aF(t)FT(t) + aA(t)AT(t)
,

(1)

where aN(t), aF(t), and aA(t) are the exposure coefficients
for each stage.

Susceptible nestlings, fledglings, and adults can move
into the infectious nestling, fledgling, and adult class, re-
spectively, upon being bitten by an infectious mosquito. *e
probability of mosquito to bird transmission per bite are
assumed to be stage-dependent and is given by βi(t),
i � N, F, A. *e stage-dependent disease-induced death rate
is given by ]i(t), i � N, F, A, and each stage recovers at rate
ci(t), i � N, F, A. Nestlings mature into fledglings at rate
mN(t) and fledglings mature into adults at rate mF(t).
Natural mortality rates are given by μi(t), i � N, F, A. *e
probability of bird-mosquito transmission per bite is also
assumed to be stage-dependent and is denoted by δi(t),
i � N, F, A. Latent mosquitoes transition to infectious
mosquitoes at rate k(t). Due to their relatively short life-
cycle, we assume that mosquitoes never recover from in-
fection after they are infected, and their infective period ends
with their death. We assume all mosquitoes are born into the
susceptible class. A density-dependent logistic-type birth
rate (due to competition for environmentally limited
breeding sites) with intrinsic per capita birth rate r(t) and
carrying capacity K(t) is assumed, and the death rate for the
mosquito population is denoted by μM(t). We assume the
biting rate on competent avian hosts is a(t), then the force of
infection at time t for the susceptible nestlings, fledglings,
adults, and susceptible mosquitoes are, respectively, given by

λ1(t) ≔ a(t)αN(t)βN(t)MI(t)
NS(t)

NT(t)
�

a(t)aN(t)βN(t)MI(t)NS(t)

aN(t)NT(t) + aF(t)FT(t) + aA(t)AT(t)
,

λ2(t) ≔ a(t)αF(t)βF(t)MI(t)
FS(t)

FT(t)
�

a(t)aF(t)βF(t)MI(t)FS(t)

aN(t)NT(t) + aF(t)FT(t) + aA(t)AT(t)
,

λ3(t) ≔ a(t)αA(t)βA(t)MI(t)
AS(t)

AT(t)
�

a(t)aA(t)βA(t)MI(t)AS(t)

aN(t)NT(t) + aF(t)FT(t) + aA(t)AT(t)
,

λ4(t) ≔ a(t) αN(t)δN(t)
NI(t)

NT(t)
+ αF(t)δF(t)

FI(t)

FT(t)
+ αA(t)δA(t)

AI(t)

AT(t)
 MS(t)

� a(t)
aN(t)δN(t)NI(t) + aF(t)δF(t)FI(t) + aA(t)δA(t)AI(t)

aN(t)NT(t) + aF(t)FT(t) + aA(t)AT(t)
 MS(t).

(2)
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Consequently, we propose the following model of West
Nile virus:

dNS(t)

dt
� b(t) − λ1(t) − σN(t)NS(t),

dNI(t)

dt
� λ1(t) − σN(t) + ηN(t)( NI(t),

dNR(t)

dt
� cN(t)NI(t) − σN(t)NR(t),

dFS(t)

dt
� mN(t)NS(t) − λ2(t) − σF(t)FS(t),

dFI(t)

dt
� λ2(t) + mN(t)NI(t) − σF(t) + ηF(t)( FI(t),

dFR(t)

dt
� cF(t)FI(t) + mN(t)NR(t) − σF(t)FR(t),

dAS(t)

dt
� mF(t)FS(t) − λ3(t) − μA(t)AS(t),

dAI(t)

dt
� λ3(t) + mF(t)FI(t) − σA(t)AI(t),

dAR(t)

dt
� cA(t)AI(t) + mF(t)FR(t) − μA(t)AR(t),

dMS(t)

dt
� r(t)M(t) 1 −

M(t)

K(t)
  − λ4(t) − μM(t)MS(t),

dML(t)

dt
� λ4(t) − k(t)ML(t) − μM(t)ML(t),

dMI(t)

dt
� k(t)ML(t) − μM(t)MI(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where

σN(t) � mN(t) + μN(t),

σF(t) � mF(t) + μF(t),

σA(t) � cA(t) + μA(t) + ]A(t),

ηN(t) � cN(t) + ]N(t),

ηF(t) � cF(t) + ]F(t).

(4)

Note that if all the parameters in (3) are positive con-
stants except for that b(t) and μM(t) are time-dependent,
then this system has the same form as equation (3) in [18].

We assume that ]i(t)≥ 0, i � N, F, A, are continuous
ω-periodic functions, and all the other parameters are
continuous and positive ω-periodic functions for some
ω> 0. All parameters and their biological interpretations
are given in Table 1.

In order to avoid the extinction of the mosquito pop-
ulation, we make the following assumption throughout this
paper:

(A1)r(t)> μM(t), ∀t≥ 0. (5)

Since the carrying capacity of the mosquito population
K(t) is time-dependent, to prove the well-posedness of
system (3), we need to impose a condition on this function.
*roughout this paper, we require the following condition:

dK(t)

dt
≥ − μM(t)K(t). (6)

For the whole mosquito population, we have

dM(t)

dt
� r(t)M(t) 1 −

M(t)

K(t)
  − μM(t)M(t). (7)

*en, K(t) is an upper solution of (7), which means that
if M(0)≤K(0), then M(t)≤K(t) for all t≥ 0.

For continuous positive ω-periodic function g(t), let

g
u

� max
t∈[0,ω]

g(t),

g
l

� min
t∈[0,ω]

g(t).
(8)

Model (3) is mathematically and epidemiologically well
posed on the region D(t) given by

D(t) � NS, NI, NR, FS, FI, FR, AS, AI, AR, MS, MI, MR( 

∈ R12
+

 0<NT + FT + AT ≤
bu

μ
, MS + ML + MI ≤K(t),

(9)

where μ � min μl
N, μl

F, μl
A .

Theorem 1. For any initial value z in D(t), system (3) has
a unique nonnegative solution through z for all t≥ 0, and
all solutions are ultimately bounded and uniformly
bounded.

Proof. Let G(t, z) be the vector field described by (3) with
z ∈ D(t). *en, G(t, z) is continuous and Lipschitizian in z
on each compact subset of R1 × D(t). Clearly, Gi(t, z)≥ 0
whenever z≥ 0 and zi � 0, i � 1, . . . , 12. It follows from
*eorem 5.2.1 in Smith [19] that there exists a unique
nonnegative solution for system (3) through z ∈ D(t) in its
maximal interval of existence. *e total numbers for birds
satisfies
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d NT + FT + AT( 

dt
� b(t) − μN(t)NT − μF(t)FT − μA(t)AT

− ]N(t)NI − ]F(t)FI − ]A(t)AI,

(10)

and it follows that

b
l
− (μ + ]) NT + FT + AT( ≤

d NT + FT + AT( 

dt
≤ b

u

− μ NT + FT + AT( ,

(11)

where μ � max μu
N, μu

F, μu
A  and ] � max ]u

N, ]u
F, ]u

A . *us,
we have

0<NT(t) + FT(t) + AT(t)≤
bu

μ
, (12)

for each z ∈ D(t), t≥ 0.
By Lemma 1 in Teng et al. [20], (7) has a unique positive

ω-periodic solution M∗(t) which is globally asymptotically
stable with respect to M(0)> 0, that is,

lim
t⟶∞

M(t) − M
∗
(t)(  � 0, forM(0)> 0. (13)

It follows that the solutions are ultimately bounded.
Hence, every solution of (3) exists for all t≥ 0. Since
M(t)≤K(t), for all t≥ 0, and K(t) is a positive ω-periodic
function, this implies that all solutions are uniformly
bounded.

From the proof of*eorem 1, we know that any solution
of (3) with initial condition in D(t) will remain in D(t) for
all t≥ 0, then D(t) is positively invariant.

We define the diseased classes as the birds or mosquito
populations that are either exposed or infectious, i.e.,

NI, FI, AI, ML, and MI. To find the disease-free state, letting
NI � FI � AI � ML � MI � 0, we then obtain

dNS(t)

dt
� b(t) − σN(t)NS(t),

dNR(t)

dt
� − σN(t)NR(t),

dFS(t)

dt
� mN(t)NS(t) − σF(t)FS(t),

dFR(t)

dt
� mN(t)NR(t) − σF(t)FR(t),

dAS(t)

dt
� mF(t)FS(t) − μA(t)AS(t),

dAR(t)

dt
� mF(t)FR(t) − μA(t)AR(t),

dMS(t)

dt
� r(t)MS(t) 1 −

MS(t)

K(t)
  − μM(t)MS(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

It is easy to see that the ordinary differential system
dNS(t)/dt � b(t) − σN(t)NS(t) has a globally attractive
positive ω-periodic solution N∗S(t), that is, limt⟶∞
(NS(t) − N∗S(t)) � 0. *en, by the third and fifth equations
in (14), there exist positive ω-periodic solutions F∗S(t) and
A∗S(t) such that limt⟶∞(FS(t) − F∗S(t)) � 0 and limt⟶∞
(AS(t) − A∗S(t)) � 0. Hence, there is only one disease-free
state,
E0(t) � (N∗S(t), 0, 0, F∗S(t), 0, 0, A∗S(t), 0, 0, M∗(t), 0, 0),
where M∗(t) is the positive periodic solution of (7). *ere
exists another trivial periodic solution, E00(t) � (N∗S(t),

0, 0, F∗S(t), 0, 0, A∗S(t), 0, 0, 0, 0, 0).
Let (Rn,Rn

+) be the standard ordered n-dimensional
Euclidean space with a norm ‖·‖. For u, v ∈ Rn, we denote
u≥ v, if u − v ∈ Rn

+; u> v, if u − v ∈ Rn
+\ 0{ }; u≫ v, if

u − v ∈ Int(Rn
+).

Let A(t) be a continuous, cooperative, irreducible, and
periodic n × n matrix function with period ω> 0 and ΦA(t)

be the fundamental solution matrix of the linear ordinary
differential equation:

_x � A(t)x. (15)

Let r(ΦA(ω)) be the spectral radius of ΦA(ω). By
Perron–Frobenius theorem, r(ΦA(ω)) is the principle ei-
genvalue of ΦA(ω), in the sense that it is simple and admits
an eigenvector v∗ ≫ 0. *e following lemma is useful for our
discussion in the Section 3.

Lemma 1 (see [21], Lemma 1). Let p � 1/ω ln r(ΦA(ω)).
7en, there exists a positive ω-periodic function v(t) such that
eptv(t) is a solution of (15).

Table 1: Parameters of model (3) and their interpretations.

Parameter Description
b(t) Nestling recruitment rate
a(t) Biting rate on competent avian hosts
aN(t), aF(t),
aA(t)

Exposure coefficients of nestling, fledgling and
adult

r(t) Mosquito per capita birth rate
K(t) Mosquito carrying capacity
μM(t) Vector mortality rate
1/k(t) Virus extrinsic incubation period
mN(t), mF(t) Maturation rates of nestling and fledgling
cN(t), cF(t),
cA(t)

Recovery rates of nestling, fledgling, and adult

μN(t), μF(t),
μA(t)

Natural mortality rates of nestling, fledgling,
and adult

βN(t), βF(t),
βA(t)

Susceptibility of nestling, fledgling and adult

δN(t), δF(t),
δA(t)

Infectivity of nestling, fledgling, and adult

]N(t), ]F(t),
]A(t)

Disease-induced death rates of nestling,
fledgling, and adult
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Now we introduce the basic reproduction number of (3),
by applying the theory in Wang and Zhao [22] with

F(t) �

0 0 0 0
bN(t)N∗S(t)

Θ

0 0 0 0
bF(t)F∗S(t)

Θ

0 0 0 0
bA(t)A∗S(t)

Θ

cN(t)M∗(t)

Θ
cF(t)M∗(t)

Θ
cA(t)M∗(t)

Θ
0 0

0 0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

V(t) �

σN(t) + ηN(t) 0 0 0 0

− μN(t) σF(t) + ηF(t) 0 0 0

0 − mF(t) σA(t) 0 0

0 0 0 k(t) + μM(t) 0

0 0 0 − k(t) μM(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(16)

where bx(t) � a(t)ax(t)βx(t), cx(t) � a(t)ax(t)δx(t)(x �

N, F or A), andΘ � aN(t)N∗S(t) + aF(t)F∗S(t) + aA(t)A∗S(t).
Let Y(t, s) be a 5× 5 matrix solution of the system:
z

zt
Y(t, s) � − V(t)Y(t, s), for any t≥ s, Y(s, s) � I,

(17)

where I is a 5×5 identity matrix.
Let Cω be the ordered Banach space of all ω-periodic

function from R⟶ R5, which is equipped with maximum
norm ‖·‖∞ and the positive cone C+

ω � ϕ ∈ Cω: ϕ(t)≥

0, for any t ∈ R}. Consider the following linear operator
L: Cω⟶ Cω by

(Lϕ)(t) � 
+∞

0
Y(t, t − a)F(t − a)ϕ(t − a)da,

for any t ∈ R, ϕ ∈ Cω.

(18)

Finally, we can define the spectral radius of L as the basic
reproduction number R0 of (3) as follows:

R0 � r(L). (19)

From the abovementioned discussion, we obtain the
following results for the local asymptotic stability of the
disease-free periodic solution E0(t) � (N∗S(t), 0, 0, F∗S(t), 0,

0, A∗S(t), 0, 0, M∗(t), 0, 0).

Lemma 2 (see [22], *eorem 2.2). 7e following statements
are valid:

(i) R0 � 1 if and only if r(ΦF− V(ω)) � 1
(ii) R0 > 1 if and only if r(ΦF− V(ω))> 1
(iii) R0 < 1 if and only if r(ΦF− V(ω))< 1

*us, the disease-free periodic solution E0(t) � (N∗S
(t), 0, 0, F∗S(t), 0, 0, A∗S(t), 0, 0, M∗(t), 0, 0) of (3) is asymp-
totically stable if R0 < 1 and unstable if R0 > 1.

Let W(t, λ) be the monodromy matrix of the following
linear ω-periodic system:

dW(t)

dt
� − V(t) +

F(t)

λ
 W(t), t ∈ R, (20)

with parameter λ ∈ (0,∞). Since F(t) is nonnegative and
− V(t) is cooperative, it follows that r(W(ω, λ)) is contin-
uous and nonincreasing for λ ∈ (0,∞) and limλ⟶∞
r(W(ω, λ))< 1. *en, we have the following result, which
will be used in our numerical calculation of the basic re-
production number in Section 5.

Lemma 3 (see [22], *eorem 1). 7e following statements
are valid:

(i) If r(W(ω, λ)) � 1 has a positive solution λ0, then λ0
is an eigenvalue of L, and hence R0 > 0

(ii) If R0 > 0, then λ � R0 is the unique solution of
r(W(ω, λ)) � 1

(iii) R0 � 0 if and only if r(W(ω, λ))< 1 for all λ> 0.

3. Threshold Dynamics

In this section, we study the global dynamics of system (3) in
terms of the basic reproduction number. *e following
theorem shows that when the disease-induced death rates
are equal to zero, and then the disease will be cleared from
the populations if R0 < 1.
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Theorem 2. Let (A1) hold. If R0 < 1 and ]N(t) � ]F(t) �

]A(t) � 0, then the disease-free periodic solution E0(t) � (N∗S
(t), 0, 0, F∗S(t), 0, 0, A∗S(t), 0, 0, M∗(t), 0, 0) is globally as-
ymptotically stable in the sense that for any u(0) � x0 ∈ D(t)

with u10(0) + u11(0) + u12(0)> 0, and the solution u(t, x0) of
system (3) through x0 at t � 0 satisfies
lim

t⟶∞
u t, x

0
  − N

∗
S(t), 0, 0, F

∗
S(t), 0, 0, A

∗
S(t), 0, 0, M

∗
(t), 0, 0(   � 0.

(21)

If R0 > 1, E0(t) � (N∗S(t), 0, 0, F∗S(t), 0, 0, A∗S(t), 0, 0,

M∗(t), 0, 0) is unstable.

Proof. By Lemma 2, we know that E0(t) is unstable if R0 > 1,
and if R0 < 1, then E0(t) is locally stable. Hence, it is suf-
ficient to show the global attractivity of E0(t) for R0 < 1.

Let Mε(t) � Fε(t) − V(t), with

Fε(t) �

0 0 0 0
bN(t) N∗S(t) + ε( 

Θε

0 0 0 0
bF(t) F∗S(t) + ε( 

Θε

0 0 0 0
bA(t) A∗S(t) + ε( 

Θε

cN(t) M∗(t) + ε( )

Θε
cF(t) M∗(t) + ε( )

Θε
cA(t) M∗(t) + ε( )

Θε
0 0

0 0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (22)

where Θε � aN(t)(N∗S(t) − ε) + aF(t)(F∗S(t) − ε) + aA(t)

(A∗S (t) − ε). By Lemma 2, if R0 < 1, we have r(ΦF− V(ω))< 1,
and we can restrict ϵ> 0 small enough such that
r(ΦMε

(ω))< 1.
Since ]N(t) � ]F(t) � ]A(t) � 0, we then get the fol-

lowing equations:

dNT(t)

dt
� b(t) − σN(t)NT(t),

dFT(t)

dt
� mN(t)NT(t) − σF(t)FT(t),

dAT(t)

dt
� mF(t)FT(t) − μA(t)AT(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

It is easy to see that system (23) has a globally attractive
ω-periodic solution (N∗S(t), F∗S(t), A∗S(t)), that is,
limt⟶∞(NT(t) − N∗S(t)) � 0, limt⟶∞(FT(t) − F∗S(t)) � 0,

and limt⟶∞(AT(t) − A∗S(t)) � 0. *erefore, there exists an
ε> 0 and a T1 > 0 such that, for any t≥T1, we have

N
∗
S(t) − ε<NT(t)<N

∗
S(t) + ε,

F
∗
S(t) − ε<FT(t)<F

∗
S(t) + ε,

A
∗
S(t) − ε<AT(t)<A

∗
S(t) + ε.

(24)

*us, when t≥T1, we have

dNI(t)

dt
≤

bN(t) N∗S(t) + ε( 

Θε
MI(t) − σN(t) + ηN(t)( NI(t),

dFI(t)

dt
≤

bF(t) F∗S(t) + ε( 

Θε
MI(t) + mN(t)NI(t) − σF(t) + ηF(t)( FI(t),

dAI(t)

dt
≤

bA(t) A∗S(t) + ε( 

Θε
MI(t) + mF(t)FI(t) − σA(t)AI(t),

dML(t)

dt
≤ cN(t)NI(t) + cF(t)FI(t) + cA(t)AI(t)( 

M∗(t) + ε
Θε

,

dMI(t)

dt
� k(t)ML(t) − μM(t)MI(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)
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By Lemma 1, there exists a positive ω-periodic function
v(t) such that u(t) � eptv(t) is a solution of
u′(t) � Mε(t)u(t), where p � 1/ω ln(r(ΦMε

(ω)))< 0. We
see that u(t)⟶ 0 as t⟶∞. Using the standard com-
parison principle, we have

lim
t⟶∞

NI(t), FI(t), AI(t), ML(t), MI(t)(  � (0, 0, 0, 0, 0).

(26)

It then follows from the theory of asymptotically peri-
odic semiflow (see [23], *eorem 3.2.1]) that

lim
t⟶∞

NR(t), FR(t), AR(t)(  � (0, 0, 0),

lim
t⟶∞

NS(t) − N
∗
S(t), FS(t) − F

∗
S(t), AS(t)(

− A
∗
S(t), MS(t) − M

∗
(t)) � (0, 0, 0, 0).

(27)

*is completes the proof.
*e following result shows the uniform persistence of the

disease if R0 > 1.

Theorem 3. Let (A1) hold. If R0 > 1, then system (3) admits
at least one positive periodic solution, and there exists a
positive constant η> 0 such that any solution (NS(t), NI(t),

NR(t), FS(t), FI(t), FR(t), AS(t), AI(t), AR(t), MS(t), ML
(t), MI(t)) of (3) in D(t) with NI(0)> 0, FI(0)> 0,
AI(0)> 0, ML(0)> 0, and MI(0)> 0 satisfies

lim inf
t⟶∞

NI(t), FI(t), AI(t), ML(t), MI(t)( ≥ (η, η, η, η, η).

(28)

Proof. Define

X ≔ R
12
+ ,

X0 ≔ NS, NI, NR, FS, FI, FR, AS, AI, AR, MS, ML, MI( 

∈ X: NI > 0, FI > 0, AI > 0, ML > 0, MI > 0,

zX0 ≔ X\X0.

(29)

Let P be the Poincare′ map associated with (3), i.e.,

P x0(  � u ω, x0( , forx0 ∈ R
12
+ , (30)

where u(t, x0) is the unique solution of (3) with
u(0, x0) � x0.

It then suffices to show that (3) is uniformly persistent
with respect to (X0, zX0). Note that both X and X0 are
positively invariant. Further, *eorem 1 means that (3) is

point dissipative. It is apparent that zX0 is relatively closed
in X.

Set x0 � (N0
S, N0

I , N0
R, F0

S, F0
I , F0

R, A0
S, A0

I , A0
R, M0

S, M0
L,

M0
I ) ∈ X0. Let u(t, x0) � NS(t, x0), NI(t, x0),( NR(t, x0),

FS(t, x0), FI(t, x0), FR(t, x0), AS(t, x0), AI(t, x0), AR(t,

x0), MS(t, x0), ML(t, x0), MI(t, x0)) be the solution of (3)
through x0 at t � 0. Let M1 � (N∗S0, 0, 0, F∗S0, 0, 0,

A∗S0, 0, 0, M∗S0, 0, 0), and M2 � (N∗S0, 0, 0, F∗S0, 0, 0, A∗S0,

0, 0, 0, 0, 0), where N∗S0(0) � N∗S(0), F∗S0(0) � F∗S(0),
A∗S0(0) � A∗S(0), and M∗S0(0) � M∗S(0).

Since limx0⟶M1
(u(t, x0) − u(t, M1)) � 0 uniformly for

t ∈ [0,ω], then for any ε> 0, there exists δ1 > 0 such that.

u t, x0(  − u t, M1( 
����

����≤ ε, ∀t ∈ [0,ω], x0 − M1
����

����≤ δ1.
(31)

*en, we have the following claim.

Claim 1. lim supm⟶∞ d(Pm(x0), M1)≥ δ1, for all x0 ∈ X0.

If not, then

lim sup
m⟶∞

d P
m

x0( , M1( < δ1, (32)

for some x0 ∈ X0. Without loss of generality, we can assume
that

d P
m

x0( , M1( < δ1, (33)

for all m> 0. *en, we know that

u t, P
m

x0( (  − u t, M1( 
����

����≤ ε, ∀t ∈ [0,ω], for any m> 0.

(34)

For any t≥ 0, let t � mω + t1, where t1 ∈ [0,ω) and
m � [t/ω], which is the greatest integer less than or equal to
t/ω. *en, we have

u t, x0(  − u t, M1( 
����

���� � u t1, P
m

x0( (  − u t1, M1( 
����

����≤ ε, ∀t≥ 0.

(35)

It follows that N∗S(t) − ε≤NS(t)≤N∗S(t) + ε, 0<
NI(t)≤ ε, 0≤NR(t)≤ ε, F∗S(t) − ε≤FS(t)≤F∗S(t) + ε, 0<
FI(t)≤ ε, 0≤FR(t)≤ ε, A∗S(t) − ε≤AS(t)≤A∗S(t) + ε, 0<
AI(t)≤ ε, 0≤AR(t)≤ ε, and M∗(t) − ε≤MS(t)≤M∗(t) + ε,
0<ML(t)≤ ε, 0<MI(t)≤ ε, and this, together with (3),
implies

J′(t)≥ Aε(t) − V(t)( J(t), (36)

where J(t) � (NI(t), FI(t), AI(t), ML(t), MI(t))T and
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Aε(t) �

0 0 0 0
bN(t) N∗S(t) − ε( 

Δε

0 0 0 0
bF(t) F∗S(t) − ε( 

Δε

0 0 0 0
bA(t) A∗S(t) − ε( 

Δε

cN(t) M∗(t) − ε( )

Δε
cF(t) M∗(t) − ε( )

Δε
cA(t) M∗(t) − ε( )

Δε
0 0

0 0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (37)

where Δε � aN(t)(N∗S(t) + 3ε) + aF(t)(F∗S(t) + 3ε) + aA
(t)(A∗S(t) + 3ε). By Lemma 2, we know that r(ΦF− V(ω))> 1,
then we can choose ε> 0 small enough, such that
r(ΦAε− V(ω))> 1. Again by Lemma 1 and the standard
comparison principle, there exists a positive ω-periodic
function v(t) such that J(t)≥ eμtv(t), where
μ � 1/ω ln r(ΦAε− V(ω))> 0, which implies that
NI(t)⟶∞, FI(t)⟶∞, AI(t)⟶∞, ML (t)⟶∞,

MI(t)⟶∞, which leads to a contradiction.
Since M∗(t) is a positive periodic solution, we can

choose a small positive number δ2 such that

3δ2 < inf
t≥0

M
∗
(t). (38)

Since limx0⟶M2
(u(t, x0) − M2) � 0 uniformly for

t ∈ [0,ω], there exists η1 > 0 such that

u t, x0(  − M2
����

����≤ δ2, for all t ∈ [0,ω], x0 − M2
����

����≤ η1.
(39)

Claim 2. lim supn⟶∞d(Pn(x0), M2)≥ η1, for allx0 ∈ X0.

Suppose, by contradiction, that lim supn⟶∞d(Pn(x0),

M2)< η1, for somex0 ∈ X0, without loss of generality, we
can assume that

d P
n

x0( , M2( < η1, for all n> 0. (40)

For any t≥ 0, let t � nω + t2, where t2 ∈ [0,ω) and
n � [t/ω]. *en, we have

u t, x0(  − M2
����

���� � u t2, P
n

x0( (  − M2
����

����≤ δ2, ∀t≥ 0.

(41)

Hence, MS(t)≤ δ2, ML(t)≤ δ2, MI(t)≤ δ2, and
M(t)≤ 3δ2 when t≥ 0. Since M(0) � MS(0) + ML
(0) + MI(0)> 0, we have limt⟶∞(M(t) − M∗(t)) � 0, a
contradiction.

*en, we define

Mz ≔ NS,
NI,

NR, FS,
FI,

FR, AS,
AI,

AR, MS,
ML, MI 

∈zX0: P
m NS,

NI,
NR, FS,

FI,
FR, AS,

AI,
AR, MS,

ML, MI ∈zX0,∀m≥ 0,

D1 ≔ u ∈ X: ui 0, x0(  � 0, ∀i ∈ 2, 5, 8, 11, 12{ } ,

D2 ≔ u ∈ X: ui 0, x0(  � 0, ∀i � 10, 11, 12 .

(42)

We claim that Mz � D1 ∪D2. We first prove that
MzD1 ∪D2. For any u(t, x0) ∈ D2, it is easy to see that
ui(t, x0) � 0, i � 10, 11, 12. Hence, D2 ⊂Mz. For any
u(t, x0) ∈ D1, we can define V(t)≥ 0 such that Vi(t) ≡ 0 for
all t≥ 0 and i � 2, 5, 8, 11, 12. Let Vi(t) (i � 1, 3, 4, 6, 7, 9, 10)

satisfy the following equations:

dV1(t)

dt
� b(t) − σN(t)V1(t),

dV3(t)

dt
� − σN(t)V3(t),

dV4(t)

dt
� mN(t)V1(t) − σF(t)V4(t),

dV6(t)

dt
� mN(t)V3(t) − σF(t)V6(t),

dV7(t)

dt
� mF(t)V4(t) − μA(t)V7(t),

dV9(t)

dt
� mF(t) V6(t) − μA(t)V9(t),

dV10(t)

dt
� r(t) V10(t) 1 −

V10(t)

K(t)
  − μM(t)V10(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(43)
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with Vi(0) � ui(0, x0), i � 1, 3, 4, 6, 7, 9, 10. *en, V(t) is a
solution of (3) through x0. By the uniqueness of the solution,
we have u(t, x0) � V(t) for all t≥ 0, and hence D1 ⊂Mz. To
prove the claim, it then suffices to show that Mz ⊂ D1 ∪D2.
For any u(t, x0) ∈zX0\(D1 ∪D2), we have 

12
i�10ui(0, x0)>

0, and hence limt⟶∞|
12
i�10ui(t, x0) − M∗(t)| � 0. From the

first, fourth, seventh, and tenth of (3), we have u1(t, x0)> 0,

u4(t, x0)> 0, u7(t, x0)> 0, and u10(t, x0)> 0 for all t> 0. If
u2(0, x0)> 0, by (3), we get uj(t, x0)> 0 for all t> 0 and
j ∈ 2, 3, 5, 6, 8, 9, 11, 12{ }. If u5(0, x0)> 0, by the fifth and
sixth equations of (3), we have u5(t, x0)> 0 and u6(t, x0)> 0
for all t> 0.*en, by the eighth and ninth equation of (3), we
have u8(t, x0)> 0 and u9(t, x0)> 0 for all t> 0.*en, we have
u11(t, x0)> 0 and u12(t, x0)> 0 and u2(t, x0)> 0 and
u3(t, x0)> 0 for all t> 0. For the case u8(0, x0)> 0 or
u11(0, x0)> 0 or u12(0, x0)> 0, we can similarly prove that
ui(t, x0)> 0 for i ∈ 1, 2, . . . , 12{ }. *erefore, we have
u(t, x0) ∈ X0 for all t> 0. *is implies that for any
x0 ∈zX0\(D1 ∪D2), we have P(u(t, x0)) ∉ zX0 for all t> 0,
and hence Mz ⊂ D1 ∪D2. It then follows that M1 and M2
are disjoint, compact, and isolated invariant sets for P in Mz,
and ∪ u∈Mz

ω(u) � M1, M2 . Furthermore, no subset of
M1 andM2 forms a cycle in Mz (and hence in zX0). In view
of the two claims above, we see that M1 and M2 are isolated
invariant sets for P in X, and Ws(Mi)∩X0 � ∅ for all
i � 1, 2, where Ws(Mi) is the stable set of Mi for P.

Applying the acyclicity theory on uniform persistence
for maps (see [23], *eorem 1.3.1 and Remark 1.3.1), we see
that P: X⟶ X is uniformly persistent with respect to
(X0, zX0). It follows from [23], *eorem 3.1.1, that the
solution of (3) is uniformly persistent.

Furthermore, by [23], *eorem 1.3.6, P has a fixed point
(NS(0), NI(0), NR(0), FS(0), FI(0), FR(0), AS(0), AI(0),

AR(0), MS(0), ML(0), MI(0)) ∈ X0. *en, we see that
NS(0), NR(0), FS(0), FR(0), AS(0), AR(0), MS(0) are all
nonnegative, and NI(0), FI(0), AI(0), ML(0), andMI(0)

are all positive. We further prove that NS(0), NR(0),

FS(0), FR(0), AS(0), AR(0), andMS(0) are all positive.
Suppose not, if NS(0) � 0, then from the first equation of
(3), we obtain

dN(t)

dt
� b(t) − a1(t)N(t), (44)

with NS(0) � NS(nω) � 0, n � 1, 2, 3, . . ., where
a1(t) � bN(t) MI(t)/aN(t)NT (t) + aF(t)FT(t) + aA(t)AT
(t) + σN(t). *en, we obtain

NS(t) � NS(0) + 
t

0
b(ρ)e


ρ

0
a1(s)ds

dρ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦e


t

0
a1(s)ds

,

(45)

a contradiction.*us NS(0)> 0. Similarly, we can prove that
NR(0)> 0, FS(0)> 0, FR(0)> 0, AS(0)> 0, AR(0)> 0, and
MS(0)> 0. *us, u(t, (NS(0), NI(0), NR(0), FS (0), FI(0),

FR(0), AS(0), AI(0), AR(0), MS(0), ML(0), MI(0))) ∈ Int
(R12

+ ) and (NS(t), NI(t), NR(t), FS(t), FI(t), FR(t),

AS(t), AI(t), AR(t), MS(t), ML(t), MI(t)) is a positive

ω-periodic solution of (3) due to the definition of semiflow
P. Hence, the proof is complete.

4. Autonomous Case of System (3)

In this section, we study the corresponding autonomous
system of system (3), that is, all the coefficients of system (3)
are constants, and also we assume that the disease-induced
death rates of infected birds are zero. Based on the references
and also mathematical tractability, we also make the fol-
lowing assumptions: aN � aF � aA ≔ a, βN � βF � βA ≔ β
[4, 24, 25] δN � δF � δA ≔ δ, mN � mF ≔ m, cN � cF �

cA ≔ c, and μN � μF � μA ≔ μ. In this case, system (3)
becomes

dNS(t)

dt
� b − λ1(t) − (m + μ)NS(t),

dNI(t)

dt
� λ1(t) − (m + μ + c)NI(t),

dNR(t)

dt
� cNI(t) − (m + μ)NR(t),

dFS(t)

dt
� mNS(t) − λ2(t) − (m + μ)FS(t),

dFI(t)

dt
� λ2(t) + mNI(t) − (m + μ + c)FI(t),

dFR(t)

dt
� cFI(t) + mNR(t) − (m + μ)FR(t),

dAS(t)

dt
� mFS(t) − λ3(t) − μAS(t),

dAI(t)

dt
� λ3(t) + mFI(t) − (μ + c)AI(t),

dAR(t)

dt
� cAI(t) + mFR − μAR(t),

dMS(t)

dt
� rM(t) 1 −

M(t)

K
  − λ4(t) − μMMS(t),

dML(t)

dt
� λ4(t) − kML(t) − μMML(t),

dMI(t)

dt
� kML(t) − μMMI(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(46)

with λ1(t) � (aβMI(t)NS(t))/(NT(t) + FT(t) + AT(t)),

λ2(t) � aβMI(t)FS(t)/(NT(t) + FT(t) + AT(t)), λ3(t) � aβ
MI(t)AS(t)/NT(t) + FT(t) + AT(t), λ4(t) � (aδ(NI(t) + FI
(t) + AI(t))MS(t))/(NT(t) + FT(t) + AT(t)).
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It is easy to show that
Ω � NS, NI, NR, FS, FI, FR, AS, AI, AR, MS, MI, MR( 

∈ R12
+

 0<NT + FT + AT ≤
b

μ
, MS + ML + MI ≤K},

(47)

is the positive invariant set for system (46).
Corresponding to (A1), we also need the following

assumption:
(A2)r> μM. (48)

It is clear that system (46) always has two equilibria P0 �

(N∗T, 0, 0, F∗T, 0, 0, A∗T, 0, 0, 0, 0, 0) and P1 � (N∗T, 0, 0, F∗T,

0, 0, A∗T, 0, 0, M∗, 0, 0), where N∗T � b/(m + μ), F∗T � bm/
(m + μ)2, A∗T � bm2/(μ(m + μ)2), and M∗ � (K(r − μM))/r.

In order to find any endemic equilibrium of system (46),
we introduce the basic reproduction number R0. According
to the concepts of the next generation matrix and repro-
duction number presented in [26, 27], R0 is given by the
following expression:

R0 �
ka2βμδK r − μM( 

rbμM k + μM( (μ + c)
. (49)

Let the right-hand sides be zero, then system (46) admits
another equilibrium: P∗ � (N∗S , N∗I , N∗R, F∗S , F∗I , F∗R, A∗S ,

A∗I , A∗R, M∗S , M∗I , M∗R), where

N
∗
S �

b2

aβμM∗I + b(m + μ)
,

N
∗
I �

abβμM∗I
aβμM∗I + b(m + μ)( (m + μ + c)

,

N
∗
R �

cN∗I
m + μ

,

F
∗
S �

mbN∗S
aβμM∗I + b(m + μ)

,

F
∗
I �

aβμM∗I F∗S + bmN∗I
b(m + μ + c)

,

F
∗
R �

cF∗I + mN∗R
m + μ

,

A
∗
S �

mbF∗S
μ aβM∗I + b( 

,

A
∗
I �

aβμM∗I A∗S + bmF∗E
b(μ + c)

,

A
∗
R �

cA∗I + mF∗R
μ

,

M
∗
S �

μMK r − μM( 

r aδ + μM( 
,

M
∗
R �

μMM∗I
k

,

(50)

and M∗I satisfies equation f1(M∗I ) � f2(M∗I ), where

f1 M
∗
I(  �

bm

aβμM∗I + b(m + μ)

+
b2m2

aβμM∗I + b(m + μ)  aβμM∗I + bμ( 
+ 1,

f2 M
∗
I(  �

μM k + μM( (μ + c) aβμM∗I + b(m + μ) 

βδa2μ2 kM∗ − k + μM( M∗I( 
.

(51)

Note that f1(0) � (m + μ)/μ, f1(x) is decreasing with
respect to x> 0 and limx⟶+∞f1(x) � 1. Also, f2(0) �

(μM(k + μM)(μ + c)b(m + μ))/kβδa2μ2M∗ and f2′(x) �

(μM(k + μM)(μ + c)[aβμkM∗ + b(m + μ)(k + μM)])/(βδa2

μ2(kM∗ − (k + μM)x)2)> 0 for M∗I ∈ (0, kM∗/(k + μM)),
and limx⟶(kM∗/(k+μM)) � f2(x) � +∞. *en, f1(x) �

f2(x) has a unique positive root in (0, kM∗/(k + μM)), if
and only if f1(0)>f2(0), which is equivalent to R0 > 1.
*erefore, if R0 > 1, system (46) has a unique endemic
equilibrium P∗.

It is easy to show that P0 is a saddle and is unstable. By
*eorem 2, we know that P1 is globally asymptotically stable
in Ω\ P0  if R0 < 1 and is unstable for R0 > 1. Also, by
*eorem 3, if R0 > 1, there exists a positive constant η1 > 0
such that any solution (NS(t), NI(t), NR (t), FS(t), FI
(t), FR(t), MS(t), ML(t), MI(t)) of (46) with NI(0)> 0,
FI(0)> 0, AI(0)> 0, ML(0)> 0, and MI(0)> 0 satisfies

lim inf
t⟶∞

NI(t), FI(t), AI(t), ML(t), MI(t)( ≥ η1, η1, η1, η1, η1( .

(52)

5. Numerical Simulations

In this section, we will perform some numerical simulations
to illustrate the results of previous sections and explore the
effects of some parameters on the WNV transmission. First
from [18], we can determine some realistically feasible
constant parameters. We assume that the disease-induced
death rates of nestling, fledgling, and adult are zero.*e time
unit is taken as month. Baseline parameters are listed in
Table 2.

5.1. Long Term Behavior. We take a(t) � 30.4(0.133
+ 0.1 sin πt/6), r(t) � 30.4(0.537 + 0.5 sin πt/6), μM(t) �

30.4(0.096 + 0.09 sin πt/6), b � 3040, K � 5 × 105, aN � 5,

and aF � aA � 1, which are chosen or adapted from Rob-
ertson and Caillou€et [18]. Using Lemma 3, we can nu-
merically compute the basic reproduction number R0. With
this set of parameters, we have R0 � 0.8644< 1, and the
infection is extinct in host and mosquito populations. If the
nestling exposure coefficient increases to aN � 10, then
R0 � 1.0832> 1, and then the infection is persistent in host
and mosquito populations. Figure 1 shows the long-term
behavior of the infectious birds and mosquitoes when R0 < 1
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and R0 > 1. *ese simulations are consistent with our the-
oretical results in Section 3.

5.2. Sensitivity Analysis of R0. In order to provide some
effective control measures about mosquitoes, in this section,
we will perform some sensitivity analyses of the basic re-
production number R0 in terms of some coefficients in our
model (3).

We first discuss four important factors to control the
disease: the mosquito carrying capacity K; the biting rate of
mosquitoes on birds a(t); the death rate of mosquitoes
μM(t); and the recruitment rate of mosquitoes r(t). Obvi-
ously the biting rate of mosquitoes on birds can be reduced if
the population size of mosquitoes decreases. Let
aN � aF � aA � 1, by replacing a(t), μM(t), and r(t) with
a
⌣

(t) � (1 − c)a(t), μ⌣M(t) � lμM(t), and r
⌣

(t) � (1 − f)r(t),
respectively, and keeping the other parameter values the
same as those in Figure 1. Figure 2 reflects the relationship
between R0 and these parameters. Our numerical analysis
shows that R0 is a decreasing function of c, l, andf and an
increasing function of K; to reduce the basic reproduction
number below 1, we should at least decrease the re-
cruitment rate of mosquitoes by 32% or increase the death
rate of mosquitoes by 50% from the current level.

Figure 2(b) shows that we should keep c> 0.273 to control
WNV transmission. Hence, we may take some vector
control measures to control WNV, such as using products
to kill mosquito larvae and adult mosquitoes, and we can
also reduce mosquito breeding sites by eliminating
standing pools of water, such as in old tires, buckets,
gutters, and swimming pools.

Secondly, we explore the effect of host stage exposure
heterogeneity.We take parameter values as those in Figure 1.
Figure 3 shows that the larger the exposure coefficients, the
larger the basic reproduction number R0 becomes. More-
over, this figure shows that juvenile (nestling or fledgling)
exposure has a larger impact on theWNV transmission than
that of the adult.

*irdly, Figure 4 compares R0 of the periodic system and
the autonomous system. For the periodic system, the pa-
rameters are the same as those in Figure 2(b); for the au-
tonomous system, the parameters are the average values of
those in the periodic system. We can see that the basic
reproduction number of the autonomous one is always less
than that of the periodic one when c varies ranging from 0 to
1. *is implies that, without seasonality, the risk of infection
will be underestimated. *erefore, considering the influence
of temperature, we should make more efforts to control the
spread of WNV.
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Figure 1: Long-term behavior of the infectious host and vector populations. (a) R0 < 1 and (b) R0 > 1.

Table 2: Parameters of model (3) and their interpretations.

Parameter Value Reference
b Varies
aN, aF, aA Varies
K Varies
1/k 0.106 × 30.4 [5]
mN, mF 30.4/14 [24]
cN, cF, cA 30.4/3 [4]
μN, μF, μA 0.0014 × 30.4 [25]
βN, βF, βA 1 [4]
δN, δF, δA 0.36 [4]
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6. Discussion

In this paper, we have analyzed amathematicalWNVmodel,
which was presented in Robertson and Caillou€et [18]. *e

model incorporates the stage structure of avian, host stage
exposure heterogeneity, and the seasonal climate effects on
WNV transmission. We have obtained the basic repro-
duction number and showed that the disease-free periodic
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Figure 2: R0 vs K, c, l, and f. (a) Relationship between R0 and K. (b) Relationship between R0 and c. (c) Relationship between R0 and l.
(d) Relationship between R0 and f. In (b, c, and d), we fix K � 1.5 × 106.
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Figure 3: Effect of host stage exposure on the basic reproduction number R0.
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state is globally asymptotically stable if the disease-induced
death rates are zero and R0 < 1, and the disease will persist if
R0 > 1. For the corresponding autonomous system, for a
special case, we establish a threshold result in terms of the
basic reproduction number R0.

*e numerical simulations about the long-term behavior
of the model solutions are consistent with the obtained
analytic result. In order to seek for effective control measures
to prevent outbreaks of WNV, we performed sensitive
analysis of the basic reproduction number in terms of the
mosquito carrying capacity, the recruitment rate of mos-
quitoes, the death rate of mosquitoes, and the biting rate of
mosquitoes on birds. It is clear that if the mosquito pop-
ulation size decreases, then the biting rate of mosquitoes on
birds can be reduced. Hence, the key to control the spread of
WNV is to increase the death rate and decrease the re-
cruitment rate of mosquitoes. To do this, we can reduce
mosquito breeding sites, kill adult mosquitoes by adulticides,
and kill mosquito larvae by larvicides. Furthermore, we
compare the effect of host stage exposure heterogeneity, and
Figure 3 shows that increased exposure of all stages increases
transmission. Moreover, this figure shows that the juvenile
stage exposure has a larger impact on WNV transmission
than that of the adult stage. Our numerical simulations also
show that the risk of the disease will be underestimated if we
do not consider the seasonality. *us, it is necessary to
include the seasonality and stage-dependent host differences
in mosquito exposure in the models.
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