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Nowadays, scholar recommender systems often recommend academic papers based on users’ personalized retrieval demands.
Typically, a recommender system analyzes the keywords typed by a user and then returns his or her preferred papers, in an
efficient and economic manner. In practice, one paper often contains partial keywords that a user is interested in. .erefore, the
recommender system needs to return the user a set of papers that collectively covers all the queried keywords. However, existing
recommender systems only use the exact keyword matching technique for recommendation decisions, while neglecting the
correlation relationships among different papers. As a consequence, it may output a set of papers frommultiple disciplines that are
different from the user’s real research field. In view of this shortcoming, we propose a keyword-driven and popularity-aware paper
recommendation approach based on an undirected paper citation graph, named PRkeyword+pop. At last, we conduct large-scale
experiments on the real-life Hep-. dataset to further demonstrate the usefulness and feasibility of PRkeyword+pop. Experimental
results prove the advantages of PRkeyword+pop in searching for a set of satisfactory papers compared with other
competitive approaches.

1. Introduction

With the increasing maturity of recommender systems [1],
users are apt to employ existing academic paper recom-
mender websites (e.g., Google Scholar and Baidu Academic)
to search for their interested papers based on a set of
keywords typed by the users. Generally, an academic paper
often contains only partial keywords that a user is interested
in. .erefore, a paper recommender system needs to analyze
the user’s search requirements to return a set of papers that
collectively covers all the queried keywords.

Next, we use Figure 1 to introduce the common process
of paper recommendation [2]. .is process mainly consists
of three phases. .e first phase is entering keywords; users
analyze their research requirements and enter all query
keywords (e.g., k1, k2, k3, and k6) to a recommender system.
.e second phase is paper discovery [3]; the recommender
system automatically identifies diverse sets of candidate
papers. .e third phase is paper selection [4, 5]; the rec-
ommender system recommends candidate papers

containing query keywords to users. Frankly, the returned
papers may fail to satisfy users’ requirements on deep and
continuous research on a certain content or topic as these
papers may belong to the variety of research domains.

Keyword search methods [6, 7] have long been popu-
larized in searching for papers, but these methods are hardly
to find a set of satisfactory papers. In fact, a set of satisfactory
papers must satisfy following requirements: on the one
hand, these papers are collectively covering users’ query
keywords [8–10]; on the other hand, one candidate paper
containing query keywords has direct or indirect correlation
relationships [11] with other candidate papers containing
diverse query keywords. In short, recommending a set of
satisfactory papers still needs in-depth analyses and study
[12].

To recommend a set of satisfactory papers, we propose
PRkeyword+pop (keywords-driven and popularity-aware
paper recommendation) approach that assists users in
searching for a set of satisfactory papers, i.e., these papers
not only cover all queried keywords but also have higher
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popularity and correlation among papers. Moreover,
PRkeyword+pop runs on an undirected paper relationships
graph, where paper is modeled as node and a connected
edge represents whether there has been correlation re-
lationship among papers. In practice, PRkeyword+pop may
return one or multiple subgraphs of the paper relation-
ships graph according to users’ query keywords; the
returned subgraphs include keywords papers covering
query keywords, bridging papers (if any) needed however
not specified by query keywords, and the composability
and popularity of these recommended papers. Note that
we speak interchangeably of a paper and its corre-
sponding node in the remainder of this paper, both
denoted as p/v.

In summary, we make the following contributions:

(1) We propose a novel keyword-driven and popularity-
aware paper recommendation approach, which ef-
ficiently recommends a set of satisfactory papers.

(2) We build an undirected paper citation graph [13],
and the users’ keyword query problem is regarded as
the Steiner tree problem. Finally, we employ papers’
popularity to find optimal solutions.

(3) We conduct large-scale experiments on the Hep-.
dataset [14] to evaluate the usefulness and feasibility
of PRkeyword+pop.

.e rest of this paper is structured as follows: Section 2
demonstrates the research motivation, Section 3 defines an
undirected paper citation graph, Section 4 formulates main
research problems, Section 5 introduces how PRkeyword+pop
answers users’ keyword query on the undirected paper ci-
tation graph, Section 6 evaluates PRkeyword+pop by using
experimental results, Section 7 reviews related works, and
Section 8 further concludes this paper and points out the
future research directions.

2. Research Motivation

In Section 2, we use examples of Figures 2 and 3 for
demonstrating the research motivation. Figure 2 shows that
a user needs to perform the following keywords research
tasks [15] before his creation: (1) paper recommendation (i.e.,
k1) for paper recommendation process research [16]; (2)
keyword search (i.e., k2) for keyword search research and
applying it to paper recommendation process; (3) Steiner
tree (i.e., k3) for Steiner algorithm [17] research and applying
it to keyword search; (4) dynamic programming (i.e., k6) for
dynamic programming technique research and applying it to
solve Steiner tree problem. In Figure 2, the user obtains four
corresponding keywords (i.e., Q� {k1, k2, k3, k6}) by the
preliminary analysis of his research content [18]. Next, the
user can search some corresponding papers from Figure 3.

Figure 3 is a part of an undirected paper citation graph
and contains 14 nodes covering diverse keywords, i.e.,
v1, . . . , v14. Furthermore, the notation v13{k11, k13} indicates
that node v13 offers keywords k11 and k13, and the edge
e(v1 , v10) indicates that nodes v1 and v10 have a correlation
relationship. .us, given a query Q� {k1, k2, k3, k6}, the user
easily searches a set of papers from Figure 3, i.e.,
Rp � v1, v2, v3, v4, v5, v6, v11, v12􏼈 􏼉.

Even if this user fortunately obtains a set of papers
covering all query keywords, however, it is possible that he is
still having no idea of whether these papers can finish his
creation as correlation relationships among these papers are
both transparent to him. In fact, each user must manually
find a set of required papers from massive candidate papers
[19, 20]; worse still, this process is very time consuming and
challenging. To tackle these issues, we propose a novel
keyword-driven and popularity-aware paper recommen-
dation approach, named PRkeyword+pop, which will be a
detailed presentation in Section 5.

3. Undirected Paper Citation Graph

.e citation relationships of paper citation graph [21] can
sufficiently attest the correlation among papers’ research
content. If we use the paper citation graph in our proposal,
the direction of knowledge information will be considered
flowed in one direction. In fact, the knowledge information
can be bidirectionally transferred in the paper citation graph.
.us, we use undirected citation relationships to denote the
papers’ correlations. For example, an undirected citation
relationship {p1―p2} indicates the correlation among pa-
pers p1 and p2. As more citation relationships are mined and
papers are included in an undirected paper citation graph,
this graph will grow larger and denser [22], offering a solid
base for recommending a set of satisfactory papers.

PRkeyword+pop runs any undirected paper citation graph
that fulfills requirements specified by the following
definitions:

Definition 1 (nodes). For each paper, an undirected paper
citation graph Gp has a corresponding node v. Each node
contains multiple keywords (i.e., k1, . . . , km) representing

k1

2. Paper discovery

A set of keywords 

A set of recommended papers

3. Paper selection

Candidate papers

p1.3

1. Enter keywords

Candidate papers

{p1.1, p1.2, …} {p6.1, p6.2, …}

Paper recommendation

k2 k3 k6

p6.8p3.4p2.1

Figure 1: Paper recommendation process.
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the research contents of paper. Furthermore, Vp denotes a
set of nodes of Gp.

Definition 2 (edges). For a pair of nodes (vi , vj), Gp con-
tains a corresponding edge e(vi , vj). e(vi , vj) denotes the
correlation among nodes vi and vj. Furthermore, Ep denotes
a set of edges of the Gp.

Definition 3 (undirected paper citation graph). An undi-
rected paper citation graph is expressed as Gp(Vp,Ep),
where Vp and Ep denote its sets of nodes and edges,
respectively.

According to Definition 2, relevant papers in same
domain are connected, either directly or indirectly, forming
a connected undirected paper citation graph. Note that if
users enter entirely irrelevant query keywords (e.g., privacy-
preserving [23–25] and protein engineering), we will fail to
recommend a set of satisfactory papers to users.

To answer users’ query, PRkeyword+pop prebuilds an
inverted index S(K) [17] on Gp, i.e., if nodes contain same
query keywords, nodes are stored in common inverted in-
dex. For example, nodes v3, v4, and v11 are both containing
keyword k2 in Figure 3, the S(k2) � v3, v4, v11􏼈 􏼉. .is way,
given an individual keyword k, PRkeyword+pop can easily find
all papers that perform the research of keyword k.

4. Problem Formulation

In fact, our proposal includes a key point, recommending a
set of satisfactory papers. Specifically, answering a keyword
query Qmainly consists of two steps: (1) to find Steiner trees
based on an undirected paper citation graph Gp, denoted as
T(Q), where T(Q) not only covers all query keywords but
also has the fewest number of nodes (i.e., the higher cor-
relation); (2) to obtain optimal Steiner trees T1(Q) based on
T(Q), where T1(Q) has the highest popularity (i.e., the more
trust [26]). To better clarify our paper, we summarize the
symbols in Table 1.

Likewise, our proposal recommends papers to the user
based on the undirected paper citation graph of Figure 3 and
the query keywords of Figure 2 (i.e., k1, k2, k3, k6􏼈 􏼉). Here,
nodes v1 and v2 contain query keyword k1; nodes v3, v4, and
v11 contain query keyword k2; nodes v5 and v6 contain query
keywords k3 and k6; node v12 contains query keyword k6.
.us, given Q� {k1, k2, k3, k6}, we are looking for a Steiner
tree that connects one node from v1, v2􏼈 􏼉, one node from
v3, v4, v11􏼈 􏼉, one node from v5, v6􏼈 􏼉, and one node from
v5, v6, v12􏼈 􏼉. Furthermore, the Steiner tree also connects
nodes that do not cover any query keywords, e.g., nodes v10,
v13, and v14. .erefore, the Steiner tree of Figure 4 (i.e.,
Rp � v1, v10, v13, v11, v14, v12, v6􏼈 􏼉) can satisfy users’ require-
ments on deep and continuous research on a certain content
or topic.

.us, Steiner tree is defined as follows.

Definition 4 (Steiner tree). Given an undirected paper ci-
tation graph Gp(Vp,Ep) and a set of nodes Vp

′ ⊆Vp. When
TP covers all nodes of Vp

′ and it is a connected subgraph, TP

forms a Steiner tree.
Given a query keyword k in Q� {k1, . . ., kl}, we use the

inverted indexes of Section 3 for identifying multiple sets of
nodes, denoted as Vp1, . . . ,Vpl, where Vpn(1≤ n≤ l) at least
contains keyword kn. Next, we need to find a group Steiner
tree, and the group Steiner tree is formally defined as follows.

Definition 5 (group Steiner tree). Given the Gp(Vp,Ep) and
multiple sets of nodes Vp1, . . . ,Vpl ⊆Vp, where each group
Vpn(1≤ n≤ l) contains the query keyword kn. When TP is a
Steiner tree and it contains exactly one node of each group
Vpn(1≤ n≤ l), TP forms a group Steiner tree.

Firstly, we may obtain multiple group Steiner trees
according to the Q. Next, PRkeyword+pop aims to find min-
imum group Steiner trees that not only cover the users’
query keywords but also have the higher correlation (i.e., the
fewer nodes). .us, a minimum group Steiner tree is defined
as follows.

New paper

4. Dynamic programming research

Solving Steiner tree problem

3. Steiner tree research

Finding a set of papers

Dynamic programming

Steiner tree

Creation

Research

1. Paper recommendation research

The paper recommendation process research Paper recommendation

2. Keywords search research

Searching for papers based on keywords Keyword search

A set of keywords

Figure 2: An example of paper’s research and creation task.

Traditional recommendation

Q = {k1,k2,k3,k6}

v14{k14}

v10{k10}

v1{k1} v2{k1,k4}

v7{k7} v8{k8}

v3{k2} v4{k2,k5}

v13{k11,k13}

v11{k2,k13}

Rp = {v1,v2,v3,v4,v5,v6,v11,v12}

v12{k6,k12}

v9{k9}

v5{k3,k6} v6{k3,k6}

Figure 3: An example of the traditional paper recommendation
approach.
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Definition 6 (minimum group Steiner tree). Given a set of
exact group Steiner trees, i.e., TP1, . . . , TPm, when
(|TPi|) � min(|TP1|, . . . , |TPm|), Tpi(0< i≤m) is a mini-
mum group Steiner tree. |TPi| represents the number of
nodes (papers) of TPi.

5. PRkeyword+pop Approach

.e basic step of PRkeyword+pop is as follows (see Figure 5):
first, we generate multiple minimum group Steiner trees (i.e.,
T(Q)) by employing the DP (dynamic programming)
technique [17]; then, we generate optimal solutions (i.e.,
T1(Q)) by employing the PP (paper popularity) method.

Step 1. Minimum group Steiner trees generation based on
an undirected paper citation graph.

.is section mainly discusses employing the DP tech-
nique to solve a MGST (minimal group Steiner trees)
problem. Specifically, the DP technique firstly breaks up the
MGST problem into a series of simpler subproblems; next,

each of the same subproblems is solved only once and the
corresponding results are stored; finally, multiple solutions
are effectively provided via combining the stored results, i.e.,
T(Q).

In this section, we treat all query keywords as K, i.e.,
K�Q. In the DPmodel, TPmin(v, K′)(K′⊆K) rooted at node
v is a state and it contains the users’ query keywords K′.
Moreover, wDP(TPmin(v, K′)) represents the number of
nodes in TPmin(v, K′). .e state-transition equation of the
DP model is as follows:

wDP TPmin
∀v∈Vk⊆Vp

v, K′( 􏼁⎛⎝ ⎞⎠ � 1, if TPmin
∀v∈Vk⊆Vp

v, K′( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 1, (1)

wDP TPmin v, K′( 􏼁( 􏼁 � min wDP TPg v, K′( 􏼁􏼐 􏼑,􏼐

wDP TPm v, K′( 􏼁( 􏼁􏼁,
(2)

wDP TPg v, K′( 􏼁􏼐 􏼑 � min
u∈N(v)

wDP TPmin u, K′u􏼒 􏼓􏼒 􏼓 + 1􏼚 􏼛,

(3)

wDP TPg v, K′( 􏼁􏼐 􏼑 � min
Ku
′∩K′ ≠K′&&Ku

′∩K′ � Ku
′

Ku
′∩K′ ≠Ku

′&&Ku
′∩K′ � K′

����
􏼠 􏼡

· wDP TPmin u, Ku
′( 􏼁( 􏼁􏼚

+ wDP TPmin v, K′( 􏼁( 􏼁􏼉,

(4)

wDP TPm v, K′( 􏼁( 􏼁 � min
Ku
′⊆K&&K′⊆K&&

Ku
′∩K′ ≠Kv

′&&Ku
′∩K′ ≠Ku

′
􏼠 􏼡

· TPmin v, K′( 􏼁
􏼌􏼌􏼌􏼌􏽮 +TPmin u, Ku

′( 􏼁
􏼌􏼌􏼌􏼌 􏽯,

(5)

wDP TPm v, K′( 􏼁( 􏼁 � min
K1′∩K2′�Φ

wDP TPmin v, K1′( 􏼁(􏼈

⊕TPmin v, K2′( 􏼁􏼁􏼉,

(6)

T(Q) � TPmin(v, K) � TPmin
∀v∈Vk⊆Vp

v, K′( 􏼁, if K′ � K,
(7)

Table 1: Symbol definitions.

Symbol Definition
p/v A paper
k1, . . ., km A node contains keywords
e(vi , vj) An edge of a pair of nodes (vi, vj)

Q Users’ query keywords
K A set of query keywords
Vp A set of nodes (papers)
Ep A set of edges
Gp(Vp,Ep) Undirected paper citation graph
S(K) An inverted index
T(Q) Minimum group Steiner trees
T1(Q) Optimal solutions
Q1 A queue in ascending order of number of tree nodes
TPmin(v, K) Minimum group Steiner trees rooted at v

Rp Paper recommendation results

PRkeyword+pop

Q = {k1,k2,k3,k6}

v14{k14}

v10{k10}

v1{k1} v2{k1,k4}

v7{k7} v8{k8}

v3{k2} v4{k2,k5}

v13{k11,k13}

v11{k2,k13}

Rp = {v1,v10,v13,v11,v14,v12,v6}

v12{k6,k12}
v9{k9}

v5{k3,k6} v6{k3,k6}

Figure 4: An example of PRkeyword+pop.

Step 1: Minimum group Steiner trees generation based on an 
undirected paper citation graph. According to users’ query 
keywords, we generate multiple minimum group Steiner 
trees by employing the DP (dynamic programming) 
technique.

Step 2: Optimal solution generation based on minimum group
Steiner trees. Based on minimum group Steiner trees, we 
generate optimal solutions by employing the PP (paper 
popularity) method.

Figure 5: Concrete process of PRkeyword+pop.
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where N(v) is a set of v’s neighbors in Gp(Vp,Ep), i.e.,
u, v ∈ Gp, u ∈ N(v) and e(u, v) ∈ Ep. Formula (1) indicates
the weight of a tree is 1 in the DP model owing to only
covering one keyword node [27]. Formula (2) indicates that
TPmin(v, K′) is obtained by using the following two oper-
ations: tree growth operation (i.e., formulas (3) and (4)) and
tree merging operation (i.e., formulas (5) and (6)). In
Figure 6(a), tree growth operation generates new
TPmin(v, K′) by adding new node u (i.e., one of v’s neigh-
bors) to TPmin(v, K′). In Figure 6(b), tree merging operation
generates new TPmin(v, K′) by merging two trees that are
both having same root node. .e pseudocode of these two
operations is specified more formally in Algorithm 1 and
Algorithm 2, respectively.

In Step 1, we repeat tree growth operation and tree
merging operation to obtain a queue Q1. .e pseudocode of
obtaining Q1 and T(Q) is specified more formally in Steiner
tree algorithm (Algorithm 3).

Next, an intuitive example of Figure 7 shows the T(Q)
generation processes according to K� k1, k2, k3, k6􏼈 􏼉. .e
trees rooted at nodes containing k1, k2, k3, or k6 are
enqueued firstly, i.e., v1, v2, v3, v4, v5, v6, v11, and v12 are
added in Figure 7(b). Since these eight trees only contain one
node, the tree growth operation is performed in Figure 7(b).
Fortunately, these nodes are both containing neighbor
nodes, so trees connecting any one of nodes are generated in
Figure 7(c). Next, tree growth operation is performed on
Figure 7(c). For example, trees v8, v3􏼈 􏼉 and v8, v11􏼈 􏼉 can
generate a new tree rooted at node v8, i.e., v8, v3, v11􏼈 􏼉, but
this operation is not tree merging operation as this tree does
not contain new query keywords. Furthermore, some new
generated trees are deleted as these trees are of no use, e.g.,
while tree v8, v11􏼈 􏼉 can generate new tree v8, v11, v13􏼈 􏼉, the
new tree contains not only same query keywords k2 but also
more nodes. .erefore, five required trees are both retained
in Figure 7(d). Next, we execute tree merging operations in
Figures 7(d) and 7(f ) and tree growth operation in
Figure 7(e). Finally, the user obtains four minimal group
Steiner trees in Figure 7(g).

Note that we consider the output results of Steiner trees
algorithm may be entire graph, i.e., Gp(Vp,Ep); further-
more, the worst-case scenario is that our algorithm fails to
recommend papers to users.

Step 2. Optimal solutions generation based on the mini-
mum group Steiner trees.

According to the abovementioned algorithm, it is pos-
sible to return multiple qualified candidates, e.g., the output
result of Figure 7. To ease the heavy burden of users’ paper
selection decisions, we will select optimal solutions (i.e.,
T1(Q)) from the output results of Step 1. Generally, a higher
citation frequency of papers often means a higher popularity
of the papers. .us, we use the PP (paper popularity) [28]
method for selecting T1(Q) as follows:

PP � 􏽘
vi∈MGST,vj∈Gp

d vi, vj􏼐 􏼑,
(8)

where nodes vi and vj belong to T(Q) and Gp, respectively.
d(vi, vj) � 1 if vj cites vi in paper citation graph (i.e.,
vi⟶ vj) and 0 otherwise.

Finally, we produce a ranking list in descending order
according to the popularity of each candidate. .us,
PRkeyword+pop returns T1(Q) having the highest popularity
among candidates. Note that we consider the recommen-
dation result of PRkeyword+pop could be T(Q) as all candidates
have same popularity.

6. Experiments

To demonstrate the usefulness of PRkeyword+pop, large-scale
experiments are designed and tested.

6.1. Experimental Settings. Paper citation graph is extracted
from the Hep-. dataset [14], where the graph covers 8721
papers and each paper contains keyword information.

Generally, an author is allowed creating up to 6 index
terms (i.e., keywords) in an article, so we create query
keywords with up to 6 in our research. Here, we firstly set a
series of experiments, i.e., set A, set B, and set C. In set A, all
keywords of a paper are used as a query Q. .is scenario
emulates that users exactly provide query keywords for
their research content. In set B, the query keywords are
selected from different papers (in excess of one paper)
randomly. .is scenario emulates that users randomly
provide query keywords. In set C, query keywords are
selected from two papers randomly, which further verifies
the feasibility of the Steiner trees algorithm. Here, we do
not execute the PP method in set C. In addition, each
experiment set is repeated 50 times and the average ex-
perimental results are adopted.

Currently, we conduct the following experimental
evaluation:

(1) Number of nodes: the less amount of recommended
papers in a tree, (i.e., the higher correlation of the
tree), the better of recommendation approach.

(2) Success rate [17]: the number of recommended
papers is smaller than twice the number of query
keywords, and the recommendation result is
successful.

(3) Average paper popularity (APP) [29]: the APP is
defined as follows:

APP �
􏽐

m
z∈m PPz

􏽐
m
z∈m nz

, (9)

wherem is the number of T1(Q) and nz is the number
of nodes in T1(Q).

(4) Computation time: the consumed time for gener-
ating T1(Q) in sets A and B and T(Q) in set C,
respectively.

(5) Precision [30]: precision is calculated as follows:

Complexity 5



T(u1, K1) T(u2, K1) T(u3, K1)

v1 v2 v3

vT(v, K1)

(a)

T(v, K1) T(v, K2)

v v v

T(v, K1 K2)

(b)

Figure 6: Tree operations. (a) Tree growth operation. (b) Tree merging operation.

Input: K� {k1, k2, . . . , kl}
Output: Q1

(1) For each u ∈N(v) do
(2) If 1 +wDP(TPmin(u, Ku

′))<wDP(TPmin(v, K′))
(3) wDP(TPmin(v, K′)) � 1 +wDP(TPmin(u, Ku

′))
(4) TPmin(v, K′) � v + TPmin(v, Ku

′)
(5) enqueue TPmin(v, K′) into Q1

(6) update Q1

(7) End If
(8) If (K∩K≠K′&&Ku

′‖Ku
′∩K′ ≠Ku

′&&Ku
′∩K′ ≠K′)

(9) wDP(TPmin(v, K′))+wDP(TPmin(u, Ku
′))<wDP(TPmin(u, Ku

′))
(10) wDP(TPmin(v, K′)) � wDP(TPmin(v, K′))+wDP(TPmin(u, Ku

′))
(11) enqueue (TPmin(v, K′)) into Q1

(12) update Q1

(13) End If
(14) Return Q1

(15) End For

ALGORITHM 1: Tree growth.

Input: K� k1, k2, . . . , kl􏼈 􏼉

Output: Q1

(1) For each u ∈N(v) do
(2) If (Ku

′⊆K&&K′⊆K&&Ku
′∩K′ ≠Ku

′&&Ku
′∪K′ ≠K′)

(3) TPmin(v, K′) � TPmin(u, Ku
′) + TPmin(v, Kv

′)
(4) enqueue TPmin(v, K′) into Q1

(5) update Q1

(6) End If
(7) Return Q1

(8) End For
(9) K1′ � K′
(10) For each K2′ is contained in K s.t ( K1′∩K2′ � Φ) do
(11) If TPmin(v, K1′ ) ⊕ TPmin(v, K2′ )<TPmin(v, K1′∪K2′)
(12) TPmin(v, K1′∪K2′) � TPmin(v, K1′) ⊕ TPmin(v, K2′)
(13) enqueue TPmin(v, K1′∪K2′) into Q1

(14) update Q1

(15) End If
(16) Return Q1

(17) End For

ALGORITHM 2: Tree merging.
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Precision �

TP
T1(Q)

, set A and set B,

TP
T(Q)

, set C,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(10)

where TP denotes a set of papers containing query
keywords.

(6) Recall [30]: recall is calculated as follows:

Recall �
1

|p|
􏽘

pa∈p

T(Q)∩Tpa

Tpa

, set C, (11)

where |p| � 2 in set C. Tpa
is a set of papers cited by

pa.
(7) F1 score: F1 score is calculated as follows:

F1-score �
2∗ Recall∗ Precision
Recall + Precision

, set C. (12)

To the best of our knowledge, some of approaches ad-
dress the papers recommendation issue by using papers’
relationships. .us, we compare PRkeyword+pop with four
approaches that are adapted from [17, 31, 32].

Baseline 1 (Paper-Random [17]): this approach ran-
domly selects a set of nodes that collectively cover all
query keywords. Next, the approach finds minimum
Spanning trees that interconnect the selected nodes.
Finally, we can obtain optimal minimum Spanning
trees by executing the PP method.

Baseline 2 (Paper-Greedy [17]): likewise, the approach
is randomly selecting a set of nodes that collectively
cover all query keywords. Next, the approach regards
the selected nodes as initial root nodes and continu-
ously grows trees until these nodes are interconnected.
Furthermore, the greedy heuristic algorithm is applied
in the tree grow process. Finally, we also use the PP
method for obtaining optimal solutions.
Baseline 3 (Random Walk (RW) [32]): RW runs on 2-
layer graph, i.e., the undirected paper citation graph
and the built paper-keywords graph. In addition, each
query only uses users’ entered keywords: q� [0, qW],
and this approach only executes the keywords query of
set C.
Baseline 4 (Random Walk Restart (RWR) [31]): RWR
runs on same 2-layer graph. Furthermore, this ap-
proach only executes the query keywords of set C, i.e.,
q� [0, qW]. Here, if the state vector of RWR has been
growing linearly in the experiments, the approach
achieves linear convergence.

.e experiments are conducted on a machine with
Intel(R) Core(R) CPU@3.0GHz, 16GB RAM andWindows
10 @ 1809. .e software configuration environment:
Windows 10 @ 1809 and Python 3.6.

6.2. Experimental Results

6.2.1. Profile 1: 1e Number of Recommended Nodes of
Different Approaches. In this profile, we contrast the
number of returned papers of PRkeyword+pop with two ap-
proaches (i.e., Paper-Greedy and Paper-Random). As shown
in Figure 8, the number of the users’ query keywords ranges

Input: K� k1, k2, . . . , kl􏼈 􏼉

Output: Q1and T(Q)
(1) Let Q1 � V

(2) For each v ∈ Vp do
(3) If v contains any nonempty keyword set K′⊆K
(4) enqueue TPmin(v, K′) into Q1

(5) End If
(6) End for
(7) Min_cou�∞//the number of nodes
(8) While Q1≠V do
(9) dequeue Q1 to TPmin(v,K′)
(10) If K′�K
(11) If wDP(TPmin(v, K′))<Min_cou
(12) Min_cou� wDP(TPmin(v, K′))
(13) End If
(14) Break
(15) End If
(16) Else tree growth
(17) Else tree merging
(18) Return Q1

(19) Return T(Q)
(20) End While

ALGORITHM 3: Steiner trees algorithm: MGST (Gp, K).
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from 2 to 6. Furthermore, the quantity of recommended
papers in our approach increases with the number of query
keywords increasing, which is because the returned solutions
including more papers can satisfy more query keywords
requirements of users. For Paper-Greedy and Paper-Random,
when the number of query keywords equals to 6 in sets A and
C, or the number of queried keywords equals to 4 in set B, and
they obtain maximum papers quantity. In addition, these
experiments results show that our proposal acquires a smaller
number of recommended papers than these two approaches.
As the smaller number of recommended papers can guarantee
higher correlation among papers, PRkeyword+pop is superior to
Paper-Greedy and Paper-Random.

6.2.2. Profile 2: 1e Success Rate of Different Approaches.
In the profile, we compare the success rates of different
approaches. As shown in Figure 9, the experiment results of

the different approaches are very different in different ex-
periment sets. Facing to the different experiment scenarios,
Figure 9 presents that our proposal can effectively answer the
users’ keyword query and the success rate is 100%. However,
Paper-Random and Paper-Greedy are difficult to get suc-
cessful solutions as the number of the users’ query keywords
increasing; especially, the success rates of these two ap-
proaches are both equal to 0 in set B. Again, the experiment
results present that our proposal can effectively acquire
solutions than Paper-Greedy and Paper-Random.

6.2.3. Profile 3: 1e Average Paper Popularity of Different
Approaches. In both sets A and B, we compare different
approaches by utilizing the average paper popularity. As
shown in Figure 10, these experiment figures show that the
average paper popularity of Paper-Random and Paper-
Greedy are both larger than PRkeyword+pop. .at is because
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Figure 7: An example of T(Q) generation process.
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Figure 8: .e number of recommended nodes of different approaches: (a) set A, (b) set B, and (c) set C.

2 3 4 5 6
Number of keywords

PRkeywood+pop
Paper-Greedy
Paper-Random

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

Su
cc

es
s r

at
e (

%
)

(a)

2 3 4 5 6
Number of keywords

PRkeywood+pop
Paper-Greedy
Paper-Random

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

Su
cc

es
s r

at
e (

%
)

(b)

Figure 9: Continued.
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the number of recommended papers obtained by Paper-
Random and Paper-Greedy are both in excess of our ap-
proach; moreover, each recommended paper is cited more
than once. In practice, the solutions of Paper-Random and
Paper-Greedy will be seldom selected as these solutions take
users a serious amount of time and energy to do some un-
necessary research studies. In my opinion, Figure 10 presents
that the average paper popularity of PRkeyword+pop is allowable
and receivable in the case of satisfying users’ query keywords
requirements.

6.2.4. Profile 4: 1e Computation Time of Different
Approaches. In Profile 4, we contrast the time consumption
of different recommendation approaches. As shown in
Figure 11, PRkeyword+pop, Paper-Random, and Paper-Greedy
spend more time getting solutions with the number of the

users’ query keywords increasing. Furthermore, we only
calculate the time of RW and RWR in set C, and their time is
a constant value. As Paper-Random and Paper-Greedy use
extremely simple heuristic for selecting papers, these two
approaches spend fewer time than PRkeyword+pop in most
cases. In addition, RW and RWR are both spending a lot of
time than our proposal as these two approaches need to do a
significant amount of iterative operations and matrix op-
erations in experiments. While our proposal takes time to
obtain solutions, the time consumption of PRkeyword+pop is
allowable and receivable inmost really cases for users..at is
because this is the price to pay if users take fewer time and
energy to effectively achieve their research goal.

6.2.5. Profile 5: 1e Precision of Different Approaches. As
shown in Figure 12, these three figures present that the
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Figure 9: .e success rate of different approaches: (a) set A, (b) set B, and (c) set C.
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Figure 10: .e average paper popularity of different approaches: (a) set A and (b) set B.
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Figure 11: .e computation time of different approaches: (a) set A, (b) set B, and (c) set C.
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precision of different approaches, respectively. Luckily, our
proposal can accurately answer the users’ keyword query,
and the precision of three different experiment sets are both
100%.

For Paper-Random and Paper-Greedy, their precision
ranges from 10% to 45%. .erefore, whether users can
accurately or randomly offer query keywords, our approach
can accurately answer the users’ keyword query, and the
recommended results better satisfy users’ query require-
ments. Furthermore, these experiment results show further
that users may spend fewer time and energy on realizing
their research aim.

6.2.6. Profile 6: 1e Recall Rate and F1 Score of Different
Approaches. In this profile, we firstly contrast the recall
rate of different approaches in set C. According to Figure 8,
the number of recommended papers of our approach is not
exceeding 30, so the number of recommended papers of
RW and RWR are 10, 20, and 30, respectively; the recall
rate of RW and RWR take the average value among the
three. In Figure 13(a), the recall rate of PRkeyword+pop
ranges from 4% to 21%; the recall rate of Paper-Random
and Paper-Greedy range from 39% to 54%; and the recall
rate of RW and RWR are less than 9.5%. In addition, we
also compare the F1 score of our approach with Paper-
Random and Paper-Greedy. In Figure 13(b), the F1 score of
our proposal ranges from 9% to 34% and the F1 score of
Paper-Random and Paper-Greedy range from 33% to 44%.
As the number of returned papers of Paper-Random and
Paper-Greedy are in excess of PRkeyword+pop, the recall rate
and the F1 score of our proposal are less than these two
approaches. Furthermore, when the number of query
keywords is not equal to 3, the recall rate of RW and RWR
are both less than our approach. In conclusion, the recall
rate and F1 score of Figure 13 can directly verify the
feasibility of our proposal.

7. Related Work

Currently, recommender techniques play vital roles in many
research areas. Furthermore, recommendation methods can
be mainly classified into three categories: collaborative fil-
tering (CF), content-based filtering (CBF), and graph-based
approaches.

7.1. Collaborative Filtering. .e early work on paper rec-
ommendation mainly explored the use of collaborative fil-
tering (CF) techniques. For example, McNee et al. [33]
mainly focused on the rating matrices in paper citation
networks. In addition, Pennock [34] proposed a personality
diagnosis method based on a Bayesian network as their
considered rating frequency of other users made a difference
to user’s ratings of items. Furthermore, McNee et al. [33]
combined CF method with the cited frequency of papers to
recommend papers, which was because they [33] considered
that the number of citations of a paper had a vital effect on
papers’ ratings. In addition, if there were interactions be-
tween users and items in implicit collaborative filtering, it
was recorded as 1, otherwise 0. However, 1 or 0 did not
indicate positive or negative factors between users and items
that generated the interaction [35]. According to users’
query keywords, CF approaches can effectively recommend
papers to users, but these approaches are generally limited by
some problems, e.g., the cold start problem and the data
sparsity problem [36].

7.2. Content-Based Filtering. To further ameliorate paper
recommendation approach, some researchers further ex-
plored content-based filtering (CBF) approaches. Generally,
CBF [37] approaches attempted to retrieve papers with
respect to textual content and it was not using rating re-
lationships. For example, Alzoghbi et al. [38] examined the
preferences among papers by their proposed two different
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Figure 12: .e precision of different approaches: (a) set A, (b) Tset B, and (c) set C.
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validation mechanisms and recommended interesting pa-
pers to users. Furthermore, Wang and Blei [39] combined a
topic model with the collaborating filter to propose paper
recommendation approach, named CTR. .e CTR firstly
used LDA to find latent topics for papers, and this approach
inferred user-item relations by using matrix factorization. In
fact, the CBF approach suffers from traditional information
retrieval issues, e.g., the semantic ambiguity problem.
Furthermore, gathering and dealing with the relevance in-
formation of papers is often time consuming.

7.3. Graph Model. Currently, the papers’ relationships can
further reflect the future research trends of paper recom-
mendation, which is mainly because the correlation rela-
tionships among papers can indicate the correlation of
papers’ research contents. For example, Meng et al. [31]
regarded authors, papers, topics, and keywords as nodes and
their relationships as edges, and the approach recommended
academic papers by executing the random walk on a four-
layer heterogeneous graph. Furthermore, Gori and Pucci
[32] proposed the graph-based PageRank-like recommen-
dation approach that performed the biased random walk on
paper citation graphs, and the approach further emphasized
on the correlations among citations. In addition, Wu and
Sun [40] thought that three different types of paper citation
networks could be constructed based on papers’ citation
relationships, i.e., directly connected network, coupling
network, and cocitation network. Liang et al. [41] have
proved that the cocitation relationships of cocitation net-
work could be employed in paper recommendation, e.g., if
two papers were both cited by more same papers, these two
papers had high relevance and were highly likely to be
recommended simultaneously.

In fact, the correlation relationships [42] could be
formed in a paper citation graph as most papers selected

their references based on the content similarity..us, we use
the paper citation graph for establishing an undirected paper
citation graph. On the undirected paper citation graph, our
proposal (i.e., PRkeyword+pop) efficiently recommends a set of
satisfactory papers to users. Finally, extensive experiments
results validate the usefulness and feasibility of PRkeyword+pop
approach.

8. Conclusions and Future Work

Whether a set of satisfactory papers will be recommended to
users is very important paper discovery and paper selection
tasks, which is known as paper recommendation problem.
Here, we propose a novel keywords-driven and popularity-
aware approach (i.e., PRkeyword+pop) to return a set of sat-
isfactory papers, i.e., these papers not only collectively cover
users’ query keywords but also have higher correlation and
popularity among papers. Furthermore, these recommen-
dation results support users in doing deep and continuous
research on a certain topic or domain. In addition, the
experiment results further show the usefulness and feasi-
bility of our proposal.

Although our work shows desirable results, there are still
some aspects worth further research and improvement.
Since users cannot analyze research requirements in detail,
e.g., the required data types [43–45], the recommended
results may fail to return satisfactory results. Furthermore,
we may face the sparsity problem of the existing paper ci-
tation graph. Hence, the abovementioned research contents
are to further study and progress.

Data Availability

.e experiment dataset Hep-. used to support the findings
of this study has been deposited in “http://snap.stanford.
edu/data/cit-Hep..html.”
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