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3Unité de Recherche de Mécanique et de Modélisation des Systèmes Physiques (UR-2MSP), Department of Physics,
University of Dschang, P.O. Box 67, Dschang, Cameroon

Correspondence should be addressed to Léandre Kamdjeu Kengne; lkamdjeu@gmail.com
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Copyright © 2020 Léandre Kamdjeu Kengne et al. +is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Symmetry is an important property found in a large number of nonlinear systems. +e study of chaotic systems with symmetry
is well documented. However, the literature is unfortunately very poor concerning the dynamics of such systems when their
symmetry is altered or broken. In this paper, we investigate the dynamics of a simple jerk system with hyperbolic tangent
nonlinearity (Kengne et al., Chaos Solitons, and Fractals, 2017) whose symmetry is broken by adding a constant term modeling
an external excitation force. We demonstrate that the modified system experiences several unusual and striking nonlinear
phenomena including coexisting bifurcation branches, hysteretic dynamics, coexisting asymmetric bubbles, critical transitions,
and multiple (i.e., up to six) coexisting asymmetric attractors for some suitable ranges of system parameters. +ese features are
highlighted by exploiting common nonlinear analysis tools such as graphs of largest Lyapunov exponent, bifurcation diagrams,
phase portraits, and basins of attraction. +e control of multistability is investigated by using the method of linear aug-
mentation. We demonstrate that the multistable system can be converted to a monostable state by smoothly adjusting the
coupling parameter. +e theoretical results are confirmed by performing a series of PSpice simulations based on an electronic
analogue of the system.

1. Introduction

Recently, a particular attention has been paid to the study of
nonlinear and chaotic dynamic systems. +is is due to the
rapid development of increasingly powerful computers on
the one hand and on the other hand to the many potential
applications in several fields of science and engineering.
+ese systems are capable of several forms of complexity
such as chaos, hyperchaos, multirhythmicity, bifurcations,
intermittency, hysteresis, and multistability [1–3]. Con-
cerning the latter feature, it should be noted that a

multistable dynamic system is capable of displaying two or
more attractors for the same set of parameters. In this sit-
uation, each of the coexisting attractors is connected with an
attraction basin that represents all the initial conditions
leading to the underlined attractor [4]. Fixed points, limit
cycles, toruses, and chaotic attractors can coexist in the same
system, in various combinations depending on the choice of
parameters. +e term extreme multistability refers to the
situation where an infinite number of attractors coexist
[5–9]. Multistability is relevant from the view point of
practical application as it may give rise to unexpected and
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even disastrous consequences [10]. If the phenomenon of
multistability is encountered in dynamic systems with no
symmetry property, it should be noted that symmetric
systems are much more likely to develop this phenomenon
[10]. Concerning the symmetry property, it should be
mentioned that it is shared by many systems in several fields
of science and engineering [2, 4]. In addition to multi-
stability mentioned above, symmetric dynamic systems
exhibit interesting behaviors such as period doubling,
spontaneous symmetry breaking, merging crisis, hysteresis,
and intermittency [1]. +e study of symmetrical systems is
well documented. However, to the best of the authors’
knowledge, the literature is very poor concerning the be-
havior of these systems when their symmetry is altered or
broken. +e symmetry break purposefully induced in a
nonlinear dynamical system may be adjusted to discover
many complex nonlinear phenomena (e.g., multi-
rhythmicity, bursting, coexisting bubbles, hysteresis, critical
transitions, and coexisting multiple asymmetric attractors)
as previously discussed in several nonlinear systems [11–17].

In this work, we consider a simple jerk system with
hyperbolic tangent nonlinearity [18] whose symmetry is
broken by the introduction of an additive constant k. We
address the chaos generation mechanism, the formation of
bubbles of bifurcation, and the coexistence of multiple
attractors in both the symmetric (k � 0) and the asymmetric
(k≠ 0) regimes of operation. For convenience, recall that
jerk dynamic systems [19–23] refer to 3D ordinary differ-
ential equations (ODEs) in the form x

...
� J(x, _x, €x) where the

nonlinear vector function J(·) indicates the “jerk” (i.e., the
time derivative of the acceleration). +e hyperbolic tangent
function is relevant in numerous problems such as nonideal
operational amplifiers, activation function in neural net-
work, magnetization in ferromagnetic systems, and solar
wind-driven magnetosphere-ionosphere systems [24–28].
Multistability in simple jerk dynamic systems has recently
drained tremendous research interest in varied fields of
science and technology resulting in several publications. On
this line, Kengne and colleagues reported the coexistence of
four self-excited mutually symmetric attractors in a jerk
system possessing a cubic nonlinearity [23] based on both
numerical and experimental methods. +is striking feature
of multiple attractors is mainly due to the system’s symmetry
and thus is also obtained with a hyperbolic sine [29], a
hyperbolic tangent [18], a composite tanh-cubic nonlinearity
[21], or a voltage controlled memristor [30], whose intrinsic
current-voltage characteristics has the form of a pinched
hysteresis loop. Despite the pertinence and the importance
of the abovementioned results, we would like to stress that all
cases of multistability discussed so far is restricted to
symmetric jerk systems; also, multistability in jerk dynamic
systems in case of a broken symmetry is very little studied.
Motivated by previous results on jerk dynamical systems,
this paper focuses on the effects engendered by symmetry
break in a simple autonomous jerk system with hyperbolic
tangent nonlinearity previously analyzed in [18]. +us, the
novel chaotic flow is smoothly tuned to behave either
symmetrically or to develop no symmetry property using a
single parameter. Importantly, the investigations clearly

reveal that the modified system can experience coexisting
bubbles of bifurcation, coexisting multiple (symmetric or
asymmetric) attractors, and crises phenomena not found in
the original symmetric system [18]. Despite the fact that the
addition of a constant term may be viewed as a purely
mathematical technique to induce new nonlinear phe-
nomena, one of the key motivations is that symmetries are
rarely exact in real physical systems, and some symmetry-
breaking imperfections are always present [31–33].

+e structure of the paper is as follows. Section 2 de-
scribes the evolution equations of the modified jerk system
with hyperbolic tangent and analyses possible symmetries.
Analytical conditions for the occurrence of Hopf-type
bifurcations are established, and the stability of the equi-
librium points is investigated with respect to parameters. In
Section 3, numerical results concerning the bifurcation
behaviour of the model, the coexistence of numerous
attractors, and the coexistence of bubbles of bifurcation are
presented. +e control of multistability based on the linear
augmentation scheme is described in Section 4. Section 5 is
concerned with the experimental study of the modified
system. A convenient electronic circuit (i.e., the analogue
simulator) is designed for investigating the extremely
complex dynamics of the system. PSpice simulation ex-
periment supports the results of the theoretical study.
Finally, Section 6 presents the conclusions of the whole
work.

2. Description and Analysis of the Model

2.1. 4e Model. +e state equation of the autonomous jerk
system, which is considered in this work, is expressed by the
following third-order nonlinear system (ODEs) with a single
nonlinear function:

_x1 � x2,

_x2 � ax3,

_x3 � −cx2 − μx3 + φk x1( 􏼁,

⎧⎪⎪⎨

⎪⎪⎩
(1a)

φk x1( 􏼁 � −k − 3 x1 − 2 tanh x1( 􏼁( 􏼁, (1b)

where a, μ, and c denote (real) positive control parameters.
Notice that the nonlinearity is smooth and involves only one
state variable (i.e., x1). Here, k is the symmetry control
parameter of the model. Specifically, for k � 0, system (1)
exhibits a perfect symmetry and reduces to the case pre-
viously studied by Kengne and coworkers [18].+e case k≠ 0
corresponds to an asymmetric model for which more
complex nonlinear phenomena arise (that cannot be
explained by using the symmetry arguments) including, for
instance, the presence of multiple coexisting asymmetric
attractors, coexisting bifurcation branches, and crisis events
(see Section 4). +e graphical representations of the non-
linear function φk(·) are provided in Figure 1 for several
discrete values of parameterk. Interestingly, we would like to
quote that the hyperbolic tangent nonlinearity has also been
considered inmany problems related to neural networks and
Chua’s system as well [24–28]. +e inclusion of this non-
linear term in model (1) engenders the extremely complex
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and striking bifurcation patterns developed by the whole
system.+emost “elegant” form [4] of system (1) is achieved
by expressing it as a jerk equation:

x
...

� −ac _x − μ€x + aφk(x). (2)

Finally, it should be remarked that the state variable x1
appears solely in the third equation and, consequently,
represents an offset boosted variable [34, 35].

2.2. Symmetry and Dissipation. As previously indicated
above, it can easily be seen that systems (1a) and (1b) are
symmetric with respect to the origin of the coordinates for
the special casek � 0.0. For this singular case, systems (1a)
and (1b) represent an inversion invariant nonlinear dynamic
system, provided that it remains unchanged when per-
forming the coordinate substitution: (x1(t),x2(t),x3(t))⟺
(−x1(t),−x2(t),−x3(t)). As a result, all attractors of systems
(1a) and (1b) occur either as individual symmetric attractors
or as mutually symmetric couples. +is property is the key
ingredient to justify the presence of multiple coexisting
stable states appearing for some suitable sets of system
parameters. More importantly, a suitable exploitation of the
symmetry property of the evolution equation simplifies
considerably the numerical experiment (e.g., the stability
analysis, the calculation of phase space trajectory, and the
basins of attraction as well).

More generally, systems (1a) and (1b) are nonsymmetric
for any value of k≠ 0.0. However, we notice the invariance of
systems (1a) and (1b) following the coordinate
transformation(x1(t), x2(t), x3(t), k)⟺(−x1(t), −x2(t), −

x3(t), −k). Consequently, we restrict our analysis for positive
values of parameter k all over this work. +e dynamics for
negative values of k can be deduced from the latter
transformation.

+e divergence of the vector field (1a) and (1b) is
computed as follows:

Λ �
z _x1

zx1
+

z _x2

zx2
+

z _x3

zx3
,

�
z x2( 􏼁

zx1
+

z ax3( 􏼁

zx2
+

z −k − cx2 − μx3 − 3x1 + 6 tanh x1( 􏼁( 􏼁

zx3
,

� −μ< 0.

(3)

It follows that, for any point x � (x1, x2, x3) in phase
space, the divergence is always negative. Accordingly, system
(1) is dissipative and consequently can develop attractors
[1–3].

2.3. Fixed Point Analysis. +e study of equibria always
represents the first issue to be addressed when performing
the investigation of a nonlinear dynamic system.+eir study
yields preliminary insights into the dynamics of complete
system [1–4]. By equating to zero all the derivatives in system
(5), we found that (see Figure 1), for |k|< kmax ≈ 7.57, there
exist three different rest points En � (xn, 0, 0) (n � 0, 1, 2),
where xj verifies the following transcendental equation:

k + 3(x − 2 tanh(x)) � 0. (4)

In view of the graph presented in Figure 1, we notice that,
for |k| � kmax, the system has two fixed points, while a single
equilibrium point exists in case |k|> kmax.+roughout the rest
of this work, we restrict our analysis for values of k where the
system exhibits three fixed points. It should be remarked that,
for k � 0.0, the system displays three symmetric fixed points
amongst which the origin [18]. Using the set of parameters
defined above, the roots equation (4) have been numerically
obtained for two discrete values of k (i.e., k � 0.00 and
k � 0.25) by using the “fzero” build in function of Matlab.
Recall that the “fzero” function is a MATLAB subroutine to
search for the zeros of a single variable real-value function. As
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Figure 1: Graphical representation of the nonlinear function φk(x) � −k − 3x + 6 tanh(x) for four discrete values of the symmetry
parameter k. Notice that the number (one, two, or three) of zeros of φk(·) depends crucially on the value of parameter k.
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sample results, we have obtained the following fixed points: (i)
E0(0, 0, 0) and E1,2(±1.915, 0, 0) for k � 0.0; (ii)
E0(0.083, 0, 0), E1(1.813, 0, 0), and E2 (−2.013, 0, 0) for
k � 0.25. We notice that the positions of the equilibrium
points in state space are defined solely by the value of
parameter k. Evaluated at any given fixed point E(x, 0, 0), the
Jacobian matrix of system (1) takes the following form:

MJ �

0 1 0

0 0 a

3 − 6 tanh2(x) −c −μ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (5)

We obtain the related eigenvalues λj(j � 1, 2, 3) by
searching for the zeros of the characteristic polynomial:

Ρ(λ) � det MJ − λId􏼐 􏼑 � λ3 + μλ2 + acλ − 3a 1 − 2 tanh2(x)􏼐 􏼑,

(6)

where Id refers to the 3 × 3 identity matrix. From the graphs
in Figure 1, we notice that the equilibrium point E0 has its x-
coordinate with magnitude smaller than unity. Also, the
related characteristic polynomial possesses coefficients with
different signs, and thus, E0 is always unstable according to
the Routh stability theorem. +e stability of the pair of fixed
points (E1 and E2) changes with the values of parameters α
and c. From both the Routh–Hurwitz stability criterion [1, 2]
and the Hopf bifurcation theorem, we derived the following
results about the stability of the above pair of equilibrium
points. Each of the fixed points En(n � 1, 2) remains stable
only for values of c> cc(xn) � ccn � 3(2 tanh2(xn) − 1)/μ. If
the parameter c is brought beyond the critical value ccn, the
fixed point Ejbecomes unstable. We now investigate the
Hopf bifurcation related to the fixed point En (n � 1, 2) when
c is considered as the bifurcation control parameter. +e
following analytical conditions have been derived:

cH xn( 􏼁 � ccn �
3 2 tanh2 xn( 􏼁 − 1􏼐 􏼑

μ
, (7a)

ωH xn( 􏼁 �
����
accn

√
, (7b)

Re
dλ
dc|c�cc

􏼠 􏼡 �
−a

2 + 2accn

≠ 0. (7c)

As a result, systems (1a) and (1b) exhibit a Hopf bi-
furcation from En (n � 1, 2) when c � cH(xn), and a limit
cycle will develop around the point En (n � 1, 2). Equation
(7b) defines the frequency of oscillations (ωH), while the
transversality condition is expressed by equation (7c). As
sample numerical results, both equilibrium points E1 and E2
undergo a Hopf bifurcation at c � cc1 � cc2 ≈ 2.496 for k �

0.0 and μ � 1.0. In contrast, for k � 0.25 and μ � 1.0, the
Hopf bifurcation values are cc1 ≈ 2.40 and cc2 ≈ 2.58, re-
spectively, for E1 and E2. From the study presented above,
we conclude that both three equilibriums are unstable in any
regime (periodic or chaotic oscillations) of operation, and
systems (1a) and (1b) exhibit self-excited attractors ac-
cordingly [36,37].

3. Numerical Study

3.1. Scenario to Chaos. To highlight the influence of system
parameters on the dynamics of the system, we keep a � 10.0
and use c and k as control parameters. Figure 2 provides the
bifurcation diagrams of the coordinate x1 against cand
related plots of largest Lyapunov exponent [38] for two
different values of k (i.e., k � 0.00 and k � 0.25). +ese
diagrams are obtained by scanning the parameter downward
without resetting the values of initial conditions, starting the
system from the initial state (±0.5, 0, 0), respectively. We
know that, for k � 0.0 (see Figure 2), the system is symmetric
as well as related dynamical structures (i.e., equilibrium
points, attractors, and basins of attractions). For this par-
ticular case, it can be seen from the diagram of Figure 2 (left
panel) that there exist two symmetric bifurcation branches
(blue and magenta), exhibiting a period doubling sequence
to chaos for decreasing c. +ese branches merge at ap-
proximately c � 1.0 via the well-known symmetry recov-
ering the crisis process. At this point, two mutually
symmetric mono-scroll chaotic attractors (corresponding to
the blue and magenta branches) combine to form a double-
scroll strange attractor (see Figure 3). Completely different
routes are found in the nonsymmetric system (i.e., k≠ 0.0).
In fact, for a nonzero value of parameter k (e.g., k � 0.25), it
can be captured from Figure 2 (right panel) that a pair of
asymmetric limit cycles with different periodicity experi-
ences each its own route of period doubling cascade to chaos
when the control parameter c is decreased in small steps.
Accordingly, blue and magenta bifurcation branches display
a horizontal shift which increases with parameter k. For
example, in the bifurcation plot of Figure 2 (right panel), the
first period doubling takes place at c � 0.15 for the blue
branch and c � 0.25 for the red one. Here, the merging
process never occurs. Instead, the series of period doublings
of coexisting asymmetric cycles yields an asymmetric
double-scroll strange attractor (see Figure 4). Moreover,
most fascinating properties of the asymmetric system is the
sudden disappearance (via a critical transition) of one of the
bifurcation branches (i.e., the magenta branch; see Figure 2)
when decreasing the control parameter c for any nonzero
value of k. Past this crisis event, the system experiences a
single attractor that metamorphoses to an asymmetric
double-scroll chaotic attractor as cis further decreased.

3.2. Coexistence of Multiple Attractors. +e coexistence of
multiple stable states [10] is one of the most attractive
properties the jerk system considered in this work. +is
intriguing feature has been deeply investigated for the
symmetric system (i.e., k � 0.00) in the reference work [18].
In this section, we investigate the impact of the excitation
term (k) on the mechanism governing the generation of
multiple solutions. In this regard, several bifurcation plots
are produced following appropriate numerical techniques
[18] in order to track parameter domains corresponding to
the presence of multiple coexisting stable states. As sample
results, Figure 5 shows the bifurcation diagrams of local
maxima of x1 variable, obtained when varying parameter a
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Figure 2: Bifurcation diagrams (a, b) of the system showing local maxima of the coordinate x1 versus parameter c computed for a � 5 both
for the symmetric (k� 0.000) and the asymmetric (k� 0.250) modes of oscillations. +e corresponding graph of maximal Lyapunov
exponent is shown in the lower panel (c, d).
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in the range 5≤ a≤ 30 for four discrete values of k. Details of
numerical procedures employed to produce these plots are
described in Table 1. +ese diagrams display the intricate
phenomenon of parallel branches and hysteresis which
justify the occurrence of multiple attractors for several
parameter sets. More importantly, notice that the merging
process does occur for the symmetric system (i.e., k � 0.00).
In contrast, one of the branches undergoes a critical tran-
sition and collapses for nonzero values of parameter k when
the control parameter c is slowly decreased. +e numerical
techniques used to obtain those diagrams are provided in
Table 1. A close examination of Figure 5 reveals that various
combinations of coexisting attractors can be obtained when
suitably selecting the system parameters. For example,
Figure 6 presents the coexistence of two different chaotic
attractors (a, b) computed for a � 15.0 using two different
values of initial conditions. +e corresponding cross section

of the basins of attraction is provided in (c) using the same
colors as the relevant attractors. In this figure, the red zone
indicates unbounded dynamics. In the same line, Figure 7
depicts three different asymmetric coexisting attractors and
corresponding cross sections of the basin of attraction. More
interestingly, by choosing appropriately the values of system
parameters and initial conditions, four asymmetric coex-
isting attractors can be found as exemplified in Figure 8. A
more intriguing situation is depicted in Figure 9 where up to
five different asymmetric attractors coexist. +e corre-
sponding bifurcation like sequence of local maxima of the
coordinate x1 versus initial condition x1(0) is provided in
the graph of Figure 9(f ). +e cases reported above relate to
the asymmetric mode of operation, and a different config-
uration of coexisting attractors occurs in the symmetric
regime where coexisting attractors now appear only in
mutually symmetric pairs (see Figure 10).
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Figure 3: Sample chaotic phase portraits of the symmetric system: (a) a pair of period-1 cycles forc � 1.6; (b) a pair of period-2 cycles
for c � 1.4; (c) a pair of period-4 cycles for c � 1.323; (d) twomutually symmetric spiraling strange attractors for c � 1.18; (e) a double-scroll
strange attractor forc � 1.078. Initial conditions are not critical but fixed as (x(0), y(0), z(0)) � (1, 0, 0). +e rest of parameters are k � 0.0,
a � 5.0, and μ � 1.0.
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Figure 4: Computer-generated phase space trajectories of the system projected onto the y-z planes obtained for some discrete values of
parameter c: (a) coexistence of two period-1 limit cycles for c � 1.6; (b) coexistence of period-1 and period-2 cycles for c � 1.4; (c)
coexistence of period-4 and period-2 cycles for c � 1.359; (d) coexistence of two nonsymmetric strange attractors for c � 1.2; (e) a
nonsymmetric strange attractor for c � 1.16; (f ) an asymmetric double-scroll strange attractor for c � 1.0. +e computations are done with
k � 0.25, μ � 1.0, and a � 5.0. Initial conditions are(x(0), y(0), z(0)) � (±1, 0, 0).
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From the above investigations, we notice that the oc-
currence of multiple attractors is possible both in the un-
forced (i.e., k � 0.0) and the forced (k≠ 0.0) regimes. +e
latter situation is being much more challenging for analysis
provided that the occurrence of multiple solutions cannot be

explained based on symmetry arguments. At this point, we
would like to stress that the occurrence of multiple attractors
has reported numerous other problems from diverse fields of
science and technology. +is feature can be advantageously
exploited in engineering applications such as image
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Figure 5: Enlargements of the bifurcation diagrams of the system showing various coexisting bifurcation branches and hysteresis, computed
for three different values of parameterk, namely, k � 0.000, k � 0.025, and k � 0.250. Detail numerical procedures used to obtain those
diagrams are provided in Table 1. +e rest of parameters are same as in Figure 5.

Table 1: Detailed numerical procedures used to obtain the bifurcation diagrams of Figure 5.

Graph identification Color data Parameter range Sweeping direction Initial condition
(x1(0), x2(0), x3(0))

k� 0.000
Magenta 17.25≤ a≤ 19 Upward (0.1, 0, 0)

Green 17.70≤ a≤ 19 Upward (0.2, 0, 0)

Blue 5≤ a≤ 19 Downward (0.6, 0, 0)

k� 0.025

Blue 17.25≤ a≤ 19.25 Upward (+2, 0, 0)

Red 17.5≤ a≤ 19.18 Downward (−2, 0, 0)

Black 17.25≤ a≤ 19.25 Upward (−5, 0, 0)

Magenta 17.25≤ a≤ 17.86 Downward (−0.8, 0, 0)

Green 17.5≤ a≤ 19.18 Downward (1, 0, 0)

k� 0.250

Blue 15≤ a≤ 20 Downward (5, 0, 0)

Black 15≤ a≤ 20 Downward (−5, 0, 0)

Red 15≤ a≤ 20 Upward (−5, 0, 0)

Green 16.92≤ a≤ 18.20 Upward (3, 0, 0)
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encryption and random signal generation as well. However,
in cases where only a single stable attractor is desired, some
control strategies may be developed. Detailed analysis
concerning this point is out of the scope of this paper.
Accordingly, interested readers may obtain precious in-
formation from the review work of [10].

3.3. Coexisting Bubbles of Bifurcation. Another interesting
and striking event revealed monitoring the parameters of
system (1) is the phenomenon of antimonotonicity [39–44].
In fact, the period doubling transition to chaos followed by
the reverse bifurcation scenario is found when varying the
control parameter a for several values of c in case of a zero
forcing term (i.e., k � 0.0). Sample results are depicted in
Figure 11 which presented five bifurcation plots of the
coordinate x versus a for five discrete values of c. In each
case of the diagrams in Figure 11, there are two symmetric
bifurcation diagrams due to the symmetry of the model.
From Figure 11, we note that a period-1 bubble is obtained

for μ � 1.0. As c decreases the sequenceP1bubble ⟶ P2
bubbles⟶ P4 bubble⟶ P8 bubbles⟶ full, Fei-
genbaum tree takes place. +is behavior corresponds to the
symmetric system (k � 0.0) and much more complex
nonlinear dynamics arise in the presence of a nonzero ex-
citation force (i.e., k≠ 0.0), as exemplified in Figure 12. +is
latter figure depicts the bifurcation plots of the coordinate x

against parameter a obtained for several discrete values of k

while maintaining c � 1.475 and μ � 0.875. In contrast to
the situation presented in Figure 11, lower and upper bi-
furcation branches are nonsymmetric, depicting a horizontal
shift and exhibiting different periodicities. +is striking
behavior (engendered by symmetry break) is rarely reported
and thus represents an enriching contribution to the be-
havior of these types of systems.

4. Control of Multistability

Recently, a control method referred to as linear augmen-
tation is described which is suitable to control the dynamics
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Figure 6: Coexistence of two different attractors for a � 12.0, c � 1.0, μ � 0.95, and k � 0.25. Initial conditions (x1(0), x2(0), x3(0)) are
(0.4, 0, 0) and (−0.4, 0, 0)for (a) and (b), respectively. +e corresponding cross section of the basins of attraction is provided in (c) using the
same colors as the relevant attractors. +e red zone denotes unbounded dynamics.
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of a nonlinear system without perturbing the system’s pa-
rameters [45–47]. In this strategy, a nonlinear dynamic
system is coupled with a linear one. +e motivations of this
coupling scheme are twofold: (a) to stabilize the steady state
in a given nonlinear oscillator; (b) to adjust the number of
coexisting attractors for a multistable system. Accordingly,
the dynamics of the jerk system with hyperbolic tangent
nonlinearity coupled to a linear system is described by the
following fourth-order system:

_x1 � x2,

_x2 � ax3,

_x3 � −cx2 − μx3 − k − 3x1 + 6 tanh x1( 􏼁 + δu,

_u � −σu − δ(x − β).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

Here, σ ≥ 0 represents the decay parameter of the linear
systemu, δ denotes the coupling strength, and β is the
control parameter, which serves to locate the position of the

equilibrium points. For δ � 0, both oscillators evolve inde-
pendently, and the linear system exhibits a fixed-point
motion. For a nonzero coupling coefficient (i.e., δ ≠ 0), there
is a mutual influence between the nonlinear oscillator and
the linear system resulting in the symmetry breaking of the
whole system even for k � 0.0. +e fixed points of the
coupled system are yielded by the following nonlinear al-
gebraic system:

−k − 3x1 + 6 tanh x1( 􏼁 + δu � 0,

−σu − δ(x − β) � 0.
􏼨 (9)

System (9) clearly shows that the fixed points are
asymmetrically located in state space, and their number
strongly depends on the values of the linear system pa-
rameters as well as the coupling strength. Considering the
case where the system develops six distinct periodic and
chaotic attractors, we examine the range of coupling pa-
rameter corresponding to a monostable behavior of the
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Figure 7: Coexistence of three different attractors for a � 16.85, c � 1.0, μ � 0.95, and k � 0.25 . Initial conditions (x1(0), x2(0), x3(0)) are
(−1.8, 0, 0) for attractor in (a), (−1.6, 0, 0)for attractor in (b), and (0.4, 0, 0) for attractor in (c). Green, magenta, and yellow colors
correspond to the attractors in (a), (b), and (c), respectively. +e red zone corresponds to unbounded dynamics.
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Figure 9: Coexistence of five different attractors for a � 17.85, c � 1.0, μ � 0.95, and k � 0.025. Initial conditions (x1(0), x2(0), x3(0)) are
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Figure 10: Coexistence of six different attractors for a � 17.77, c � 1.0, μ � 0.95, and k � 0.0. Initial conditions (x1(0), x2(0), x3(0)) are
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Figure 11: Bifurcation diagrams of the system showing local maxima of the coordinate x1 versus the control parameter a computed for
some discrete values of c keeping μ � 1.0 and k � 0.00. In each diagram, the blue and red branches are obtained by scanning the parameter
downward (i.e., downward continuation) starting with initial conditions (−0.5, 0, 0) and (0.5, 0, 0), respectively.
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Figure 12: Bifurcation diagrams of the coordinate x1 versus a showing coexisting bubbles of bifurcation computed for five discrete value of
k, keepingc � 1.475 and μ � 1.0. In each diagram, the blue and red branches are obtained by scanning the parameter downward (i.e.,
downward continuation) starting with initial conditions (−0.5, 0, 0) and (0.5, 0, 0), respectively.

Complexity 15



4

3

2

1

0

–1

–2

δ

x1

0 0.2 0.4 0.6 0.8

A B C D E

Figure 13: Bifurcation diagram illustrating the transition from a multistable state to monostability when smoothly varying the coupling
strength in the range 0≤ δ ≤ 0.80. +e rest of parameters are a � 17.77, c � 1.0, and μ � 0.95. Regions A, B, C, and D correspond to the
coexistence of five, four, three, and two attractors, respectively, while a single attractor is observed in region E. Six sets of data are
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basins of attraction. Blue and green basins correspond, respectively, to the period-1 and the chaotic attractor, respectively, while red zone
denotes unbounded dynamics. +e rest of parameters are same as in Figure 18.
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coupled system. To this end, the parameters are fixed as in
the caption of Figure 13. +e latter figure shows the bi-
furcation diagrams illustrating the transition from a mul-
tistable state (see Figure 10) to monostability when smoothly
varying the coupling strength in the range 0≤ δ ≤ 0.80. Re-
gions A, B, C, and D correspond to the coexistence of five,
four, three, and two attractors, respectively, while a single
attractor is observed in region E. Six sets of data are
superimposed. +ese data are obtained by scanning the
parameter upward starting from each of the six coexisting
attractors without resetting the initial conditions. We
present in Figures 15 and 16 sample phase portraits of the
system (corresponding cross sections of the basins of at-
traction), highlighting the transition of the system to a
monostable state.

5. PSpice Simulations

It is predicted from the above results that the jerk system
with a single hyperbolic tangent function can undergo
extremely varied dynamic behaviors. +e design and
implementation of a convenient electrical circuit (i.e., the
analogue simulator) for the experimental study of the
model are presented in this section. PSpice simulation [48]
investigations are carried out to check the results of an-
alytical and numerical analyses. +e possibility of moni-
toring capacitors initial voltages and evaluating the
corresponding impact on the behavior of the whole circuit
represents one of the main advantages of using of PSpice.
Interestingly, evidence of several coexisting stable solu-
tions [49–54] in the system may easily be demonstrated
both in the symmetric and the asymmetric modes of
operation. Moreover, the hardware realization of theo-
retical chaotic mathematical models is convenient for
engineering utilization including, for instance, random
signal generation, chaos-based communications, and
image encryption.

5.1. Design of the Experimental Circuit. +e circuit diagram
of the proposed electronic simulator is shown in
Figures 16(a) and 16(b). +e hyperbolic tangent nonlin-
earity module [53, 54] whose detailed schematic diagram is
depicted in Figure 16(b) consists of resistors, a dual-
transistor pair, a pair of operational amplifiers, and a dc
current source. A detailed analysis of the hyperbolic
tangent circuit can be found in [53, 54]. Operational
amplifiers and related circuitry (in Figure 16(a)) imple-
ment the basic operations of addition, subtraction, and
integration. By choosing a suitable time scaling, the
simulator outputs can directly be displayed on the screen
of a double trace oscilloscope by feeding the output voltage
of X1 to the X input and the output voltage of X2 to the Y
input. With the hypothesis of ideal operational amplifiers
operating in their linear regime, upon applying Kirchhoff
current and voltage laws to the circuit diagram in
Figure 16(a), it can be established that the voltages X1, X2,
and X3 satisfy the set of three coupled first-order nonlinear
differential equations:

dX1

dte

�
X2

RC
,

dX2

dte

�
X3

RaC
,

dX3

dte

� −
Vcc

RkC
−
3X1

RC
−

X2

RcC
−

X3

RμC
+
6 tanh X1( 􏼁

RC
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

Choosing the following rescale of time and variables: te �

tRC; Xk � xk × 1V(k � 1, 2, 3), system (10) is identical to
system (1) with the following definition of parameters:

a � R/Ra; c � R/Rc; μ � R/Rμ; k �
R

Rk

Vcc

1V
. (11)
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Figure 15: A single attractor (a) for δ � 0.75 and corresponding cross section of the basins of attraction (b). Green zones represent the basin
of attraction of the chaotic attractor, while red zone denotes unbounded dynamics. +e rest of parameters are same as in Figure 18.
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From the above equations, it follows that the dynamics of
system (1(a) and 1(b)) can be simulated at any desired
frequency (within the bandwidth of op. amplifiers) by
choosing the value of the three capacitors.

5.2. PSpice Simulation Results. +e behavior of the circuit
shown in Figure 16 is studied in PSpice by employing the
values of parameters provided in Table 2 in order to check
the theoretically predicted results of Section 3, in particular
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Figure 16: Electronic circuit implementation (a) of system.+e circuit realization of tangent hyperbolic values function is shown in (b).+e
values of electronic circuit components used for the analysis are listed in Table 2.
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Table 2: +e values of electronic components used for PSpice simulations.

Parameters Signification Values
R0 Resistance 0.52KΩ
RC Resistance 1KΩ
R1 Resistance 10KΩ
R Resistance 12KΩ
Ra Tunable resistance Tunable
Rμ Resistance Tunable
Rc Resistance Tunable
C1, C2, C3 Capacitance 10nF

VCC Voltage source 15VDC

I0 Current source 1.1mA

T1, T2 Amplifier transistors NPN Q2N2222
Ui (i � 1, 2, 3, 4) Operational amplifiers TL084
U01, U02 Operational amplifiers TL082
Figure 16 is partially reproduced from (J) [18].

–4 –2 0 2 4
–6

–4

–2

0

2

4

6

x1

x2

(a)

–6 –4 –2 0 2 4 6
–3

–2

–1

0

1

2

3

x2

x3

(b)

–4 –2 0 2 4
–3

–2

–1

0

1

2

3

x1

x3

(c)

V(U3A: OUT)
–4.0V 0V 4.0V

–5.0V

0V

5.0V

V(U4A: OUT)

(d)

Figure 17: Continued.
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Figure 17: Two-dimensional views (left panel) of the symmetric double-scroll chaotic attractors computed for a � 5.0 , μ � 1.0, and k �

0.00 and the corresponding PSpice simulation results (right panel) obtained for Rc � 11.13 kΩ and Rk �∞ with the initial point (0.5, 0, 0).
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Figure 18: Two-dimensional views (left panel) of the asymmetric double-scroll chaotic attractors computed for a � 5.0 and k � 0.25 and the
corresponding PSpice simulation results (right panel) obtained for Rc � 12 kΩ, Rk � 576 kΩ, andRμ � 12kΩwith the initial point (0.5, 0, 0).
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Figure 19: Continued.
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the period doubling route to chaos and the presence of
coexisting bifurcation branches. Rc (i.e., equivalently
parameterc) is chosen as main bifurcation control resistor.
+e electronic components’ values (R � 12 kΩ, Rμ � 12 kΩ,
Ra � 2.4 kΩ, and Rk �∞; see Table 2) are selected so as to
match the dimensionless values (a � 5.0 and μ � 1.00 ) of
Section 3 in view of allowing the comparison between theory
and PSpice results. When varying progressive resistorRc, we
observe the same sequence of bifurcations described in
PSpice. Sample results showing the projections of the
double-scroll attractor emanating from the merging crisis of
coexisting asymmetric mono-scroll chaotic attractors for
Rc � 11.13 kΩ are provided in Figure 17 along with cor-
responding theoretical ones. Similarly, Figure 18 depicts
various projections of the asymmetric double-scroll chaotic
attractor obtained in PSpice (right panel) and the corre-
sponding theoretically obtained ones (left panel) when the
control resistors are fixed as Rc � 12 kΩ, Rk � 576 kΩ,
Ra � 2.4 kΩ, and Rμ � 12 kΩ. +e bifurcation sequences
observed in PSpice perfectly agree with those of theoretical
studies carried out in Section 3. On the contrary, using the
electronic component values fixed as Rc � 12 kΩ,
Rk � 576 kΩ, Ra � 666Ω, and Rμ � 12.631 kΩ, we have
observed the coexistence of four different asymmetric
attractors, namely, a pair of asymmetric period-3 cycles, a
period-2 cycle, and a chaotic attractor when starting the
system from four different initial conditions (see Figure 19).
+e latter situation is identical to the case reported in
Figure 8 during the theoretical analysis. We have avoided the
inclusion of other cases of multistability obtained in PSpice
for the sake of brevity. We would like to point out the
existence of some small shifts in the values of the control
resistor Rc in PSpice in comparison to the theoretically
predicted values. Such discrepancies are mainly due to the

unavoidable simplifications adopted during the modeling
step of the analogue simulator (e.g., ideal bipolar junction
transistor model and ideal op. amplifier model, in com-
parison with more realistic/complex models implemented in
PSpice).

6. Concluding Remarks

In summary, this paper has explored the dynamics of a
simple chaotic jerk system with hyperbolic tangent non-
linearity whose symmetry is destroyed by the adding a
constant term acting as an external excitation force. We have
shown that the modified system exhibits several unusual and
interesting nonlinear patterns such as coexisting bifurcation
branches, hysteretic behaviors, coexisting symmetric and
asymmetric bubbles, critical phenomena, and multiple (i.e.,
two, three, four, five, or six) coexisting asymmetric attractors
for some appropriately chosen sets of its parameters. +ese
features were illustrated by exploiting common nonlinear
analysis tools such as graphs of largest Lyapunov exponent,
bifurcation diagrams, phase portraits, and basins of at-
traction. +e control of multistability based on the linear
augmentation scheme is exploited to tune the system from
the state of six coexisting attractors to monostability. An
appropriate electronic analogue of the system was designed
and simulated in PSpice. +e theoretical results show a very
good agreement with the PSpice simulation investigations.

+e model considered in this work can be regarded as
prototypal autonomous 3D systemwith three rest points and
an odd symmetry. Also, we conjecture that the dynamics
induced by symmetry break observed in this work may also
be found when using the jerk equation with other types of
nonlinearities (e.g., cubic, quintic, hyperbolic sine, and
piece-wise quadratic). Moreover, the extension of the
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Figure 19: PSpice simulation results showing the coexistence of four different asymmetric attractors for Ra � 666Ω, Rμ � 12.631 kΩ,
Rc � 12 kΩ, and Rk � 576 kΩ obtained with four different initial conditions (vc1

(0), vc2
(0), vc3

(0)): (a) a period-3 limit cycle
for(0.4, 0.0, 0.0); (b) a chaotic attractor for(0.2, 0.0, 0.0); (c) a period-3 limit cycle for (−0.303, 0.0, 0.0); (d) a period-2 limit cycle for
(−1.8, 0.0, 0.0).
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analysis presented in this paper to cases of other chaotic
oscillators such as Chua’s, Shinriki, autonomous van der
Pol-Duffing, and hyperjerk circuits is under consideration.
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implementation of a wavelet function approximator,” Analog
Integrated Circuits and Signal Processing, vol. 32, no. 2,
pp. 171–175, 2002.

[26] D. Biswas and T. Banerjee, “A simple chaotic and hyper-
chaotic time-delay system: design and electronic circuit
implementation,” Nonlinear Dynamics, vol. 83, no. 4,
pp. 2331–2347, 2016.

[27] W. Horton, R. S. Weigel, and J. C. Sprott, “Chaos and the
limits of predictability for the solar-wind-driven magneto-
sphere-ionosphere system,” Physics of Plasmas, vol. 8, no. 6,
pp. 2946–2952, 2001.

[28] F. R. Tahir, R. S. Ali, V.-T. Pham, A. Buscarino, M. Frasca, and
L. Fortuna, “A novel 4D autonomous 2 $$\varvec{n}$$ n
-butterfly wing chaotic attractor,” Nonlinear Dynamics,
vol. 85, no. 4, pp. 2665–2671, 2016.

[29] J. Kengne, Z. T. Njitacke, N. A Nguomkam, T. M Fouodji, and
H. B. Fotsin, “Coexistence of multiple attractors and crisis
route to chaos in a novel chaotic jerk circuit,” International
Journal of Bifurcation and Chaos, vol. 25, no. 4, Article ID
1550052, 2015.

[30] Z. T. Njitacke, J. Kengne, H. B. Fotsin, A. N. Negou, and
D. Tchiotsop, “Coexistence of multiple attractors and crisis
route to chaos in a novel memristive diode bidge-based Jerk
circuit,” Chaos, Solitons & Fractals, vol. 91, pp. 180–197, 2016.

[31] V. Kirk and A. M. Rucklidge, “+e effect of symmetry
breaking on the dynamics near a structurally stable hetero-
clinic cycle between equilibria and a periodic orbit,” Dy-
namical Systems, vol. 23, no. 1, pp. 43–74, 2008.

[32] J. Porter and E. Knobloch, “Dynamics in the 1:2 spatial
resonance with broken reflection symmetry,” Physica D:
Nonlinear Phenomena, vol. 201, no. 3-4, pp. 318–344, 2005.

Complexity 23



[33] R. Lauterbach, “Symmetry breaking in dynamical systems,” in
Nonlinear Dynamical Systems and Chaos 1996; Progress in
Nonlinear Differential Equations and 4eir Applications,
H. W. Broer, S. A. van Gils, I. Hoveijn, and F. Takens, Eds.,
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