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Recent decades have witnessed the rapid evolution of robotic applications and their expansion into a variety of spheres with
remarkable achievements. This article researches a crucial technique of robot manipulators referred to as visual servoing, which
relies on the visual feedback to respond to the external information. In this regard, the visual servoing issue is tactfully transformed
into a quadratic programming problem with equality and inequality constraints. Differing from the traditional methods, a
gradient-based recurrent neural network (GRNN) for solving the visual servoing issue is newly proposed in this article in the light
of the gradient descent method. Then, the stability proof is presented in theory with the pixel error convergent exponentially to
zero. Specifically speaking, the proposed method is able to impel the manipulator to approach the desired static point while
maintaining physical constraints considered. After that, the feasibility and superiority of the proposed GRNN are verified by
simulative experiments. Significantly, the proposed visual servo method can be leveraged to medical robots and rehabilitation

robots to further assist doctors in treating patients remotely.

1. Introduction

As one of the greatest human inventions in the 20th century,
robot technology has undoubtedly made great progress in
the past decades with brilliant research achievements [1-4].
After the birth, growth, and maturity of robots, they have
become the indispensable core equipment in the
manufacturing industry due to their high automation and
efficiency. Especially as the rising star of the family of robots,
redundant robots, which possess more degrees of freedom
(DOFs) than the task requires, are capable of performing
complicated tasks efficiently with the great property and
versatility. In detail, the redundancy characteristic assists the
redundant robots in fulfilling additional task demands, for
example, repetitive motion planning [5], physical constraint
avoidance [6], and manipulability optimization [7, 8]. In
combination with medical technology, various medical ro-
bots have been developed and explored for patient

rehabilitation and surgical execution as an important ap-
plication prospect. Relying on high reliability and flexibility,
medical robots are able to perform complex medical tasks,
thus reducing the burden on doctors and improving
treatment. The learning and control ability of various robots
is also valued and explored by many scholars [9-11]. A novel
learning framework for the robot learning and generalizing
human-like variable impedance skills is developed in [9]
with great research and practical value. Further, some
adaptive control methods are presented for estimating the
unknown model of manipulator dynamic, which achieves
great parameter estimation and tracking effects [10, 11].
In current years, the kinematic control of redundant robots
has become a research hotspot, thus drawing the attention of
abundant scholars to expand their applications [12-16]. Zhang
and Zhang present a minimum-velocity-norm (MVN) scheme
for redundancy resolution of the redundant manipulators,
which retains the robot joints within safe bounds [17]. A
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modified neural network approach in [18] is well designed for
precise control of the robot manipulator, which can eliminate
the error accumulation with accurate results. Moreover, the
authors in [19] research an ingenious transformation method
to deal with the acceleration limitation problem from the
velocity level, and the experimental results illustrate the su-
periority of the method. It is deserved to notice that the above
investigations [15-19] all transform the kinematic control issue
of redundant robots into quadratic programming and then
exploit the Karush-Kuhn-Tucker (KKT) conditions [20] or
Lagrange multiplier method to solve the optimization
schemes. In addition, the mentioned schemes in [15-19] are all
velocity-level solutions such that they cannot interfere directly
with the acceleration level.

With the continuous development of sensors and In-
ternet of Things technology, robot applications have become
very rich owing to information acquisition and processing.
The sensor can transmit the external information directly to
the control center of the robot and give appropriate feedback
to the information through specific intelligent algorithms.
As a greatly important robot application, the vision servoing
technology drives the robot to accurately feedback the ex-
ternal vision in real time through the visual information
collected by the vision sensor [21-23]. This technology is
already being used in industrial production and robotic
surgery [24, 25]. However, it is worth pointing out that the
existing techniques [26-28] for solving the vision servoing
problem often rely on the implementation of the pseu-
doinverse method to converge errors, which has achieved
great results in both the acceleration-level schemes and the
velocity-level schemes. By means of proportional-differen-
tial control, acceleration command for the visual servoing
control is generated with excellent stability [26]. Moreover,
an effective method to detect and compensate for faults in
visual servoing systems is presented in literature [27], which
is verified by simulation and experimental results. Based on
the pseudoinverse operation of the Jacobian matrix, the
robotic ball catching task is implemented [28]. This method
takes advantage of the eye-in-hand construction to establish
the motion capture system for locating fast-moving objects.
However, a large number of investigations do not consider
the existence of joint constraints and have potential for
damage to the robot manipulators [21-24, 26-28]. Due to
the physical limitations of the robot motor and robot
structure, the control signals need to be kept within a
reasonable range to maintain the normal operation of the
robot manipulators. To this end, this paper formulates the
visual servoing problem as a quadratic programming scheme
with equality and inequality constraints in consideration of
physical constraints.

The rise of intelligent algorithms in recent years has
solved many difficult problems in electronic and engineering
fields [29-31]. Numerous intelligent algorithms have been
designed for powerful performance, such as noise sup-
pression [32], simplified computation [33, 34], and pre-
dictive learning [35, 36]. Among the intelligent algorithms to
solve the visual servoing of the manipulator, the neural
network method stands out due to its fast parallel processing
performance and learning ability [37-41]. In [42], a
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recurrent neural network is constructed for the visual ser-
voing issue to force the feature point of the manipulator to
approach the designed target point. Then, the extended
research [43] eliminates the pseudoinversion operation and
equips the neural network with powerful robustness. In
addition, as a common optimization method, the gradient
descent method has made some progress in the design of
robot control algorithms in recent years [44, 45]. It can be
used to accurately locate and control the robot by mini-
mizing the position error [46]. Based on the above research,
we establish the visual servoing issue based on acceleration
commands and transform it into a quadratic programming
scheme solved by the neural network method. Besides, the
contributions of this paper are summarized below:

(1) The proposed method regards the visual servoing
problem as a constrained quadratic programming
scheme with acceleration command and meanwhile
considers the joint constraints to ensure the safety of
the manipulator

(2) This paper proposes a gradient-based recurrent
neural network (GRNN) for dealing with the re-
search on the robot visual servoing via the gradient
descent method and exploiting compensation item

(3) The simulation example and illustrative experiment
illustrate the feasibility and superiority of the pro-
posed method

The remainder of this paper is summarized as follows.
Section 2 covers the preliminaries and the visual servoing
kinematics. In Section 3, the visual servoing problem is
transformed into a constrained quadratic programming
scheme at the acceleration level with the corresponding
GRNN deduced. The theoretical analyses of the proposed
method are presented by using the Lyapunov method in
Section 4. Section 5 carries out a simulation example to
demonstrate the feasibility of the proposed method. In the
end, we summarily conclude the whole paper in Section 7.

2. Preliminaries

In this section, the visual servoing kinematics is introduced,
which records the conversion relationship between the joint
space and the image space.

Primarily, in consideration of an eye-in-hand vision
system [28], i.e., an #n-DOF manipulator with a camera
attached to the end effector, the forward kinematics of the
manipulator is given as follows:

PO®) =p®), (1)

where 9 (-) describes the transformation relationship be-
tween the joint space and Cartesian space; 9(t) € R" rep-
resents the joint angle of the manipulator; and p(t) € R™”
denotes the Cartesian coordinates of the end effector. The
investigation of visual servoing issue always takes both the
position and posture of the end effector, and thus p () is set
as a six-dimensional vector hereinafter (m = 6). Taking the
derivative of time with respect to formula (1) leads to
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JOWI(t) = p(1), (2)

where J(9(t)) € R™" stands for the robot Jacobian matrix,
which is determined by the manipulator structure; 9(t)
signifies the joint velocity of the manipulator; and p (t) is the
end effector velocity containing angular velocity and
translational velocity. In addition, the physical constraints,
involving joint velocity 9 and joint acceleration 9, to
maintain the safe operation of the manipulator system are
provided as below:
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with 9 and 9" being the upper and lower bounds of joint

velocityand 9 and §" denoting the upper and lower bounds
of joint acceleration. As for the camera frame and image
frame, the corresponding relationship is deduced by means
of similar triangle and given as follows [27, 42]:

a; 1 ac
= E > (4)

bi bc
of which [a;,b;]" is a point coordinate in the image frame
with the superscript T denoting the transpose of a matrix or
a vector; [a_, b, d]" stands for the coordinate in the camera
frame; and I denotes the focal length of the camera. Besides,

in the image frame, point coordinates can be converted to
pixel coordinates v = [u,v]" by the following formula [43]:

U= Uy, + K, (5a)

V=", +1K,b; (5b)

where [u,, VP]T stands for the designed original point and «,
and x;, are the pixel standard size. Furthermore, the rela-
tionship between the camera velocity, i.e., the end effector
velocity p, and pixel coordinate velocity v can be introduced
as

H(v,d)p =, (6)

where H (v,d) € R¥® denotes the image Jacobian matrix
[47, 48] with its expression being
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Based on the above instructions, especially formula (2)
and formula (6), it can be readily obtained that
H (v,d)]9 = v, which involves the relationship between the

joint space and the image space. To simplify the presenta-
tion, one designs

79 =vwith 7 = H(v,d)]. 9)

Furthermore, the kinematic relationship at the accel-
eration level is derived by taking time derivative as

V= 79+ 79, (10)

where ¥ represents the acceleration of feature point in the
image frame and _# denotes the time derivative of 7.

3. Acceleration-Level IBVS Scheme and
Its Solution

The robot vision servoing controls the robot manipulator to
interact with circumstances according to the visual infor-
mation. This issue can be simplified to find the static point in
the image frame by feeding back the image information. To
this end, we turn this visual servoing problem into a con-
strained quadratic programming problem and design a
neural network-based solver.

3.1. Quadratic Programming Scheme with Constraints.
Above all, the visual servoing problem is formulated at the
acceleration level into the following quadratic programming
scheme:

minimize %STS, (11)
subjecttov = jé + j9, (12)
v=yv", (13)

9ep, (14)

where v* denotes the desired feature point, which is a
designed constant vector and, p = {96 R",p™ <9< p*} is an
inequality constraint corresponding to the physical limit (3)
with p~ and p* devised as
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8).57),

where a >0 stands for the design parameter. Via (15), the
physical constraints of joint acceleration and joint velocity
could be considered and controlled within bounds simul-
taneously [15]. In this regard, take the upper limit of the
physical constraint p] = mmtx( 9 -9), 9, fas an example.
For the joint velocity, when the joint Veloc1ty 9; approaches
the upper bound of velocity-level joint constraint 9; , a (9; —
9,) gets small and even close to zero. Afterwards, /fr becomes
tiny or even zero, so that the joint velocity stops growing and
stays in joint constraints. Simultaneously, the upper bound
of acceleration-level joint constraint 9 is activated to realize
acceleration-level joint constraint. Slmllarly, p; is able to
realize the velocity-level joint constraint and the accelera-
tion-level joint constraint simultaneously.

15
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3.2. Neural Network Solution. Differing from the traditional
method to deal with equality constraints and inequality
constraints, the gradient descent method [49] is exploited to
derive the solution to the quadratic programming scheme
(11)-(14). Design an error function € = v — v* to start the
derivation. Utilizing neural dynamic formula ¢ = —8¢(§ > 0)
[50] and v* = ¥* =0, one can get

v==8(v-v"), (16)

which can be arranged and rewritten into the form of two
norms as follows:

=||1}+8(v DI

(17)
2
Given the gradient descent formula [51],
0
9=—Ve——yﬁ (18)
09
with y >0, it would be readily deduced that
9=y 7 (—v=-08(v-")). (19)

Then, a compensation item @ is presented to make up for
the lagging error in equation (19) as below:

9=ij(—1}—8(v—v*))+®. (20)

Via deliberating the final desired stable state, i.e.,
v—v* =v =0, one can simply get the expression of @ re-
ferring to the derivation below. Multiplying both sides of
equation (20) by # one gains

I9=y g7 (v -8(v-v")) + Ja. (21)
Set v —v* = v =0, and it can be obtained that
F9=sa. (22)

Then, taking the time derivative of v = ¢ 9=0as

Complexity

F9=-79. (23)
Comparing the two formulas above, one has

Fo=-F9. (24)
Hence, it can be easily got that

@=-7"79, (25)

with superscript T being the pseudoinverse operator of a
matrix and J* = JT(JJT)"". Consequently, the GRNN solver
is structured for solving the quadratic programming scheme
(11)-(14) as follows:

=F,0F (v-0(v-v) -7 79 (26)

where 9/7P (x) = argminyeplly - x| can be regarded as a
bounded activation function and the usage of arg min can be
referred to [52, 53], which is equivalent to the inequality
constraint (14). As Figure 1 depicts, visual servoing scheme
(11)-(14) aided with GRNN solver (26) integrates the robot
frame and image frame and can be regarded as a restricted
online acceleration controller. For GRNN (26) and scheme
(11)-(14), the following corresponding relation is given.
Owing to the derivative process that GRNN (26) originates
from the error function (17), the gradient descent formula is
designed to reduce the image error, thus ultimately
achieving equality constraint (13). In the next place, the
output control command is established at the acceleration
level, which corresponds to the acceleration-level kinematics
formula (12). Note that compensation item @ is the pseu-
doinverse solution of the system function in a stable state,
i.e., the minimization of joint acceleration, which is
equivalent to minimizing objective function (11). As for joint
constraint (14), introducing p(') is able to impose re-
strictions on joint velocity and joint acceleration. In short,
the proposed GRNN solver (26) corresponds to the qua-
dratic programming scheme (11)-(14).

Remarks. Compared with the existing visual servo
technologies, the innovations of this paper are worth em-
phasizing as follows: regarding the scheme (11)-(14) con-
struction level, most of the previous strategies on visual
servoing are controlled at the joint velocity level, few of
which are controlled and driven by joint acceleration. In
addition, none of the existing acceleration-level visual servo
schemes takes joint limits into account, which is considered
in the quadratic programming scheme (11)-(14). From the
perspective of the intelligent algorithm, a majority of the
existing techniques apply the pseudoinverse method to di-
rectly deal with the errors, which incurs additional com-
putational overhead. However, GRNN (26) is deduced
according to the gradient descent method and compensation
term, which provides a novel approach to dealing with the
visual servoing problem.

4. Stability Proof

In this section, the stability proof is provided to prove the
feasibility and effectiveness of the proposed method (26) to
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FIGURE 1: Control flowchart of the visual servoing scheme (11)-(14).
dispose of the visual servoing issue. The relevant theorem is T, . b b T |2
given as follows. “gp(yj (e-0e)-FF 9) + SIS 8"
. .. .. 2
+yg" (—e=0e) - FT 7O+ 87 e+ 7 79|
Theorem 1. The error e = v — v* synthesized by GRNN (26) T, ‘e T NG
can approach zero globally, provided that — 77 79 € p. B Z(Vj (-e-0e)-F JI+0F e+ S jS)
B X (F/Tp(yfT(—é—&)—ijQ)+ij9+y8]Ts).

Proof. Declare that the setting of precondition — 7' 79 € p (31)

has two core functions. The first is to determine the mini-
mum joint constraints, thus ensuring the safe operation of
the manipulator. It is easy to image that forcing the joint to
remain within the constraints may lead to the increase of
error as reported in [54]. The second point is worth men-
tioning that precondition — 7" #9 € p is of necessities for the
proper derivation of the theorem. According to (10), one can
get
. T ;o ..
FO+ 79 = JF,(yI' (v -08(v—v")) - 7' 79) + 79.
(27)
In the light of ¢ = v —v*, ¢ = v, and € = ¥, equation (27)
can be rearranged as

i=J(F,(y7" (-£-08) - 7' 79)+ 7' 79).  (28)

LetV = é'¢/2 stand for a Lyapunov candidate. Therefore,
calculating its time derivative V = &'¢ results in

V= g(F, (v (£-8%) - 7' 79) + £1.79)

—i (17" (-e-0%)- 7 7O+ 8778+ 71 79) (29)

x(F,(r.7" (-&-08) - 7' 79) + £'.79).

Consider the inequality relation ||J4 (x) —x|*<|lx - y||
Vy € p. We simply devise x = y 7 (=& —8e) - 7' 79 and
y =07 - 7' 79 and get

|7,(v7" (<& 89)— 7' 79) =y (<= 58)+ 7' 79

<y st (-e-8e) - 7 T4 yo e+ 7 A
(30)

Expanding the left side of the above equation generates

Observe the two formulas above, and it can be easily
gained that

||9p(yfT (-&—e) — ZTZS) + 7 79+ yé‘jT,sHZ

<2(ps N (-i-00) - 7 T+ 07 €+ 7 7Y (3D

(F,(yI" (-6 8e) - 7' 79) + £ 70+ yo.57e).

Substituting equation (29) into equation (32) deduces
V-ys' 77 &<

- %ng(ij (=&~ 0e) - 7' 78) + 71 79+ yafe||2 <0
(33)

Evidently, one has
V<yse' 77 (34)

Recalling the neural dynamic formula & = -, it is ev-
ident that

yééTijs = —y&stije <

with design parameter y>0, §>0, and >0 denoting the
minimum eigenvalue of positive definite matrix 7, 7T
Therefore, it can be naturally concluded that ¢ is of great
convergence with V <0. Referring to the Lasalle invariance
principle [55], we let V = 0 to derive the stable state and get
the following two conditions:

F,(y7" (-e-0%) - 7' 79) =

—pd’oe’e<0, (35)

-7 7.
(36)

é=0o0ré=

Given that — 7' #9 € p, the solutions to the above two
conditions can be gained:



e=¢e=0. (37)

In this regard, a conclusion can be readily drawn that ¢ is
convergent to zero globally. The proof is thus competed
(Figure 2). O

5. Simulation Example

This section provides a simulation example to demonstrate
the performance of GRNN (26) when confronted with the
robot visual servoing issue. Specifically speaking, the PUMA
560 manipulator (6-DOF) is modeled with a camera at-
tached to its end effector to track the desired static point in
the image frame. In addition, the structure information of
the PUMA 560 manipulator can be referred to the existing
literature [43] with the photo of PUMA 560 shown in
Figure 2. It is worth pointing out that when considering only
one desired feature point, the kinematic control of the
PUMA 560 manipulator can be regarded as utilizing the 6-
dimensional joint space to control 2-dimensional image
space, which can approximately treat the PUMA 560 ma-
nipulator as a redundant manipulator.

In the first place, the simulation setting and the neural
network parameters are introduced. Simply put, the pa-
rameters of the neural network and camera system are set as
u, = v, =256 pixel, «, =k, = 8x 10*pixel/m, [=8x 10
—3m, d =2m, v* = [256,256] pixel, § = 10, y = 10%, and
a = 20. As to the state and physical constraints of the PUMA
560  manipulator, the states are chosen as
9 = [0.3,-0.9,0.4,0.3, -1, —0.2]"rad, the initial coordinate
(.)Jf _feature point Yo = [169, 104]" pixel,
9 =-9 =[04]4,rad/s, and 9 =-9 = [3],, rad/s>.

The simulation results are provided in Figure 3. As depicted
in Figure 3, the PUMA 560 manipulator successfully achieves
the desired feature point driven by GRNN (26). The error ¢ in
Figure 3(b) and ¢ in Figure 3(c) converge to zero in 1s. With
regard to joint information, Figure 3(d) through Figure 3(f)
record the joint acceleration, joint velocity, and joint angle
during the simulation, respectively. It is worth emphasizing
that joint acceleration and joint velocity are maintained within
the designed physical constraints, which ensures the safe ex-
ecution of the task. Overall, the above results indicate the
feasibility and efficiency of the proposed GRNN (26) when
handling the visual servoing issue.

To demonstrate the superiority of the proposed method,
the traditional pseudoinverse method is employed to deal
with the visual servoing problem with results provided in
Figure 4. The control law adopted by the traditional pseu-
doinverse method is generalized as

9= g (-pi-e(v-v") - 79), (38)

with =25 and € = 100. It is worth pointing out that the
investigations of visual servoing based on the pseu-
doinversion operation of the Jacobian matrix are common
and effective in the existing method [21, 26, 28]. Never-
theless, the pseudoinversion operation of a matrix brings
more computational complexity, and the conventional
pseudoinverse methods do not take joint limits into account,
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FIGURE 2: Photo of PUMA 560 with six joints.

which are regarded as the deficiencies of existing methods
[21, 26, 28]. As depicted in Figure 4(a), the error ¢ quickly
converges to zero in 1.5s, i.e., the manipulator successfully
tracks the desired feature point. However, Figure 4(b) in-
dicates that due to the large value of the initial error ¢, the
generated initial accelerations are even more than 10 rad/s?,
which would damage the PUMA 560 manipulator. On the
contrary, the proposed method (26) limits the acceleration
in the physical constraints, which emphasizes the superiority
of the proposed method (26).

Beyond that, an illustrative experiment is conducted on a
URS5 manipulator (6-DOF) [25] with a visual sensor installed
on its end effector, which is assisted by Virtual Robot Ex-
perimentation Platform (V-rep). The experiment results
plotted in Figure 5 are synthesized by the proposed GRNN
(26). Note that in Figure 5(a), the measured object is
regarded as the desired point v*, which can be captured by
the visual sensor, and that the center of the sensor view is the
feature point v of the robot visual system. By constantly
transmitting the error information & = v — v* to GRNN (26),
the visual servoing issue can be solved with v approaching v*
as described in Figures 5(b) and 5(c), which implies the
validity of the proposed GRNN (26).

6. Comparisons

In this section, some existing visual servoing approaches
[21,25-27,42,43, 48] are assembled in Table 1 to highlight
the superiority of the proposed quadratic programming
scheme (11)-(14). The following points can be deter-
mined. A majority of the existing techniques
[21, 26, 27, 48] utilize the pseudoinverse method to carry
out research. These approaches often take no account of
joint physical constraints, which may lead to a large
generated control signal and even cause damage to the
manipulator. On the other hand, it is well known that the
pseudoinverse operations involved are computationally
onerous. Thirdly, the present research on visual servoing
at acceleration level is relatively lacking [21, 26]. There-
fore, in terms of joint acceleration, the quadratic pro-
gramming scheme (11)-(14) avoids the pseudoinverse
operation by utilizing the matrix transpose operation and
meanwhile takes the joint constraints into account. This
demonstrates the superiority of the proposed quadratic
programming scheme (11)-(14) (Table 1).
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FIGURE 4: Simulation results on the PUMA 560 manipulator driven by the pseudoinverse method (38) for the visual servoing task with
execution time T = 5s. (a) Time history of 2-norm of error ¢. (b) Time history of joint acceleration.
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FIGURE 5: V-rep experiment results on the UR5 manipulator driven by the quadratic programming scheme (11)-(14) aided with GRNN (26)
for the visual servoing task. (a) UR5 manipulator installed with a visual sensor. (b) Initial state of the robot visual system. (c) Final state of the

robot visual system.

TaBLE 1: Comparisons among different approaches for visual servoing of redundant manipulators.

Command Gradient descent Joint velocity Joint acceleration . . Number
. . Pseudoinverse operation of
level method constraints constraints
neurons
Scheme (26) Acceleration Yes Yes Yes No n
Scheme in [21] Acceleration No No No Yes n
Scheme in [25] Velocity No Yes No No n+2
Scheme in [26] Acceleration No No No Yes n
Scheme in [27] Velocity No No No Yes n
Scheme in [42] Velocity No Yes No No n+2
Scheme in [43] Velocity No Yes No No n+2
Scheme in [48] Velocity No No No Yes n

7. Conclusion

In this paper, the vision servoing issue has been formu-
lated as a constrained quadratic programming scheme at
the acceleration level with physical constraints consid-
ered. Then, a GRNN has been proposed via the gradient
descent method and compensation term with the stability
analyses provided. After that, simulation examples have
been carried out to demonstrate the correctness of

theoretical analyses and the validity of the proposed
method. Note that the proposed method has resolved the
visual servoing issue at the acceleration level and also has
considered the joint constraints of the manipulator to
guarantee the safe operation of the manipulator. For the
further research direction, the authors are going to in-
vestigate the uncertain conditions and optimization in the
visual system, such as noise suppression [56] or Jacobian
estimation [57] and manipulability optimization [58].
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