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Interactions in microservice systems are complex due to three dimensions: numerous asynchronous interactions, the diversity of
asynchronous communication, and unbounded buffers. Analyzing such complex interactions is challenging. In this paper, we
propose an approach for interaction analysis using model checking techniques, which is supported by the Process Analysis Toolkit
(PAT) tool. First, we use Labeled Transition Systems (LTSs) to model interaction behaviors in microservice systems as sequences
of send actions under synchronous and asynchronous communications. Second, we introduce a notion of correctness called
“interaction soundness” which is considered as a minimal requirement for microservice systems. -ird, we propose an encoding
of LTSs into the CSP# process algebra for automatic verification of the property interaction soundness. -e experimental results
show that our approach can automatically and effectively identify interaction faults in microservice systems.

1. Introduction

-e cloud computing paradigm [1–3] and edge computing
paradigm [4–6] enable us to utilize ITresources flexibly.-is
trend not only drives many software systems tomigrate from
monolithic architecture to microservice architecture [7] but
also attracts more andmore research focuses on how to build
“cloud-native” [8] applications.

Microservice architecture [9] can be used to develop a
single application composed of a set of microservices.
Compared with traditional web services, these microservices
are much more fine-grained and are independently devel-
oped and deployed [3]. -ese characteristics of microservice
architecture are particularly suitable for losing coupling and
updating systems running on cloud infrastructures [10].

-e interactions in microservice systems are complex due
to three dimensions: numerous asynchronous interactions,
the diversity of asynchronous communication, and un-
bounded buffers. First, the execution of a microservice system
may involve numerous interactions among microservices.
Most of these interactions are asynchronous because syn-
chronous interactions may cause the multiplicative effect of
downtime [11, 12]. For example, Netflix’s online service
system involves 5 billion service invocations per day [13].

-ese asynchronous interactions may cause unexpected se-
quences of messages during execution. Second, under point-
to-point semantics, there are at least two asynchronous
communications with FIFO buffers [14], namely, peer-to-peer
communication and mailbox communication. Microservice
systems can be realized by the two different asynchronous
communication models. Compared with the mailbox se-
mantics, the peer-to-peer semantics causes the interaction
topology to be amuch complex graph.-ird, because the sizes
of the buffers of microservice systems are not known a priori,
their sizes are often considered to be unbounded. Micro-
service systems with unbounded buffers may exhibit infinite
state space such that the reachability problem of such systems
is known to be undecidable [15].

-e complexity of interactions in microservice systems
poses great challenges to analyzing because missing or im-
proper coordination among microservices may cause inter-
action faults. -e results of the industrial survey in [10] show
that interaction faults are common in microservice systems.

Although there are a few papers on microservice systems
[16], most of them focus on debugging [10, 11, 17–19],
deployment [20, 21], composition [22], architecture [23],
and adaptation [24]. However, there is little research on the
interaction analysis of microservice systems. A basic and
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effective technique for analyzing interactions in micro-
service systems is synchronizability analysis [25–27]. A
system is synchronizable if it sends actions which remain the
same for both the asynchronous communication and syn-
chronous communication. However, recent research shows
synchronizability is undecidable [14].

In this paper, we propose an approach for interaction
analysis using model checking techniques, which is sup-
ported by the Process Analysis Toolkit (PAT) [28] tool. Such
an analysis approach enables us to effectively and auto-
matically identify interaction faults of microservice systems.
Our contribution can be summarized as follows:

(i) We model complex interactions in microservice
systems under synchronous and peer-to-peer
asynchronous communications

(ii) We introduce a notion of correctness called “in-
teraction soundness” which is considered as a
minimal requirement for microservice systems

(iii) We automatically verify the property interaction
soundness usingmodel checking techniques under the
support of the Process Analysis Toolkit (PAT) tool.

Moreover, we propose an encoding of LTSs into the
CSP# process algebra. We choose CSP# because it is
equipped with the PAT tool which offers the PAT simulator
for state space generation and the PAT verifier for property
verification. In particular, when the PAT verifier returns not
valid using model checking, it gives us the counterexample
which is very useful to fix faults.

-e rest of this paper is organized as follows. Section 2
discusses related work. Section 3 presents some formal
definitions used throughout this paper. Section 4 formally
defines the interaction behaviors of microservice systems
under synchronous and peer-to-peer asynchronous com-
munications. Section 5 introduces a notion of interaction
soundness and verifies the property using model checking
techniques based on CSP# encoding. Section 6 discusses the
implementation of our approach and experimental results.
Section 7 concludes this paper.

2. Related Work

-ere has been some research on debugging microservice
systems. In [10], the authors conducted an industrial survey
to show three main faults in microservice systems, namely,
internal faults, interaction faults, and environment faults. In
[11, 17], the authors proposed a novel approach for
debugging microservice systems. In [18], the authors dis-
cussed complex live testing strategies for microservice sys-
tems. In [19], the authors proposed a new approach to test
performance of each microservice participating in a
microservice system. All these studies can be used to test
microservice systems. However, our work focuses on ana-
lyzing interactions in microservice systems.

-ere are some other studies on microservice systems. In
[20], the authors proposed an approach to modeling and
managing deployment costs for microservice systems. In [21],
the authors discussed how to improve the performance of a

microservice architecture. In [22], the authors proposed an
approach to integrate microservices based on Linked Data. In
[23], the authors presented a tool for generating and managing
models of microservice architecture. In [24], the authors dis-
cussed how to balance the granularity of a microservice ar-
chitecture. However, all these methods cannot be used to
analyze interactions in microservice systems.

To the best of our knowledge, we are the first to analyze
complex interactions in microservice systems.

3. Preliminaries

In this section, we present some definitions used throughout
this paper.

Definition 1 (labeled transition system). A labeled transition
system is a tuple LTS� (S, s0, F, A, Δ), where

(i) S is a set of states
(ii) s0 ∈ S is the initial state
(iii) F ⊆ S is a set of final states
(iv) A is a set of labels
(v) Δ⊆ S × A × S is a transition relation

For the sake of simplicity, we use r⟶a s to denote (r, a,
s) ∈Δ.

CSP# is an extension of CSP (communicating se-
quential processes) [29]. In this paper, we use CSP# for
microservice system verification. In essence, CPS# is a
formal method which integrates state-based specification
and event-based specification. -e following is a BNF
description of the #CSP process expression. More details of
CSP# can be found in [30].

P::�Stop in-action

|Skip terminal
|e⟶P prefix
|ch!exp⟶P channel input
|ch?exp⟶ P channel output
|P\X hiding
|P; Q sequential composition
|P[]X external choice
|PΠX internal choice
|if b {P} else {Q} conditional choice
|[b]P guarded process
|P||Q parallel composition
|P|||Q interleaving
|PΔQ interrupting
|ref(Q) process referencing

where P and Q are processes, e is an event, X is a set of event
names (e.g., {e1, e2}), b is a Boolean expression, ch is a
channel, exp is an expression, and x is a variable [28].

-e syntax of LTL formulas are defined as follows. More
details of LTL can be found in [29].

F� e | prop | [] F | <> F | X F | F1 U F2 | F1 R F2

where e is an event, prop is a predefined proposition, F, F1,
and F2 are three LTL formulas, [] denotes “always,” <>
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denotes “eventually,” X denotes “next,” U denotes “until”,
and R denotes “release.”

4. Interaction Behavior Model

In this section, we introduce a formal model (see Figure 1) for
modeling complex interactions in microservice systems. In
our model, microservices with unbounded buffers commu-
nicate asynchronously with each other and interactions in a
microservice system can be viewed as sequences of send
actions because receive actions which consume messages
from buffers are considered as local invisible actions.

Figure 1 illustrates the three communicating micro-
servicesMS1,MS2, andMS3 with messages a, b, c, and d that
are from the example in [8]. -e initial states of each
microservice are subscripted with 0 and marked with in-
coming half-arrows. -e final states of each microservice are
marked with double circles. Each transition of each
microservice is labeled with send action (exclamation
marks) or receive message action (question marks). -e
buffers are in red lines and marked with i and j, where i
denotes the sender and j denotes the receiver. For example,
the buffer12 denotes the buffer of MS2 which is used to store
incoming messages sent from MS1. Note that each buffer is
an FIFO message queue.

When we further consider asynchronous messaging in
Figure 1, there are two different semantics for the point-to-
point asynchronous communication, namely, peer-to-peer
communication and mailbox communication. -e mailbox
communication shown in Figure 2 requires all messages sent
to MS1 from the other microservices are stored in a buffer
(i.e., a message queue) that is specific to MS1. -e peer-to-
peer communication requires each message sent from a
microserviceMS1 to another microserviceMS2 is stored in a
buffer in an FIFO fashion which is specific to the pair (MS1,
MS2). In other words, each participating microservice of a
microservice system is equipped with many buffers for
different incoming messages from other microservices. In
this paper, we focus on peer-to-peer communication.

Based on the analysis above, we first use finite LTSs to
model the behaviors of individual microservices. -en, we
move to model the asynchronous interaction behaviors of
microservice systems both with unbounded buffers and with
bounded buffers (say k). Finally, we model the synchronous
interaction behaviors of microservice systems based on the
asynchronous interaction behaviors.

Definition 2 (message set). A message set M is a tuple (Σ, p,
src, dst).

(i) Σ is a finite set of letters
(ii) p≥ 1 is a nonnegative integer number which de-

notes the number of participating microservices
(iii) src and dst are functions that associate message

m ∈Σ to nonnegative integer numbers src(m)≠
dst(m) ∈ {1, 2, . . ., p}

We often use mi⟶j for a message m such that src(m)� i
and dst(m)� j.

Definition 3 (microservice). A microservice MS is a labeled
transition system (S, s0, F, M, δ), where

(i) S is the finite set of states
(ii) s0 is the initial state
(iii) F⊆ S is the finite set of final states
(iv) M is a message set
(v) δ ⊆ S× (M∪ {ε})× S is the transition relation

A transition τ ∈ δ can be one of the following three types:

(1) A send-transition (s1, !m1⟶2, s2) which denotes that
the microservice MS1 sends out a message m1⟶2 to
another microservice MS2 where m1⟶2 ∈M

(2) A receive-transition (s1, ?m1⟶2, s2) which denotes
that the microservice MS1 consumes a message
m1⟶2 where m1⟶2 ∈M

(3) An ε-transition (s1, ε, s2) which denotes the invisible
action of MS1

We often use si⟶!m
i→j

sj to denote that (si, !mi⟶j, sj).

4.1. Asynchronous Interaction Behaviors of Microservice
Systems

Definition 4 (asynchronous interaction behavior of a
microservice system with unbounded buffers). An asyn-
chronous interaction behavior of a microservice system with
unbounded buffers over a set of microservices (MS1, MS2,
. . .,MSn), whereMSi � (Si, s0i, Fi,Mi, δi) andMi � (Σi, pi, srci,
dsti), is denoted by a labeled transition system Ba � (C, c0, F,
M, Δ) (possible infinite state) where

(i) C⊆Q1 × S1 ×Q2 × S2. . .Qn × Sn is the set of states
such that ∀i ∈ {1, 2, . . ., n}:Qi � (bufferji), where ∀j ∈
{1, 2, . . ., n}∧i≠ j∧bufferji⊆ (Mj)∗.

(ii) c0 ∈C is the initial state such that

c0 � (([ ], [ ], . . . , [ ])√√√√√√√√√√√√
n−1

, c01, ([ ], [ ], . . . , [ ])√√√√√√√√√√√√
n−1

, c02,. . .,

([ ], [ ], . . . , [ ])√√√√√√√√√√√√
n−1

, c0n), where c0i �MSi·s0i.

(iii) F⊆C is the set of final states such that
∀f ∈ F� (([ ], [ ], . . . , [ ])√√√√√√√√√√√√

n−1

, f1, ([ ], [ ], . . . , [ ])√√√√√√√√√√√√
n−1

, f2,. . .,

([ ], [ ], . . . , [ ])√√√√√√√√√√√√
n−1

, fn), where fi ∈MSi·Fi.
(iv) M�∪iMi is the set of messages.
(v) Δ⊆C× (M∪{ε})×C for c� (Q1, s1, Q2, s2, . . ., Qn, sn)

and c′� (Q′1, s′1, Q′2, s′2, . . ., Q′n, s′n).

(a) c⟶!mi→j

c′ ∈ Δ if ∃i, j ∈ {1, 2, . . ., n} :m ∈M:
(i) src(m)� i∧ dst(m)� j,
(ii) si⟶!m

i→j

si
′ ∈ δi,

(iii) ∀k ∈ {1, 2, . . ., n}:k≠ i⟹ s’k � sk,
(iv) ∀k ∈ {1, 2, . . ., n}∧ k� i⟹ bufferkj

� bufferkjm,
(v) ∀k, l ∈ {1, 2, . . ., n}∧k≠ i∧l≠ j∧k≠

l⟹ bufferkl′ � bufferkl.
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[send action]
(b) c⟶?mi→j

c′ ∈ Δ if ∃i, j ∈ {1, 2, . . ., n}∧m ∈M:
(i) src(m)� i∧dst(m)� j,
(ii) sj⟶?mi→j

sj
′ ∈ δj,

(iii) ∀k ∈ {1, 2, . . ., n}:k≠ j⟹ sk
′� sk,

(iv) ∀k ∈ {1, 2, . . ., n}∧k� i⟹ bufferkj′ �

mbufferkj,
(v) ∀k, l ∈ {1, 2, . . ., n}k≠ i∧l≠ j∧k≠

l⟹ bufferkl′ � bufferkl.
[receive action]

(c) c⟶ε c′ ∈ Δ if ∃i, j ∈ {1, 2, . . ., n}:
(i) si⟶ε si

′ ∈ δi,
(ii) ∀k ∈ {1, 2, . . ., n}: k≠ i⟹ sk

′� sk,
(iii) ∀k ∈ {1, 2, . . ., n}: Qk

′�Qk.
[internal action]

According to Definition 4, microservices with un-
bounded buffers participating in a microservice system can
interact with each other under the peer-to-peer semantics.
-e states (C) of a composite service consisting of n
microservices are described by each microservice’ local
state and its respective buffers. Each microservice has n − 1
unbounded buffers. WhenMS1 sends a message m to MS2,
the message will be inserted to the tail of the buffer12 which

is specific to the pair (MS1, MS2) and then MS2 can
consume this message from the head of its buffer12. -e
send action (item 4a) is nonblocking and involves a sender,
a receiver, and receiver’s buffer. After the senderMSi sends
a message m to the receiver MSj, the state of the sender is
changed (4a-ii), the message will be inserted to the tail of
the bufferij which is specific to the pair (MSi, MSj) (4a-iv),
and the other buffers do not change (4a-v). -e receive
message action (item 4b) is blocking and local, which
involves only a receiver. After the receive message action is
executed, the state of the message receiver is changed (4b-
ii), the message at the head of the buffer of the receiver is
consumed (4b-ii), and the other buffers do not change (4b-
v). -e epsilon-labeled transition (item 4c) is internal
actions and can simply change the local state of a
microservice.

Moreover, if we set Qi � (bufferi) and keep others un-
changed in Definition 4, the semantics of asynchronous
communication is changed to the mailbox communication.
-erefore, the mailbox communication is a special case of
the peer-to-peer communication.

-e interaction behavior of a microservice system de-
pends on not only the order in which send actions are
executed but also the size of each microservice’s buffers [31].

s0,1 s1,1
!a1→2 !a1→2 !b1→3

?b1→3 !c3→2

?a1→2 ?c1→3

?c3→2

?a1→2

!d2→1

MS1

MS3

MS2...

...

...

...

Buffer13
Buffer31

Buffer32

Buffer23

Buffer21

Buffer12

s3,1s2,1

s0,3 s1,3 s2,3

s1,2 s2,2 s3,2

s0,2 s4,2 s5,2

Figure 1: -e formal model of complex interactions in microservice systems under the peer-to-peer communication.
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...
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!a1→2 !a1→2 !b1→3

?b1→3 !c3→2

?a1→2
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?c1→3

?c3→2 !d2→1

MS1

MS3

MS2
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Buffer3 Buffer2

s0,1 s1,1 s3,1s2,1

s0,3
s1,3 s2,3

s1,2 s2,2 s3,2

s0,2 s4,2 s5,2

Figure 2: -e mailbox communication.
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When buffers are unbounded, interaction behavior may be
infinite.

We define the asynchronous interaction behavior of
microservice systems with bounded buffers in the following,
where each participating microservice has buffers of size k.

Definition 5 (asynchronous interaction behavior of a
microservice system with buffers of size k). -e asyn-
chronous interaction behavior of a microservice system with
buffers of size k is denoted by a labeled transition system
Bk

a � (C, c0, F, M,Δ) and described by augmenting condi-
tion (a) in Definition 4 to include the conditionQj � (q1, qj−1,
qj+1,. . ., qn): |qj|< k, where |qi| denotes the length of the
buffers for microservice MSi.

In a microservice system with buffers of size k, the send
actions are blocked if the receiver’s buffer contains k mes-
sages. -erefore, the interaction behavior of a microservice
system with buffers of size k is finite.

Figure 3(a) illustrates the asynchronous interaction
behavior of the microservice system with buffers of size 2
shown in Figure 1 under the peer-to-peer communication.
-e initial state is denoted by c0 � (([], []), s01, ([], []), s02, ([],
[]), s03) (i.e., each microservice is in its initial state and all the
buffers are empty). After MS1 sends the message a to the
buffer12 of MS2, the system evolves from c0 to c1 and the
buffer12 contains a. -en, MS2 consumes the “matching”
message a at the head of its buffer12, the system evolves from
c1 to c3, and the message a is removed from the buffer12.

Figure 3(b) illustrates the asynchronous interaction be-
havior of themicroservice systemwith buffers of size 2 shown in
Figure 1 under the mailbox communication. -e initial state is
c0� (([], []), s01, ([], []), s02, ([], []), s03), and the final state is c10.

4.2. Synchronous Interaction Behaviors of Microservice
Systems. In synchronous communication, every send action
is executed followed by a receive action, i.e., the micro-
services interact synchronously. It seems that each micro-
service of a microservice system has buffers of size 0.

Definition 6 (synchronous behavior of a microservices
system). A synchronous behavior of a microservices system
over a set of microservices (MS1, MS2, . . ., MSn), where
MSi �MSi � (Si, s0i, Fi, Mi, δi) and Mi � (Σi, pi, srci, dsti), is
denoted by a labeled transition system Bs � (C, c0, F, M, Δ),
where

(i) C⊆ S1 × S2 · · · × Sn is the set of states.
(ii) c0 ∈C is the initial state.
(iii) F⊆C is the set of final states such that ∀f ∈ F� (f1, f2,

. . ., fn) where fi ∈MSi·Fi.
(iv) M�∪iMi is the set of messages.
(v) Δ⊆C× (M∪ {ε})×C for c� (s1, s2, . . ., sn) and

c′ � (s1′, s2′, . . . , sn
′).

(a) c⟶?mi→j

c′ ∈Δ if ∃i, j ∈ {1, 2, . . ., n}∧m ∈M:
(i) src(m)� i∧dst(m)� j,
(ii) si⟶?mi→j

si
′ ∈ δi,

(iii) sj⟶?mi→j

sj
′ ∈ δj,

(iv) ∀k ∈ {1, 2, . . ., n} : k≠ i∧k≠ j⟹ sk
′� sk.

[synchronous send-receive action]
(b) c⟶ε c′ ∈ Δ if ∃i, j ∈ {1, 2, . . ., n}:
(i) si⟶ε si

′ ∈ δi,
(ii) ∀k ∈ {1, 2, . . ., n} : k≠ i⟹ sk

′� sk,
[internal action]

Figure 4 illustrates the synchronous behavior of a
microservice system shown in Figure 1. -e behavior of the
system have transitions a1⟶2, followed by a1⟶2, followed
by b1⟶2, and followed by c3⟶2.

5. Interaction Soundness-Based Verification

Given a microservice system, one crucial problem is to check
whether the interaction behavior is correct. In this paper, we
check whether the interaction behavior of a microservice
system satisfies a minimal requirement for correctness using
model-checking techniques. -e whole process includes the
following three steps:

(1) We introduce a notion of correctness called ‘inter-
action soundness’ which is considered as a minimal
requirement for microservice systems

(2) We present an encoding of the interaction behavior
into the CSP# process

(3) We translate the property interaction soundness into
LTL formulas such that we can verify this property
using model-checking techniques under the support
by the PAT verifier.

5.1. Interaction Soundness. Let us further analyze the
asynchronous interaction behavior of a microservice system
with buffers of size 2 shown in Figure 3(a). When the ex-
ecution of the microservice system is along the sequence of
send and receive actions circled by a red dashed line, the
terminating state is c17 which denotes that each participating
microservice reaches its corresponding final state, but the
message queue buffer12 of MS1 and the message queue
buffer21 of MS2 are not empty. In other words, there is an
interaction fault which causes messages a1⟶2 and d1⟶2 not
to be consumed correctly.

In Figure 5, we take a snapshot of the system in c17.-ere
are two messages a1⟶2 in buffer12 of MS1 and one message
d1⟶2 in buffer21 of MS2.

Based on the above analysis, we use the interaction
correctness criterion as a minimal requirement any
microservice system should satisfy. In particular, the re-
quirement is described as follows.

For any case, the microservice system will terminate
eventually and the moment the system terminates the ter-
minating state is the final state.

Definition 7 (interaction soundness under synchronous
communication). A microservice system Bs � (M, C, F, c0, Δ)
is interaction soundness under synchronous communica-
tion if and only if the following condition is satisfied.
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c0 = (([],[]), s01, ([],[]), s02, ([],[]), s03)
c1 = (([],[]), s11, ([a],[]), s02, ([],[]), s03)
c2 = (([],[]), s21, ([a, a],[]), s02, ([],[]), s03)
c3 = (([],[]), s11, ([],[]), s12, ([],[]), s03)
c4 = (([],[]), s21, ([a],[]), s12, ([],[]), s03)
c5 = (([],[]), s31, ([a],[]), s12, ([b],[]), s03)
c6 = (([],[]), s21, ([],[]), s22, ([],[]), s03)
c7 = (([],[]), s31, ([],[]), s22, ([b],[]), s03)
c8 = (([],[]), s31, ([],[]), s22, ([],[]), s13)
c9 = (([],[]), s31, ([],[c]), s22, ([],[]), s23)
c10 = (([],[]), s31, ([],[]), s32, ([],[]), s23)
c11 = (([],[]), s31, ([a],[]), s12, ([],[]), s13)
c12 = (([],[]), s31, ([a], [c]), s12, ([],[]), s23)
c13 = (([],[]), s31, ([a, a],[]), s02, ([b],[]), s03)
c14 = (([],[]), s31, ([a, a],[]), s02, ([],[]), s13)
c15 = (([],[]), s31, ([a, a],[c]), s02, ([],[]), s23)
c16 = (([],[]), s31, ([a, a],[]), s42, ([],[]), s23)
c17 = (([d],[]), s31, ([a, a],[]), s52, ([],[]), s23)

c7

c0

c1

c2 c3

c4

c5 c6

c13

c14

!a1→2

?a1→2

?a1→2

?a1→2

?a1→2

?a1→2

!b1→3

?b1→3

?b1→3

!d2→1

?a1→2

?a1→2

?a1→2

!b1→3

?c3→2

?b1→3

!c3→2

?c3→2 !c3→2

!c3→2

!a1→2

!a1→2

!b1→3

c15

c16

c17

c10

c9

c12

c11

c8

(a)

c0 = (([]), s01, ([]), s02, ([]), s03)
c1 = (([]), s11, ([a]), s02, ([]), s03)
c2 = (([]), s21, ([a]), s02, ([]), s03)
c3 = (([]), s11, ([]), s12, ([]), s03)
c4 = (([]), s21, ([]), s12, ([]), s03)
c5 = (([]), s31, ([a]), s12, ([]), s03)
c6 = (([]), s21, ([]), s12, ([]), s03)
c7 = (([]), s31, ([]), s22, ([b]), s03)
c8 = (([]), s31, ([]), s22, ([]), s13)
c9 = (([]), s31, ([]), s22, ([]), s23)
c10 = (([]), s31, ([]), s32, ([]), s23)
c11 = (([]), s31, ([a]), s12, ([]), s13)
c12 = (([]), s31, ([a, c]), s12, ([]), s23)
c13 = (([]), s31, ([a, a]), s02, ([b]), s03)
c14 = (([]), s31, ([a, a]), s02, ([]), s13)
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!a1→2

?a1→2

!b1→3

?b1→3

?a1→2
?b1→2

!c3→2
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?b1→3

!b1→3

?a1→2

?a1→2

?a1→2
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!a1→2

!b1→3

?a1→2

?c3→2

!c3→2
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c3
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c8 c12

c9

c10

c2

c13

c5

c11

c14

(b)

Figure 3: -e asynchronous interaction behavior of the microservice system with buffers of size 2 shown in Figure 1. (a) -e peer-to-peer
communication. (b) -e mailbox communication.

c0
a1→2 a1→2 b1→3 c3→2

c1 c2 c3 c4

Figure 4: -e synchronous interaction behavior of the microservice system shown in Figure 1.
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For every state c reachable from the initial state c0, there
exists a transition sequence leading from state c to a final
state cx. Formally,

∀c ∈ C∧ c0⟶
!mi→j

c1⟶
!mk→l

· · ·⟶!m
o→p

c ⟹ c⟶
!m

i→j

n+1
cn+1⟶

!m
i→j

n+1
· · ·⟶

!m
o→p

0
cx ∧ cx ∈ F. (1)

Definition 8 (interaction soundness under unbounded
asynchronous communication or k-bounded asynchronous
communication). A microservice system Ba � (M, C, F, c0, Δ)
or Bk

a � (C, c0, F, M,Δ) is interaction soundness under
unbounded asynchronous communication or k-bounded

asynchronous communication if and only if the following
condition is satisfied.

For every state c reachable from the initial state c0, there
exists a transition sequence leading from state c to a final
state cx. Formally,

∀c ∈ C∧ c0⟶
!m

i→j

1 c1⟶
!mk→l

2 · · ·⟶!m
o→p
n c ⟹ c⟶

!m
i→j

n+1
cn+1⟶

!mk→l
n+2

· · ·⟶
!m

o→p

0
cx ∧ cx ∈ F. (2)

-e difference between Definitions 7 and 8 is that the
states of the former are described in terms of local states of
the participating microservices, while the states of the latter
are described in terms of local states of the participating
microservices and their respective buffers.

5.2. CPS# Encoding for the Behaviors of Microservice Systems.
We first discuss how to encode an asynchronous interaction
behavior of a microservice system as a CSP# process. -en,
we discuss how to encode a synchronous interaction
behavior.

-e CSP# process encoding an asynchronous interaction
behavior of a microservice system mainly includes the
following three steps:

(1) Encodes all the transitions in each microservice as
events in CSP#. For example, the send-transition (s1,

!m1⟶2, s2) is encoded as an event !m and the receive-
transition (s1, ?m1⟶2, s2) is encoded as an event ?m.

(2) Encodes the order in which the adjacent transitions
are executed as prefix or external choice in CSP#. For
example, the order in which the microservice MS1
executes transitions in Figure 1 is a1⟶2, followed by
a1⟶2 and b1⟶2 which can be encoded as !a->!a->!b-
> Skip without considering buffers.

(3) Encodes peer-to-peer asynchronous communica-
tion. In CSP#, the channel can be used to encode a
buffer. Because each buffer is specific to the pair
(sender, receiver) in the peer-to-peer asynchronous
communication, we use the process bufferij!m⟶P

to denote that the senderMSi sends the messagem to
the bufferij of the receiverMSj. Conversely, we use the
process bufferij[x� �m]?m⟶P to denote that the
receiver MSj consumes the message m from its

...

...

...

...

?b1→3 !c3→2

?a1→2 ?c1→3

?c3→2

?a1→2

!d2→1

!a1→2

a1→2 a1→2

d2→1

!a1→2 !b1→3

MS1

MS3

MS2

Buffer13 Buffer31

Buffer32

Buffer21

Buffer12

Buffer23

s0,1 s1,1 s3,1s2,1

s0,3 s1,3 s2,3

s0,2 s4,2 s5,2

s1,2 s2,2 s3,2

Figure 5: A snapshot of a microservice system in c17.
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bufferij, where the expression [x� �m] is used to
check whether the top element in the bufferij is the
matching message m.

Given a microservice system Ba � (M, C, F, c0, Δ) over a
set of microservices {MS1, MS2, . . ., MSn}, we generate the
CSP# process by using Algorithm 1.

Function gen_buffers generates all the buffers in a
microservice system:

gen buffers Ba · C(  � bufferi,j

∀i, j ∈ 1, 2, . . . , n{ } .

(3)

Function gen_message_variable generates message var-
iables in a microservice system:

gen message variable Ba · M(  � 1, 2, . . . , Mtotal


  .

(4)

Function trace() obtains a set of sequences of send and
receive messages on any path from the initial state s0:

trace M1(  � sort σi( 
 ∀m ∈M1 · M: m ∈ σi , (5)

where the function sort(σi) sorts the messages on the path by
their execution order.

For a message !m1⟶2 ∈M, function action(!m1⟶2)�m
denotes the message and function type(!m1⟶2)� ! denotes
the message type.

Let m, n, and p be separately the number of micro-
services, the max number of the traces, and the max number
of messages on a branch. -e worst time complexity of
Algorithm 1 is (m∗ n∗ p).

Example 1. For the microservice system with buffers of size
2 shown in Figure 3, the CSP# process is shown below:

////////////////-e buffers//////////////////
channel buffer12 2;
channel buffer13 2;
channel buffer21 2;
channel buffer23 2;
channel buffer31 2;
channel buffer32 2;
////////////////-e messages//////////////////
var a� 1;
var b� 2;
var c� 3;
var d� 4;
//////////-e process of each participating
microservice///////
PMS1()� buffer12!a⟶ buffer12!a⟶ buffer13!
b⟶ Skip;
PMS2()� buffer12? 1⟶ buffer12? 1⟶ buffer32?
3⟶ Skip[]buffer32? 3⟶ buffer21!d⟶ Skip;
PMS3()� buffer13?2⟶ buffer32!c⟶ Skip;

//////-e process of an asynchronous interaction be-
havior of a microservice system //////
System()� PMS1()|||PMS2()|||PMS3().

Because synchronous communication is a special case of
asynchronous communication (i.e., the size of buffer is set to
0), the CSP# process of a synchronous behavior can be
generated by using Algorithm 1 except setting the size of
bufferij to be 0.

5.3. LTLFormulas of Interaction Soundness. After generating
the CSP# process of a microservice system using Algorithm
1, we can generate the state space of the CSP# process using
the PATsimulator and verify temporal logic properties using
the PATverifier.-us, we need to translate Definitions 7 and
8 into LTL formulas.

-e property interaction soundness under synchronous
communication can be defined as follows:

system| � (“init”-> <>(“terminate”))&&F, (6)

where init denotes the initial state of the system, terminate
denotes the final state of the system, and F denotes strong
fairness conditions.

-e property interaction soundness under asynchronous
communication can be defined as follows:

#define bufij call cempty, bufferij  �� true;

system()| � “init” -> <> “terminate”&& bufij  &&F,

(7)

where cempty is channel operation which is a Boolean
function to test whether the asynchronous channel is empty
or not and bufferij is channel specific to the pair (MSi, MSj)
which denotes the buffer of a microservice MSj.

Example 2. For the microservice system with buffers of size
3 shown in Figure 3, the LTL formula of the property in-
teraction soundness is defined as follows:

#define buf12 call(cempty,buffer12)� � true;
#define buf13 call(cempty,buffer13)� � true;
#define buf21 call(cempty,buffer21)� � true;
#define buf23 call(cempty,buffer23)� � true;
#define buf31 call(cempty,buffer31)� � true;
#define buf32 call(cempty,buffer32)� � true;
#assert System()|� [](“init”-> <> (“terminate” &&
buf12 && buf13 && buf21 && buf23 && buf31 &&
buf32));

6. Implementation and Experiments

6.1. Implementation. Our approach is completely auto-
mated. First, we have implemented an encoder which takes a
microservice system as input and outputs the corresponding
CSP# process. Second, once the CSP# process is obtained, we
can generate the state space of the asynchronous interaction
behavior of the microservice system using the PATsimulator
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which is defined in an LTS. -ird, we verify whether the
generated state space satisfies the property interaction
soundness using the PAT verifier.

-e generated asynchronous interaction behavior of the
microservice system with buffers of size 3 shown in Figure 1
is shown in Figure 6 using the PAT simulator. -e verifi-
cation result shown in Figure 7 returns not valid, which
means that the microservice system with buffers of size 3 has
an interaction fault.

6.2. Experiments. To validate our approach, we use 10 cases
obtained from the literature. We choose these cases because
the literature is representative. All cases were carried out on
a PC with 2.50GHz Processor and 8GB of RAM, running
Windows 10.

Table 1 shows the experimental results for all the cases
we conducted. -e table gives for each case the number of
participating microservices (MSs) involved in a micro-
service system, the number of messages (Ms), the size of
the LTS of the synchronous interaction behaviors of a
microservice system (Bs), the verification result under
synchronous communication (IRa) (“−” denotes that the
system is not interaction sound and “+” denotes that the
system is interaction sound), the size of the LTS of the
asynchronous interaction behaviors of a microservice
system with buffers of size k (Bk

a), and the verification
result under k-bounded asynchronous communication
(IRs).

Out of the 10 cases presented in Table 1, 7 cases can be
interaction sound under synchronous communication, e.g.,
see cases Ca-02, Ca-03, Ca-04, Ca-06, Ca-07, Ca-08, and

Input: a microservice system Ba � (C, c0, F, M, Δ)
Output: a CSP# process
(1) {buffer12,. . ., buffern−1n}� gen_buffers(Ba·C)
(2) set {buffer12,. . ., buffern−1n}’s size
(3) gen_message_variable(Ba·M})
(4) for MSi ∈ (MS1, MS2, . . ., MSn) do
(5) {σ1,. . ., σn}� trace(MSi)
(6) for σj ∈ (σ1,. . ., σn) do
(7) z� 1
(8) while (m� getHead(σj))!�null
(9) if type(m)� � “!”
(10) Pz()� buffersrc(m)_dst(m)!action(m)⟶ Pz+1()
(11) else
(12) Pz()� buffersrc(m)_dst(m)[xz � � action(m)]?action(m)⟶ Pz+1()
(13) z� z+ 1
(14) end if
(15) end while
(16) PMSi()�P1()
(17) end for
(18) end for
(19) System ()� PMS1()|||PMS1()|||. . .|||PMSn()

ALGORITHM 1: Encoding an asynchronous interaction behavior.

Figure 6: A snapshot of the asynchronous interaction behavior using the PAT simulator.
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Ca-10. In 7 cases, microservice systems with buffers of size 3
are not interaction sound, e.g., see cases Ca-01, Ca-02, Ca-03,
Ca-05, Ca-06, Ca-09, and Ca-10.

From Table 1, we can further see that, (1) in each case,
the LTS of the asynchronous interaction behavior of a
microservice system is bigger than that of the synchronous
interaction behavior, i.e., the asynchronous interaction
behavior is more complex than the synchronous interac-
tion behavior; (2) the asynchronous interaction behavior of
some microservice systems is stable, i.e., once the size of the
LTS of the asynchronous interaction behavior remains
unchanged for a buffer bound, e.g., see cases Ca-04, Ca-07,
Ca-08, Ca-09, and Ca-10. -is property on the system is
called stable which is proposed in [40]; (3) when some
microservice systems with buffers of size 1 are interaction
sound, it does not mean that the systems with buffers of size
k (k > 1) are also interaction sound, e.g., see the case Ca-10;
(4) during the experiments, Case-5 faces the state space
explosion problem. “Too large” means that the PAT

simulator is forced to stop due to the huge state space size
(>300 states).

7. Conclusion and Future Work

In this paper, we introduce a formal model for modeling
complex interactions of microservice systems and verify
whether these systems satisfy a minimal requirement for
correctness using model-checking techniques. We have used
LTLs to model complex interactions of microservice systems
under synchronous and asynchronous communications and
introduced a notion of correctness called “interaction
soundness” which is considered as a minimal requirement
for microservice systems. We automatically verified the
property interaction soundness under the support of the
PAT tool. Experiments showed that many cases have in-
teraction faults.

Our future work is to investigate whether our results
stand for mailbox communication, e.g., each microservice is

Table 1: Verification results for all cases.

Id Description
Number Bs B1

a B2
a B3

a

|MSs| |Ms| LTS(|T|/|S|) IRa LTS(|T|/|S|) IRs LTS(|T|/|S|) IRs LTS(|T|/|S|) IRs

Ca-01 [33] Booking system 4 7 (10,11) − (23\29) − (24\31) − (24\31) −

Ca-02 [34] Train station 4 8 (11,13) + (44,76) − (64,122) − (84,168) −

Ca-03 [32] Protocol 3 3 (7,14) + (26,62) − (35,91) − (44,120) −

Ca-04 [35] Online shopping 3 6 (7,7) + (13,13) + (13,13) + (13,13) +
Ca-05 [36] Cloud application 4 5 (6,10) − (96,240) − Too large − Too large −

Ca-06 [37] Figure 2 3 3 (3,3) + (10,14) − (15,24) − (20,34) −

Ca-07 [38] Figure 1 4 5 (11,14) + (28,43) + (28,43) + (28,43) +
Ca-08 [15] Composition 2 2 5 (5,6) + (10,11) + (10,11) + (10,11) +
Ca-09 [39] Figure 8 3 3 (7,6) − (16,20) − (16,20) − (16,20) −

Ca-10 [14] Figure 1 3 4 (6,5) + (13,15) + (20,26) − (20,26) −

Figure 7: A snapshot of the verification result using the PAT verifier.
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equipped with one buffer which is used to store incoming
messages from the other microservices.
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