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Two important tasks in multiattribute group decision-making (MAGDM) are to describe the attribute values and to generate
a ranking of all alternatives. A superior tool for the �rst task is linguistic interval-valued intuitionistic fuzzy number
(LIVIFN), and an e�ective tool for the second task is aggregation operator (AO). To date, nearly ten AOs of LIVIFNs have
been presented. Each AO has its own features and can work well in its speci�c context. But there is not yet an AO of LIVIFNs
that can o�er desirable generality and �exibility in aggregating attribute values and capturing attribute interrelationships and
concurrently reduce the in�uence of unreasonable attribute values. To this end, a linguistic interval-valued intuitionistic fuzzy
Archimedean power Muirhead mean operator and its weighted form, which have such capabilities, are presented in this
paper. Firstly, the generalised expressions of the AOs are established by a combination of the Muirhead mean operator and the
power average operator under the Archimedean T-norm and T-conorm operations of LIVIFNs. �en the properties of the
AOs are explored and proved, their speci�c expressions are constructed, and the special cases of the speci�c expressions are
discussed. After that, a new method for solving the MAGDM problems based on LIVIFNs is designed on the basis of the
weighted AO. Finally, the designed method is illustrated via a practical example, and the presented AOs are evaluated via
experiments and comparisons.

1. Introduction

Multiattribute group decision-making (MAGDM) or mul-
tiattribute group decision analysis refers to a process of
�nding the most desirable alternatives from a set of �nite
alternatives on the basis of a ranking or the collective at-
tribute values of all alternatives, in which the value of each
attribute is provided by a group of experts [1]. �is process
has two critical tasks. �is �rst task is to describe the values
of attributes, while the second task is to generate a ranking of
all alternatives.

For the description of attribute values, real number is
a default tool. But it is usually di�cult for an expert to

provide the assessment results in the form of crisp values
because of ambiguity and incomplete information. To this
end, fuzzy set is naturally introduced in MAGDM and
becomes a popular tool in this �eld [2, 3]. To date, more than
twenty di�erent types of fuzzy sets have been presented with
academia [4], where Atanassov’s intuitionistic fuzzy set (IFS)
[5] and interval-valued IFS (IVIFS) [6] are two represen-
tative examples. IFS and IVIFS are powerful extensions of
Zadeh’s fuzzy set [7] for dealing with vagueness. Both of
them have a membership degree (MD) and a nonmember-
ship degree (NMD), which can quantify the degrees of
satisfaction and dissatisfaction, respectively. Due to such
strong expressiveness, IFSs and IVIFSs have been widely
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used to express the values of attributes in MAGDM [8].
Many research topics about IFSs and IVIFSs for MAGDM,
such as operational rules for the sets [9–13], fuzzy calculus
for the sets [14–17], score and accuracy functions of the sets
[18–22], preference relations of the sets [23–26], similarity
and distance measures of the sets [27–30], aggregation
operators (AOs) for the sets [31–35], and decision-making
approaches based on the sets [36–40], have received wide-
spread attention during the past few decades.

Although IFSs and IVIFSs have gained importance and
popularity in MAGDM, they can only be leveraged to ex-
press the rating values in quantitative aspect (i.e., the nu-
merical rating values). In practical decision-making
problems, the rating values may be denoted by other kinds of
variables, where linguistic variables are one of the most
important types [41–45]. For example, selection of a proper
3D printer from a certain number of alternatives to print
a specific component is a classic decision-making problem in
manufacturing domain. In this problem, the performance
parameters of a 3D printer, such as surface roughness,
strength, elongation, and hardness, may be described by
some of linguistic terms like “small”, “medium”, and “large”.
Under such case, IFSs and IVIFSs are not applicable. To
address this issue, Chen et al. [46] extended the IFS to the
linguistic IFS (LIFS), in which the MD and NMD are
represented by linguistic variables. As a result, the rating
values in the form of single-valued linguistic terms can be
expressed by LIFSs. Because of such expressiveness, LIFSs
have been applied to solve decision-making problems by
a number of researchers. For example, Li et al. [47] de-
veloped a set of new operational rules and entropy for LIFSs;
Zhang et al. [48] designed an extended outranking approach
for decision-making problems with LIFSs; Liu et al. [49],
Garg and Kumar [50], Peng et al. [51], and Teng and Liu [52]
presented some AOs for LIFSs; Jin et al. [53] established
a decision support model for MAGDM with the preferences
relations of LIFSs.

To further improve the expressiveness of LIFS, Garg and
Kumar [54, 55] extended it to the linguistic interval-valued
IFS (LIVIFS), in which the MD and NMD are quantified by
the intervals of linguistic variables. LIVIFS can provide more
freedom to experts, because it allows them to describe their
preferences using intervals of linguistic terms. Due to such
characteristic, Garg and Kumar [55] presented a weighted
average (WA) operator, an ordered WA (OWA) operator,
a hybrid average (HA) operator, a weighted geometric (WG)
operator, an ordered WG (OWG) operator, and a hybrid
geometric (HG) operator of linguistic interval-valued
intuitionistic fuzzy numbers (LIVIFNs) and applied these
operators to solveMAGDMproblems; Kumar and Garg [56]
presented a prioritised weighted averaging (PWA) operator,
a prioritised ordered weighted averaging (POWA) operator,
a prioritised weighted geometric (PWG) operator, and
a prioritised ordered weighted geometric (POWG) operator
and study their applications in MAGDM problems; Liu and
Qin [57] presented a weighted Maclaurin symmetric mean
(WMSM) operator of LIVIFNs and proposed a new de-
cision-making method based on it; Garg and Kumar pre-
sented [58] an extended TOPSIS group decision-making

method under LIVIFS environment; Tang et al. [59] de-
veloped a procedure for MAGDM with LIVIFSs that can
cope with inconsistent and incomplete preference relations
of LIVIFSs.

For the generation of a ranking of all alternatives, there
are usually two ways. One way is to use conventional de-
cision-making methods (e.g., TOPSIS, VIKOR, and
ELECTRE), and the other way is to adopt AOs. Generally,
AOs can resolve the MAGDM problems more effectively
than conventional methods, because they can generate both
the collective attribute values and a ranking of all alterna-
tives, while conventional methods can only provide
a ranking [60]. So far, over ten AOs of LIVIFNs have been
presented. Representative examples are the WA, OWA, HA,
WG, OWG, and HG operators presented by Garg and
Kumar [54, 55], the PWA, POWA, PWG, and POWG
operators presented by Kumar and Garg [56], and the
WMSM operator presented by Liu and Qin [57]. Each of
these AOs can work well under its specific circumstance, but
none of them can provide desirable generality and flexibility
in aggregating attribute values and capturing attribute in-
terrelationships and concurrently reduce the negative in-
fluence of extreme attribute values on aggregation result.

In practical decision-making problems, the aggregation
of attribute values is a complicated process, in which a set of
general and versatile AOs is needed. Further, the attributes
considered in the problems are always not independent of
each other, but are interrelated. -us, it is important and
useful to use a general, flexible, and effective AO to capture
the interrelationships of different attributes for making
a reasonable decision [60].-e seven existing AOs, however,
are sometimes not versatile and flexible, since all of them are
based on a specific type of T-norm and T-conorm (i.e.,
Algebraic T-norm and T-conorm). Except the WMSM
operator, all of the AOs can only deal with the situation in
which the attributes are independent of each other or have
priority relationships. In addition, the values of attributes are
generally evaluated by domain experts. It is usually difficult
to ensure the absolute objectivity of this way, which means
that some biased experts will provide extreme attribute
values [61]. To get a reasonable aggregation result under
such circumstance, it is of necessity to reduce the effect of
unduly high or unduly low attribute values. But none of the
seven existing operators can achieve this. Based on these
considerations, the motivations and objectives of the present
paper are as follows:

(1) To develop a versatile and flexible AO of LIVIFNs,
the Archimedean T-norm and T-conorm (ATNTC)
operations [62], which can generate versatile and
flexible operational rules for fuzzy numbers, are
introduced to establish a set of operational rules of
LIVIFNs

(2) To make the AO have the capability to capture the
interrelationships among attributes, the Muirhead
mean (MM) operator [63], which is suitable for the
situations where all aggregated arguments are in-
dependent of each other, where there are in-
terrelationships between any two arguments, and
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where there are interrelationships among any mul-
tiple arguments [64, 65], is selected as the core
component of the AO

(3) To make the AO capable to reduce the negative
influence of biased attribute values on the aggrega-
tion result, the power average (PA) operator [66],
which has the capability to reduce the negative effect
of unreasonable argument values, is combined with
the MM operator

Based on the analysis above, this paper aims to present
a linguistic interval-valued intuitionistic fuzzy weighted
Archimedean power MM operator for MAGDM.-is aim is
achieved via combining the ATNTC operations, the MM
operator, and the PA operator with weights in the context of
LIVIFSs.-emajor contributions of the paper are as follows:

(1) A set of general and flexible operational rules of
LIVIFNs based on ATNTC operations is developed.
-e operational rules of LIVIFNs in the existing AOs
of LIVIFNs are based on Algebraic T-norm and T-
conorm, which are sometimes not versatile and
flexible enough. -e developed operational rules are
based on any types of T-norm and T-conorm. -ey
have satisfying generality and flexibility.

(2) A weighted Archimedean power MM operator of
LIVIFNs is presented to solve the MAGDM prob-
lems based on LIVIFNs. Compared to the existing
AOs of LIVIFNs, the presented AO has generality
and flexibility in aggregating attribute values and
capturing attribute interrelationships and concur-
rently can reduce the influence of extreme attribute
values.

-e rest of the paper is organised as follows. A brief
introduction of some prerequisites is provided Section 2.
Section 3 explains the details of the presented AO of
LIVIFNs. A MAGDM method based on the AO is designed
in Section 4. Section 5 demonstrates the method and
evaluates the AOs. Section 6 ends the paper with
a conclusion.

2. Preliminaries

In this section, some prerequisites in LIVIFS theory, op-
erational rules for LIVIFNs, PA operator, and MM operator
are briefly introduced to facilitate the understanding of the
paper.

2.1. LIVIFS 3eory. LIVIFS was extended from IVIFS and
LIFS by Garg and Kumar [54, 55]. Its formal definition is as
follows.

Definition 1 (see [55]). Let S[o,h] � st | so ≤ sh􏼈 􏼉 be a contin-
uous linguistic term set (where sh is a possible value for-
a variable and h is a positive integer, and for any
sx, sy ∈ S[o,h], sx > sy iff x>y). A LIVIFS A in a finite uni-
verse of discourse X isA � < x, s⌊μ(x)⌋, s⌊v(x)⌋> |x ∈ X􏼈 􏼉

(in this paper, the symbol in ⌊s⌋⌊r⌋ denotes that the subscript

of s is r), where s⌊μ(x)⌋ � [s⌊μL(x)⌋, s⌊μU(x)⌋] and
s⌊v(x)⌋ � [s⌊vL(x)⌋, s⌊vU(x)⌋] are subsets of [s0, sh] and,
respectively, stand for the linguistic MD and NMD of x to A,
and s⌊μU(x)⌋ + s⌊vU(x)⌋≤ sh (i.e., μU(x) + vU(x)≤ h) for
any x ∈X. -e linguistic intuitionistic index of x to A is
s⌊π(x)⌋ � [s⌊πL(x)⌋, s⌊πU(x)⌋] � [s⌊h − μU(x) − vU(x)⌋,

s⌊h − μL(x) − vL(x)⌋].
A pair, ([s⌊μL(x)⌋ + s⌊μU(x)⌋], [s⌊vL(x)⌋ + s⌊vU(x)⌋]),

is called a LIVIFN. For convenience, a LIVIFN is de-
noted as α � ([sa, sb], [sc, sd]), where sa, sb, sc, sd ∈
S[0,h], [sa, sb]⊆ [s0, sh], [sc, sd]⊆ [s0, sh], and b+ d≤ h. To
compare two LIVIFNs, their scores and accuracies are re-
quired, which can be calculated according to the following
definitions.

Definition 2 (see [55]). Let α� ([sa, sb], [sc, sd]) be a LIVIFN.
-en its score is

S(α) � s⌊
(2h + a + b − d)

4
⌋. (1)

Definition 3 (see [55]). Let α� ([sa, sb], [sc, sd]) be a LIVIFN.
-en its accuracy is

A(α) � S⌊
(a + b + c + d)

2
⌋. (2)

Using S (α) and A (α), two LIVIFNs can be compared via
the following definition.

Definition 4 (see [55]). Let α1 � ([s⌊a1⌋, s⌊b1⌋], [s⌊c1⌋,

s⌊d1⌋]), and α2 � ([s⌊a2⌋, s⌊b2⌋], [s⌊c2⌋, s⌊d2⌋]) and be any
two LIVIFNs, S (α1) and S (α2) be, respectively, the scores of
α1 and α2, and A (α1) and A (α2) be, respectively, the ac-
curacies of α1 and α2. -en, (1) if S (α1)> S (α2), then α1> α2;
(2) if S (α1)� S (α2) and A (α1)>A (α2), then α1> α2; (3) if S
(α1)� S (α2) and A (α1)�A (α2), then α1 � α2.

To calculate the distance between two LIVIFNs, a dis-
tance measure of LIVIFNs is required. On the basis of the
distance measure of IVIFNs introduced by Xu [67] and the
distance measure of LIFNs introduced by Liu and Liu [68],
the following distance measure for LIVIFNs is defined.

Definition 5. Let α1 � ([s⌊a1⌋, s⌊b1⌋], [s⌊c1⌋, s⌊d1⌋]), and
α2 � ([s⌊a2⌋, s⌊b2⌋], [s⌊c2⌋, s⌊d2⌋]) be any two LIVIFNs.
-en, the distance of α1 and α2 is

D α1, α2( 􏼁 �
a1 − a2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + b1 − b2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + c1 − c2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + d1 − d2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

4h
. (3)

Obviously, D(α1, α2) satisfies (1) D(α1, α2) �

D(α2, α1)≥ 0; (2) if α3 � ([s⌊a3⌋, s⌊b3⌋], [s⌊c3⌋, s⌊d3⌋]) is an
arbitrary LIVIFN, then D(α1, α3)≤ D(α1, α2) + D(α2, α3).

2.2. Operational Rules. Motivated by the concept of T-norm
and T-conorm, a set of operational rules for LIVIFNs based
on the Algebraic T-norm and T-conorm were presented by
Garg and Kumar [54, 55], Kumar and Garg [56], and Liu and
Qin [57]. -ese operational rules are sometimes not very
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versatile and flexible since they are just based on a specific
type of ATNTC. Inspired by the general operational rules for
IFNs [69] and q-rung orthopair fuzzy numbers [60] (which
are based on any types of ATNTCs), a set of operational rules
for LIVIFNs based on ATNTCs is developed. -e definition
of the operational rules is as follows.

Definition 6. Let α1 � ([s⌊a1⌋, s⌊b1⌋], [s⌊c1⌋, s⌊d1⌋]),
α2 � ([s⌊a2⌋, s⌊b2⌋], [s⌊c2⌋, s⌊d2⌋]), and α � ([s⌊aα⌋, s⌊bα⌋],

[s⌊cα⌋, s⌊dα⌋]) be any three LIVIFNs, and r be a real number
that satisfies r> 0, the sum, product, multiplication, and
power operations of LIVIFNs based on the Archimedean T-
norm T(x, y) � f− 1(f(x) + f(y)) and its T-conorm
C(x, y) � g− 1(g(x) + g(y)) can be, respectively, defined as
follows:

α1 ⊕ α2 � s C a1 , a2( )( ), s C b1 , b2( )( )􏼔 􏼕, s T c1 , c2( )( ), s T d1 , d2( )( )􏼔 􏼕􏼒 􏼓

� s g− 1 g a1( )+g a2( )( )( ), s g− 1 g b1( )+g b2( )( )( )􏼔 􏼕, s f− 1 f c1( )+f c2( )( )( ), s f− 1 f d1( )+f d2( )( )( )􏼔 􏼕􏼒 􏼓,

(4)

α1 ⊗ α2 � s T a1 , a2( )( ), s T b1 , b2( )( )􏼔 􏼕, s C c1 , c2( )( ), s C d1 , d2( )( )􏼔 􏼕􏼒 􏼓

� s f− 1 f a1( )+f a2( )( )( ), s f− 1 f b1( )+f b2( )( )( )􏼔 􏼕, s g− 1 g c1( )+g c2( )( )( ), s g− 1 g d1( )+g d2( )( )( )􏼔 􏼕􏼒 􏼓,

(5)

rα � s g− 1 rg aα( )( )( ), s g− 1 rg bα( )( )( )􏼔 􏼕, s f− 1 rf cα( )( )( ), s f− 1 rf dα( )( )( )􏼔 􏼕􏼒 􏼓, (6)

αr
� s f− 1 rf aα( )( )( ), s f− 1 rf bα( )( )( )􏼔 􏼕, s g− 1 rg cα( )( )( ), s g− 1 rg dα( )( )( )􏼔 􏼕􏼒 􏼓. (7)

Equations (4)‒(7) are generalised form of the opera-
tional rules for LIVIFNs based on ATNTCs. If f and g are
assigned specific functions, then specific operational rules
can be achieved. -e following are four examples:

(1) If f(t) � − In(t/h) and g(t) � − In(1 − t/h), then
f− 1(t) � he− t and g− 1(t) � h − he− t. Four opera-
tional rules for LIVIFNs based on Algebraic T-norm
and T-conorm are obtained as follows:

α1 ⊕ α2 � s a1+a2− a1a2( )/h( ), s b1+b2− b1b2( )/h( )􏼔 􏼕, s c1c2( )/h( ), s d1d2( )/h( )􏼔 􏼕􏼒 􏼓, (8)

α1 ⊗ α2 � s a1a2( )/h( ), s b1b2( )/h( )􏼔 􏼕, s c1+c2− c1c2( )/h( ), s d1+d2− d1d2( )/h( )􏼔 􏼕􏼒 􏼓, (9)

rα � s h 1− 1− aα/h( )
r

( )( ), s h 1− 1− bα/h( )
r

( )( )􏼔 􏼕, s h cα/h( )
r

( ), s h dα/h( )
r

( )􏼔 􏼕􏼒 􏼓, (10)

αr
� s h aα/h( )

r
( ), s h bα/h( )

r
( )􏼔 􏼕, s h 1− 1− cα/h( )

r
( )( ), s h 1− 1− dα/h( )

r
( )( )􏼔 􏼕􏼒 􏼓. (11)

(2) If f(t) � − In [2h − t]/t{ } and g(t) � In[(h + t)/
(h − t)], then f− 1(t) � (2h)/(et + 1) and g− 1(t) �

(het − h)/(et + 1). Four operational rules for

LIVIFNs based on Einstein T-norm and T-conorm
are obtained as follows:

α1 ⊕ α2 � s h2 a1+a2( )/ h2+a1a2( )( ), s h2 b1+b2( )/ h2+b1b2( )( )􏼔 􏼕, s hc1c2/ 2h2− h c1+c2( )+c1c2( )( ), s hd1d2/ 2h2− h d1+d2( )+d1d2( )( )􏼔 􏼕􏼒 􏼓, (12)

α1 ⊗ α2 � s ha1a2/ 2h2− h a1+a2( )+a1a2( )( ), s hb1b2/ 2h2− h b1+b2( )+b1b2( )( )􏼔 􏼕, s h2 c1+c2( )/ h2+c1c2( )( ), s h2 d1+d2( )/ h2+d1d2( )( )􏼔 􏼕􏼒 􏼓, (13)
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rα � s h h+aα( )
r
− h h− aα( )

r
( )/ h+aα( )

r
+ h− aα( )

r
( )( ), s h h+bα( )

r
− h h− bα( )

r
( )/ h+bα( )

r
+ h− bα( )

r
( )( )􏼔 􏼕, s 2hcr

α/ 2h− cα( )
r
+cr

α( )( ), s 2hdr
α/ 2h− dα( )

r
+dr

α( )( )􏼔 􏼕􏼒 􏼓,

(14)

αr
� s 2har

α/ 2h− aα( )
r
+ar

α( )( ), s 2hbr
α/ 2h− bα( )

r
+br

α( )( )􏼔 􏼕, s h h+cα( )
r
− h h− cα( )

r
( )/ h+cα( )

r
+ h− cα( )

r
( )( ), s h h+dα( )

r
− h h− dα( )

r
( )/ h+dα( )

r
+ h− dα( )

r
( )( )􏼔 􏼕􏼒 􏼓.

(15)

(3) If f(t) � In [hλ + (1 − λ)t]/t{ }(λ> 0) and g(t) �

In [h + (λ − 1)t]/h − t{ } then f− 1(t) � (λh)/(et + λ −

1) and g− 1(t) � (het − h)/(et + λ − 1). Four

operational rules for LIVIFNs based on Hamacher
T-norm and T-conorm are obtained as follows:

α1 ⊕ α2 � s h2 a1+a2( )+(λ− 2)ha1a2( )/ h2+(λ− 1)a1a2( )( ), s h2 b1+b2( )+(λ− 2)hb1b2( )/ h2+(λ− 1)b1b2( )( )􏼔 􏼕,􏼒

s hc1c2/ λh2+(h− λh) c1+c2( )+(λ− 1)c1c2( )( ), s hd1d2/ λh2+(h− λh) d1+d2( )+(λ− 1)d1d2( )( )􏼔 􏼕􏼓,

(16)

α1 ⊗ α2 � s ha1a2/ λh2+(h− λh) a1+a2( )+(λ− 1)a1a2( )( ), s hb1b2/ λh2+(h− λh) b1+b2( )+(λ− 1)b1b2( )( )􏼔 􏼕,􏼒

s h2 c1+c2( )+(λ− 2)hc1c2( )/ h2+(λ− 1)c1c2( )( ), s h2 d1+d2( )+(λ− 2)hd1d2( )/ h2+(λ− 1)d1d2( )( )􏼔 􏼕􏼓,

(17)

rα � s h h+(λ− 1)aα( )
r
− h h− aα( )

r
( )/ h+(λ− 1)aα( )

r
+(λ− 1) h− aα( )

r
( )( ), s h h+(λ− 1)bα( )

r
− h h− bα( )

r
( )/ h+(λ− 1)bα( )

r
+(λ− 1) h− bα( )

r
( )( )􏼔 􏼕,􏼒

s λhcr
α/ hλ+(1− λ)cα( )

r
+(λ− 1)cr

α( )( ), s λhdr
α/ hλ+(1− λ)dα( )

r
+(λ− 1)dr

α( )( )􏼔 􏼕􏼓,

(18)

αr
� s λhar

α/ hλ+(1− λ)aα( )
r
+(λ− 1)ar

α( )( ), s λhbr
α/ hλ+(1− λ)bα( )

r
+(λ− 1)br

α( )( )􏼔 􏼕,􏼒

s h h+(λ− 1)cα( )
r
− h h− cα( )

r
( )/ h+(λ− 1)cα( )

r
+(λ− 1) h− cα( )

r
( )( ), s h h+(λ− 1)dα( )

r
− h h− dα( )

r
( )/ h+(λ− 1)dα( )

r
+(λ− 1) h− dα( )

r
( )( )􏼔 􏼕􏼓.

(19)

(4) If f(t) � − In[(ε − 1/εt/h − 1)](ε> 1) and g(t) � − In
[(ε − 1/ε1− t/h − 1)], then f− 1(t) � logε[1 + (ε −

1/e− t)]h and g− 1(t) � h − logε[1 +(ε − 1)/e− t]h. Four

operational rules for LIVIFNs based on Frank T-
norm and T-conorm are obtained as follows:

α1 ⊕ α2 � s
h− logε 1+ ε1− a1 /h − 1( ) ε1− a2 /h − 1( )/(ε− 1)( )( )

h( 􏼁
, s

h− logε 1+ ε1− b1 /h− 1( ) ε1− b2 /h− 1( )/(ε− 1)( )( )
h( 􏼁􏼔 􏼕,􏼒

s logε 1+ εc1 /h− 1( ) εc2 /h− 1( )/(ε− 1)( )( )
h( 􏼁

, s logε 1+ εd1 /h− 1( ) εd2 /h− 1( )/(ε− 1)( )( )
h( 􏼁􏼔 􏼕􏼓,

(20)

α1 ⊗ α2 � s logε 1+ εa1 /h− 1( ) εa2 /h − 1( )/(ε− 1)( )( )
h( 􏼁

, s logε 1+ εb1 /h− 1( ) εb2 /h− 1( )/(ε− 1)( )( )
h( 􏼁􏼔 􏼕,􏼒

s
h− logε 1+ ε1− c1 /h − 1( ) ε1− c2 /h − 1( )/(ε− 1)( )( )

h( 􏼁
, s

h− logε 1+ ε1− d1 /h − 1( ) ε1− d2 /h − 1( )/(ε− 1)( )( )
h( 􏼁􏼔 􏼕􏼓,

(21)

rα � s
h− logε 1+ ε1− aα /h− 1( )

r/(ε− 1)r− 1( )( )
h

( 􏼁
, s

h− logε 1+ ε1− bα/h− 1( )
r/(ε− 1)r− 1( )( )

h
( 􏼁

􏼔 􏼕,􏼒

s
logε 1+ εcα /h− 1( )

r/(ε− 1)r− 1( )( )
h

( 􏼁
, s

logε 1+ εdα /h− 1( )
r/(ε− 1)r− 1( )( )

h
( 􏼁

􏼔 􏼕􏼓,

(22)
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αr
� s

logε 1+ εaα /h − 1( )
r/(ε− 1)r− 1( )( )

h
( 􏼁

, s
logε 1+ εbα /h− 1( )

r/(ε− 1)r− 1( )( )
h

( 􏼁
􏼔 􏼕,􏼒

s
h− logε 1+ ε1− cα /h− 1( )

r/(ε− 1)r− 1( )( )
h

( 􏼁
, s

h− logε 1+ ε1− dα /h− 1( )
r/(ε− 1)r− 1( )( )

h
( 􏼁

􏼔 􏼕􏼓.

(23)

-e operational rules in equations (8)‒(11) are the four
operational rules in [54–57]. From these examples, it can be
seen that the developed operational rules can be used to
derive any operational rules based on ATNTCs and the
operational rules in [54–57] are just one special case of the
developed operational rules. -erefore, the developed op-
erational rules are more general and flexible than the op-
erational rules in [54–57].

2.3. PA Operator. -e PA operator, introduced by Yager
[66], has the capability to assign weights to arguments via
computing their support degrees. -is makes it possible to
reduce the negative effect of the unduly high or unduly low
argument values on the aggregation result. -e formal
definition of this operator is as follows.

Definition 7 (see [66]). Let (a1, a2, . . ., an) be a collection of
crisp numbers, S(ai, aj) � 1 − D(ai, aj) (where, D(ai, aj) is
the distance of ai and aj and i, j� 1, 2, . . ., n and j≠ i) be the
support degree for ai from aj which has the following
properties: (1) 0≤ S(ai, aj)≤ 1; (2) S(ai, aj) � S(aj, ai); (3)
S(ai, aj)≥ S(ap, ap) if |ai − aj|≤ |ap − ap|, and

T ai( 􏼁 � 􏽘
n

j�1,j≠i
S ai, aj􏼐 􏼑. (24)

-en the aggregation function

PA a1, a2, ..., an( 􏼁 �
􏽐

n
i�1 1 + T ai( 􏼁( 􏼁ai( 􏼁

􏽐
n
i�1 1 + T ai( 􏼁( 􏼁

, (25)

is called the PA operator.

2.4. MMOperator. -e MM operator was firstly introduced
to aggregate crisp numbers by Muirhead [63]. It can capture
the interrelationships of arguments and provide a general-
ised form of several other AOs. -e formal definition of the
MM operator is as follows.

Definition 8 (see [63]). Let (a1, a2, . . ., an) be a collection of
crisp numbers, Q � (Q1, Q2, . . . , Qn) (where Q1, Q2,

. . . , Qn ≥ 0 but not at the same time Q1 � Q2 � · · · � Qn � 0)
be a collection of n real numbers, p(i) be a permutation of (1,
2, . . ., n), and Pn be the set of all permutations of (1, 2, . . ., n).
-en the aggregation function

MMQ
a1, a2, . . . , an( 􏼁 �

1
n!

􏽘
p∈Pn

􏽙

n

i�1
a

Qi

p(i)
⎛⎝ ⎞⎠

1/Σn
i�1Qi

, (26)

is called the MM operator.

In this operator, whether the interrelationships are
considered depends on the values of Qi(i � 1, 2, . . . , n): (1) if
Q1 � Q> 0 and Q2 � Q3 � · · · � Qn � 0, then the in-
terrelationships are not considered; (2) if Q1 � Q2 > 0 and
Q3 � Q4 � · · · � Qn � 0, then the interrelationships between
any two crisp numbers are considered; (3) if
Q1, Q2, . . . Qk > 0(k � 3, 4, . . . , n) and Qk+1 � Qk+2 � · · ·

� Qn � 0, then the interrelationships among any k crisp
numbers are considered. Further, different AOs can be
obtained via assigning different values to Q1, Q2, . . . , Qn:

(1) If Q1 � Q> 0 and Q2 � Q3 � · · · � Qn � 0 then the
MM operator will reduce to the generalised arith-
metic average (GAA) operator. When Q� 1, it will
become the arithmetic average (AA) operator.

(2) If Q1, Q2 > 0 and Q3 � Q4 � · · · � Qn � 0, then the
MM operator will reduce to the Bonferroni mean
(BM) operator.

(3) If Q1 � Q2 � · · · � Qk � 1 and Qk+1 � Qk+2 �

· · · � Qn � 0, then the MM operator will reduce to
the Maclaurin symmetric mean (MSM) operator.

(4) If Q1 � Q2 � · · · � Qn � Q> 0, then the MM opera-
tor will reduce to the generalised geometric average
(GGA) operator. When Q� 1, it will become the
geometric average (GA) operator.

3. Aggregation Operators

In this section, a linguistic interval-valued intuitionistic
fuzzy Archimedean power MM (LIVIFAPMM) operator
and its weighted form, i.e., a linguistic interval-valued
intuitionistic fuzzy Archimedean weighted power MM
(LIVIFAWPMM) operator, are presented. -e properties of
these AOs are explored, and their specific cases are
discussed.

3.1. LIVIFAPMM Operator. A LIVIFAPMM operator is an
AO of LIVIFNs constructed via combining the PA operator
and the MM operator under linguistic interval-valued
intuitionistic fuzzy environment. -e operations in this
operator are based on ATNTCs.-e formal definition of the
operator is as follows.

Definition 9. Let (α1, α2, . . . , αn) (where αi([s⌊ai⌋, s⌊bi⌋],

[s⌊ci⌋, s⌊di⌋]), i � 1, 2, . . . , n) be a collection of n LIVIFNs,
Q � (Q1 � Q2 � · · · � Qn) (where Q1 � Q2 � · · · � Qn ≥ 0
but not at the same time Q1 � Q2 � · · · � Qn � 0) be a col-
lection of n real numbers that, respectively, correspond to
α1, α2, . . . , αn, p(i) be a permutation of (1, 2, . . ., n), Pn be
the set of all permutations of (1, 2, . . ., n), αi ⊕ αj and
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αi ⊗ αj(j � 1, 2, . . . , n) be, respectively, the sum and product
operations of αi and αj based on ATNTCs, rαk and αk

r (k� 1,
2, . . ., n; r> 0) be, respectively, the multiplication and power
operations of αk based on ATNTCs, S(αi, αj) � 1 − D(αi, αj)

(where D(αi, αj) is the distance of αi and αj and i, j� 1, 2, . . .,
n and j≠ i) be the support degree for αi from αj which
satisfies 0≤ S(αi, αj)≤ 1, S(αi, αj) � S(αj, αi), and
S(αi, αj)≥ S(αp, αp) if S|αi, αj|≤ |αp, αp|, and

T αi( 􏼁 � 􏽘
n

j�1,j≠i
S αi, αj􏼐 􏼑. (27)

-en the aggregation function

LIVIFAPMMQ α1, α2, . . . , αn( 􏼁

�
1
n!
⊕

p∈Pn

⊗
n

i�1

n 1 + T αp(i)􏼐 􏼑􏼐 􏼑

􏽐
n
j�1 1 + T αj􏼐 􏼑􏼐 􏼑

αp(i)
⎛⎝ ⎞⎠

Qi

⎛⎝ ⎞⎠

1/Σn
i�1Qi

,

(28)

is called the LIVIFAPMM operator.
In this operator, the values of Qi are used to capture the

interrelationships of the aggregated LIVIFNs: (1) if Q1 > 0
and Q2 � Q3 � · · · � Qn � 0, then the LIVIFNs are in-
dependent of each other; (2) if Q1, Q2 > 0 and
Q3 � Q4 � · · · � Qn � 0, then the interrelationships between
any two LIVIFNs are considered; (3) if
Q1 � Q2 � · · · � Qk > 0(k � 3, 4, . . . , n) and
Qk+1 � Qk+2 � · · · � Qn � 0, then the interrelationships
among any k LIVIFNs are considered.

According to equations (4)‒(7) and (28), the following
theorem is obtained.

Theorem 1. Let (α1, α2, . . . , αn) (where
αi � ([s⌊ai⌋, s⌊bi⌋], [s⌊ci⌋, s⌊di⌋]), i � 1, 2, 3, . . . , n) be a col-
lection of n LIVIFNs. 3en

LIVIFAPMMQ α1, α2, . . . , αn( 􏼁 � sa, sb􏼂 􏼃, sc, sd􏼂 􏼃( 􏼁, (29)

and it is still a LIVIFN, where

sa � s
f− 1 1/􏽐

n

i�1Qi( 􏼁f g− 1 (1/n!)􏽐p∈Pn
g f− 1 􏽐

n

i�1 Qif g− 1 nξp(i)( 􏼁g ap(i)( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑
,

sb � s
f− 1 1/􏽐

n

i�1Qi( 􏼁f g− 1 (1/n!)􏽐p∈Pn
g f− 1 􏽐

n

i�1 Qif g− 1 nξp(i)( 􏼁g bp(i)( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑
,

sc � s
g− 1 1/􏽐

n

i�1Qi( 􏼁g f− 1 (1/n!)􏽐p∈Pn
f g− 1 􏽐

n

i�1 Qig f− 1 nξp(i)( 􏼁f cp(i)( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑
,

sd � s
g− 1 1/􏽐

n

i�1Qi( 􏼁g f− 1 (1/n!)􏽐p∈Pn
f g− 1 􏽐

n

i�1 Qig f− 1 nξp(i)( 􏼁f dp(i)( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑
,

(30)

and ξp(i) is a PA factor that can be computed by

ξi �
1 + 􏽐

n
p�1,p≠i 1 − D αi, αp􏼐 􏼑􏼐 􏼑

􏽐
n
j�1 1 + 􏽐

n
q�1,q≠j 1 − D αj, αq􏼐 􏼑􏼐 􏼑􏼐 􏼑

. (31)

For the details regarding the proof of this theorem, please
refer to Appendix A. -e following three theorems re-
spectively state the idempotency, commutativity, and
boundedness of the LIVIFPMM operator.

Theorem 2 (idempotency). Let (α1, α2, . . . , αn) (where
αi � ([s⌊ai⌋, s⌊bi⌋], [s⌊ci⌋, s⌊di⌋]), i � 1, 2, 3, . . . , n) be a col-
lection of n LIVIFNs. If αi � α � ([s⌊aα⌋, s⌊bα⌋], [s⌊cα⌋,

s⌊dα⌋]) for all i � 1, 2, . . . , n, then LIVIFAPMMQ(α1,
α2, . . . , αn) � α.

Theorem 3 (commutativity). Let (α1, α2, . . . , αn) (where
ai � ([s⌊ai⌋, s⌊bi⌋], [s⌊ci⌋, s⌊di⌋]), i � 1, 2, 3, . . . , n) be

a collection of n LIVIFNs. If (β1, β2, . . . , βn) is any permu-
tation of (α1, α2, . . . , αn), then LIVIFAPMMQ(α1,
α2, . . . , αn) � LIVIFAPMMQ(β1, β2, . . . , βn).

Theorem 4 (boundedness). Let (α1, α2, . . . , αn) (where
αi � ([s⌊ai⌋, s⌊bi⌋], [s⌊ci⌋, s⌊di⌋]), i � 1, 2, 3, . . . , n) be a col-
lection of n LIVIFNs, α− � ([s⌊min(ai)⌋, s⌊min(bi)⌋], [s⌊max
(ci)ci⌋, s⌊max(di)⌋]), and α+ � ([s⌊max(ai)⌋, s⌊max(bi)⌋],

[s⌊min(ci)ci⌋, s⌊min(di)⌋]), 3en α− ≤ LIVIFAPMMQ(α1,
α2, . . . , αn)≤ α+.

For the details regarding the proofs of these three the-
orems, please refer to Appendices B–D, respectively.

Equation (29) is a generalised form of the LIVIFAPMM
operator. If specific functions are assigned to f and g, then
specific operators can be constructed. For example, if the
additive generators of Algebraic T-norm and T-conorm
[60, 69] are, respectively, assigned to f and g, i.e., f(t)� − In(t/
h) and g(t) � − In(1− t/h), then a linguistic interval-valued

Complexity 7



intuitionistic fuzzy power MM (LIVIFPMM) operator is
constructed:

LIVIFPMMQ α1, α2, . . . , αn( 􏼁

�

s

h 1− 􏽑p∈Pn
1− 􏽑

n

i�1 1− 1− ap(i)/h( 􏼁( 􏼁
nξp(i)􏼐 􏼑

Qi

􏼒 􏼓􏼒 􏼓
(1/n!)

􏼠 􏼡

1/Σn
i�1Qi( )

⎛⎝ ⎞⎠

s

h 1− 􏽑p∈Pn
1− 􏽑

n

i�1 1− 1− bp(i)/h( 􏼁( 􏼁
nξp(i)􏼐 􏼑

Qi

􏼒 􏼓􏼒 􏼓
(1/n!)

􏼠 􏼡

1/Σn
i�1Qi( )

⎛⎝ ⎞⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

s

h 1− 1− 􏽑p∈Pn
1− 􏽑

n

i�1 1− cp(i)/h( 􏼁
nξp(i)􏼐 􏼑

Qi

􏼒 􏼓􏼒 􏼓
(1/n!)

􏼠 􏼡

1/Σn
i�1Qi( )

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

s

h 1− 1− 􏽑p∈Pn
1− 􏽑

n

i�1 1− dp(i)/h( 􏼁
nξp(i)􏼐 􏼑

Qi

􏼒 􏼓􏼒 􏼓
(1/n!)

􏼠 􏼡

1/Σn
i�1Qi( )

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(32)

-is operator has the following special cases:

(1) If Q1 � Q> 0 and Q2 � Q3 � · · · � Qn � 0, then the
LIVIFPMM operator will reduce to

s

h 1− 􏽑
n

i�1 1− 1− ai/h( )( )
nξi( 􏼁

Q

􏼐 􏼑
1/n

􏼒 􏼓
1/Q

􏼠 􏼡

s

h 1− 􏽑
n

i�1 1− 1− bi/h( )( )
nξi( 􏼁

Q

􏼐 􏼑
1/n

􏼒 􏼓
1/Q

􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

s

h 1− 1− 􏽑
n

i�1 1− 1− ci/h( )
nξi( 􏼁

Q

􏼐 􏼑􏼐 􏼑
1/n

􏼒 􏼓
1/Q

􏼠 􏼡􏼠 􏼡

s

h 1− 1− 􏽑
n

i�1 1− 1− di/h( )
nξi( 􏼁

Q

􏼐 􏼑􏼐 􏼑
1/n

􏼒 􏼓
1/Q

􏼠 􏼡􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� LIVIFPGAA(Q) α1, α2, . . . , αn( 􏼁,

(33)

which is a linguistic interval-valued intuitionistic fuzzy
power GAA (LIVIFPGAA) operator. When Q� 1, it
will become

s
h 1− 􏽑

n

i�1 1− 1− ai/h( )( )
nξi( 􏼁( 􏼁

1/n
􏼐 􏼑􏼐 􏼑

, s
h 1− 􏽑

n

i�1 1− 1− bi/h( )( )
nξi( 􏼁( 􏼁

1/n
􏼐 􏼑􏼐 􏼑

􏼢 􏼣,􏼠

s
h 􏽑

n

i�1 ci/h( )
nξi( 􏼁

1/n
􏼐 􏼑

, s
h 􏽑

n

i�1 di/h( )
nξi( 􏼁

1/n
􏼐 􏼑

􏼢 􏼣􏼡 � LIVIFPAA α1, α2, . . . , αn( 􏼁,

(34)

which is a linguistic interval-valued intuitionistic
fuzzy power AA (LIVIFPAA) operator.

(2) If Q1, Q2 > 0 and Q3 � Q4 � · · · � Qn � 0 then the
LIVIFPMM operator will reduce to

8 Complexity



s

h 1− 􏽑
n

i,j�1
j≠i

1− 1− ai/h( )( )
nξi( 􏼁

Q1
1− 1− aj/h( 􏼁( 􏼁

nξj
􏼐 􏼑

Q2
􏼒 􏼓⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/n(n− 1)

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/ Q1+Q2( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

s

h 1− 􏽑
n

i,j�1
j≠i

1− 1− bi/h( )( )
nξi( 􏼁

Q1
1− 1− bj/h( 􏼁( 􏼁

nξj
􏼐 􏼑

Q2
􏼒 􏼓

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/n(n− 1)

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/ Q1+Q2( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s

h 1− 1− 􏽑
n

i,j�1
j≠i

1− 1− ci/h( )
nξi( 􏼁

Q1
1− cj/h( 􏼁

nξj
􏼐 􏼑

Q2
􏼒 􏼓⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/n(n− 1)

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/ Q1+Q2( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

s

h 1− 1− 􏽑
n

i,j�1
j≠i

1− 1− di/h( )
nξi( 􏼁

Q1
1− dj/h( 􏼁

nξj
􏼐 􏼑

Q2
􏼒 􏼓

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/n(n− 1)

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/ Q1+Q2( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� LIVIFPBM Q1 ,Q2( ) α1, α2, . . . , αn( 􏼁,

(35)

which is a linguistic interval-valued intuitionistic
fuzzy power BM (LIVIFPBM) operator.

(3) If Q1 � Q2 � · · · � Qk � 1 and Qk+1 � Qk+2 � · · ·

� Qn � 0, then the LIVIFPMM operator will reduce
to

s

h 1− 􏽑
n

1≤i1 < ··· < ik ≤ n
1− 􏽑

k

j�1 1− 1− aij
/h􏼐 􏼑􏼐 􏼑

nξij
􏼒 􏼓􏼒 􏼓

k!(n− k)!/n!

􏼠 􏼡

1/k

􏼠 􏼡

s

h 1− 􏽑
n

1≤i1 < ···< ik ≤ n
1− 􏽑

k

j�1 1− 1− bij
/h􏼐 􏼑􏼐 􏼑

nξij
􏼒 􏼓􏼒 􏼓

k!(n− k)!/n!

􏼠 􏼡

1/k

􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

s

h 1− 1− 􏽑
n

1≤i1 < ···< ik ≤ n
1− 􏽑

k

j�1 1− cij
/h􏼐 􏼑

nξij
􏼒 􏼓􏼒 􏼓

k!(n− k)!/n!

􏼠 􏼡

1/k

􏼠 􏼡􏼠 􏼡

s

h 1− 1− 􏽑
n

1≤i1 < ···< ik ≤ n
1− 􏽑

k

j�1 1− dij
/h􏼐 􏼑

nξij
􏼒 􏼓􏼒 􏼓

k!(n− k)!/n!

􏼠 􏼡

1/k

􏼠 􏼡􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� LIVIFPMSM(k) α1, α2, . . . , αn( 􏼁,

(36)

which is a linguistic interval-valued intuitionistic
fuzzy power MSM (LIVIFPMSM) operator.

(4) If Q1 � Q2 � · · · � Qn � Q> 0, then the LIVIFPMM
operator will reduce to

s

h 1− 1− 􏽑
n

i�1 1− 1− ai/h( )
nξi( 􏼁

Q

􏼐 􏼑􏼐 􏼑
1/n

􏼒 􏼓
1/Q

􏼠 􏼡􏼠 􏼡

s

h 1− 1− 􏽑
n

i�1 1− 1− bi/h( )
nξi( 􏼁

Q

􏼐 􏼑􏼐 􏼑
1/n

􏼒 􏼓
1/Q

􏼠 􏼡􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

s

h 1− 􏽑
n

i�1 1− 1− ci/h( )( )
nξi( 􏼁

Q

􏼐 􏼑
1/n

􏼒 􏼓
1/Q

􏼠 􏼡

s

h 1− 􏽑
n

i�1 1− 1− di/h( )( )
nξi( 􏼁

Q

􏼐 􏼑
1/n

􏼒 􏼓
1/Q

􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� LIVIFPGGA(Q) α1, α2, . . . , αn( 􏼁,

(37)
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which is a linguistic interval-valued intuitionistic fuzzy
power GGA (LIVIFPGGA) operator. When Q� 1, it
will become

s
h 􏽑

n

i�1 ai/h( )
nξi( 􏼁

1/n
􏼐 􏼑

, s
h 􏽑

n

i�1 bi/h( )
nξi( 􏼁

1/n
􏼐 􏼑

􏼢 􏼣, s
h 1− 􏽑

n

i�1 1− 1− ci/h( )( )
nξi( 􏼁( 􏼁

1/n
􏼐 􏼑􏼐 􏼑

, s
h 1− 􏽑

n

i�1 1− 1− di/h( )( )
nξi( 􏼁( 􏼁

1/n
􏼐 􏼑􏼐 􏼑

􏼢 􏼣􏼠 􏼡

� LIVIFPGA α1, α2, . . . , αn( 􏼁,

(38)

which is a linguistic interval-valued intuitionistic fuzzy
power GA (LIVIFPGA) operator.

Similarly, if the additive generators of other (e.g., Ein-
stein, Hamacher, Frank) ATNTCs [60, 69] are, respectively,
assigned to f and g, then other specific operators can be
constructed according to equation (29).

3.2. LIVIFAWPMM Operator. -e LIVIFAPMM operator
has advantages in having desirable generality and flexibility,
capturing the complex interrelationships of LIVIFNs, and
reducing the negative effect of unreasonable LIVIFNs on the
aggregation result. But it does not consider the relative
importance of each aggregated LIVIFN. To this end, weights
are introduced and a LIVIFAWPMM operator is presented.
-e formal definition of this operator is as follows.

Definition 10. On the basis of Definition 9, let
w1, w2, . . . , wn be, respectively, the weights of α1, α2, . . . , αn

such that 0≤w1, w2, . . . , wn ≤ 1 and w1 + w2 + · · · + wn � 1.
-en the aggregation function

LIVIFAWPMMQ α1, α2, . . . , αn( 􏼁

�
1
n!
⊕

p∈Pn

⊗
n

i�1

nwp(i) 1 + T αp(i)􏼐 􏼑􏼐 􏼑

􏽐
n
j�1 1 + T αj􏼐 􏼑􏼐 􏼑

αp(i)
⎛⎝ ⎞⎠

Qi

⎛⎝ ⎞⎠

1/Σni�1Qi

,

(39)

is called the LIVIFAWPMM operator.
In this operator, the function of Qi is the same as the

function of Qi in the LIVIFAPMM operator (see equation
(28)).

According to equations (4)‒(7) and (39), the following
theorem is obtained.

Theorem 5. Let (α1, α2, . . . , αn) (where αi � ([s⌊ai⌋, s⌊bi⌋],

[s⌊ci⌋, s⌊di⌋]), i � 1, 2, 3, . . . , n) be a collection of n LIVIFNs.
3en

LIVIFAWPMMQ α1, α2, . . . , αn( 􏼁 � sa, sb􏼂 􏼃, sc, sd􏼂 􏼃( 􏼁,

(40)

and it is still a LIVIFN, where

sa � s
f− 1 1/􏽐

n

i�1Qi( 􏼁f g− 1 (1/n!)􏽐p∈Pn
g f− 1 􏽐

n

i�1 Qif g− 1 n wp(i)ξp(i)( 􏼁/􏽐
n

t�1 wtξt( )( 􏼁g ap(i)( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑
,

sb � s
f− 1 1/􏽐

n

i�1Qi( 􏼁f g− 1 (1/n!)􏽐p∈Pn
g f− 1 􏽐

n

i�1 Qif g− 1 n wp(i)ξp(i)( 􏼁/􏽐
n

t�1 wtξt( )( 􏼁g bp(i)( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑
,

sc � s
g− 1 1/􏽐

n

i�1Qi( 􏼁g f− 1 (1/n!)􏽐p∈Pn
f g− 1 􏽐

n

i�1 Qig f− 1 n wp(i)ξp(i)( 􏼁/􏽐
n

t�1 wtξt( )( 􏼁f cp(i)( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑
,

sd � s
g− 1 1/􏽐

n

i�1Qi( 􏼁g f− 1 (1/n!)􏽐p∈Pn
f g− 1 􏽐

n

i�1 Qig f− 1 n wp(i)ξp(i)( 􏼁/􏽐
n

t�1 wtξt( )( 􏼁f dp(i)( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑
,

(41)

and ξp(i) is a PA factor that can be computed by equation
(31).

-e proof of -eorem 5 is similar to the proof of
-eorem 1 (see Appendix A) and is omitted here. -e
following two theorems, respectively, state the commu-
tativity and boundedness of the LIVIFAWPMM operator
(it is worth nothing that the LIVIFAWPMM operator no
longer has the property of idempotency due to the in-
troduce of weights).

Theorem 6 (commutativity). Let (α1, α2, . . . , αn) (where
αi � ([s⌊ai⌋, s⌊bi⌋], [s⌊ci⌋, s⌊di⌋]), i � 1, 2, 3, . . . , n) be a col-
lection of n LIVIFNs. If (β1, β2, . . . , βn) is any permutation of
(α1, α2, . . . , αn), then LIVIFAWPMMQ (α1, α2, . . . ,

αn) � LIVIFAWPMMQ (β1, β2, . . . , βn).

Theorem 7 (boundedness). Let (α1, α2, . . . , αn) (where
αi � ([s⌊ai⌋, s⌊bi⌋], [s⌊ci⌋, s⌊di⌋]), i � 1, 2, 3, . . . , n) be a col-
lection of n LIVIFNs, α− � ([s⌊min(ai)⌋, s⌊min(bi)⌋],

[s⌊max(ci)ci⌋, s⌊max(di)⌋]), and α+ � ([s⌊max(ai)⌋,
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s⌊max(bi)⌋], [s⌊min(ci)ci⌋, s⌊min(di)⌋]). 3en α− ≤
LIVIFAWPMMQ(α1, α2, . . . , αn)≤ α+.

-e proofs of these theorems are, respectively, similar to
the proofs of -eorems 3 (see Appendix C) and 4 (see
Appendix D) and are omitted here.

Equation (40) is a generalised form of the LIVI-
FAWPMM operator. If specific functions are assigned to f

and g, then specific operators can be constructed. For ex-
ample, if the additive generators of Algebraic T-norm and T-
conorm [60, 69] are, respectively, assigned to f and g, i.e.,
f(t) � − In(t/h) and g(t) � − In(1 − t/h), then a linguistic
interval-valued intuitionistic fuzzy weighted power MM
(LIVIFWPMM) operator is constructed:

LIVIFWPMMQ α1, α2, . . . , αn( 􏼁

�

s

h 1− 􏽑p∈Pn
1− 􏽑

n

i�1 1− 1− ap(i)/h( 􏼁( 􏼁
n wp(i)ξp(i)( )( )/􏽐

n

t�1
wtξt( )

􏼒 􏼓
Qi

􏼠 􏼡􏼠 􏼡

(1/n!)

􏼠 􏼡

1/Σn
i�1Qi

⎛⎝ ⎞⎠

s

h 1− 􏽑p∈Pn
1− 􏽑

n

i�1 1− 1− bp(i)/h( 􏼁( 􏼁
n wp(i)ξp(i)( )( )/􏽐

n

t�1
wtξt( )
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.

(42)

-is operator has the following special cases:

(1) If Q1 � Q> 0 and Q2 � Q3 � · · · � Qn � 0, then the
LIVIFWPMM operator will reduce to
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n
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

s
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n
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s
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n
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n

t�1
wtξt( )􏼒 􏼓
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⎛⎝ ⎞⎠⎛⎝ ⎞⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� LIVIFWPGAA(Q) α1, α2, . . . , αn( 􏼁,

(43)

which is a linguistic interval-valued intuitionistic fuzzy
weighted power GAA (LIVIFWPGAA) operator.
When Q� 1, it will become
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n

t�1
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1/n
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h 1− 􏽑
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1/n
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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n

i�1 ci/h( )
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n

t�1
wtξt( )􏼒 􏼓
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􏼠 􏼡

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� LIVIFWPAA α1, α2, . . . , αn( 􏼁,

(44)

which is a linguistic interval-valued intuitionistic
fuzzy weighted power AA (LIVIFWPAA) operator.

(2) If Q1, Q2 > 0 and Q3 � Q4 � · · · � Qn � 0, then the
LIVIFWPMM operator will reduce to
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⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠
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⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

1/ Q1+Q2( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

s

h 1− 􏽑
n

i,j�1
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t�1
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1/ Q1+Q2( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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⎛⎜⎜⎜⎜⎜⎜⎜⎝
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⎞⎟⎟⎟⎟⎟⎟⎟⎠

1/ Q1+Q2( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

s

h 1− 1− 􏽑
n

i,j�1
j≠i

1− 1− di/h( )
n wiξi( )/􏽐

n

t�1
wtξt( )􏼒 􏼓
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1/n(n− 1)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
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� LIVIFWPBM Q1,Q2( ) α1, α2, . . . , αn( 􏼁,

(45)

which is a linguistic interval-valued intuitionistic
fuzzy weighted power BM (LIVIFWPBM) operator.

(3) If Q1 � Q2 � · · · � Qk � 1 and Qk+1 � Qk+2 �

· · · � Qn � 0, then the LIVIFWPMM operator will
reduce to
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� LIVIFWPMSM(k) α1, α2, . . . , αn( 􏼁,

(46)

which is a linguistic interval-valued intuitionistic
fuzzy weighted power MSM (LIVIFWPMSM)
operator.

(4) If Q1 � Q2 � · · · � Qn � Q> 0, then the
LIVIFWPMM operator will reduce to

s

h 1− 1− 􏽑
n

i�1 1− 1− ai/h( )
n wiξi( )( )/􏽐

n

t�1
wtξt( )􏼒 􏼓

Q

􏼠 􏼡􏼠 􏼡

1/n

􏼠 􏼡

1/Q

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

s

h 1− 1− 􏽑
n

i�1 1− 1− bi/h( )
n wiξi( )( )/􏽐

n

t�1
wtξt( )􏼒 􏼓

Q

􏼠 􏼡􏼠 􏼡

1/n

􏼠 􏼡

1/Q

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

s

h 1− 􏽑
n

i�1 1− 1− ci/h( )( )
n wiξi( )( )/􏽐

n

t�1
wtξt( )􏼒 􏼓

Q

􏼠 􏼡

1/n

􏼠 􏼡

1/Q

⎛⎝ ⎞⎠

s

h 1− 􏽑
n

i�1 1− 1− di/h( )( )
n wiξi( )( )/􏽐

n

t�1
wtξt( )􏼒 􏼓

Q

􏼠 􏼡

1/n

􏼠 􏼡

1/Q

⎛⎝ ⎞⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� LIVIFWPGGA(Q) α1, α2, . . . , αn( 􏼁,

(47)

which is a linguistic interval-valued intuitionistic fuzzy
weighted power GGA (LIVIFWPGGA) operator.
When Q� 1, it will become

s

h 􏽑
n

i�1 ai/h( )
n wiξi( )( )/􏽐

n

t�1
wtξt( )􏼒 􏼓

1/n

􏼠 􏼡

, s

h 􏽑
n

i�1 bi/h( )
n wiξi( )( )/􏽐

n

t�1
wtξt( )􏼒 􏼓

1/n

􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s

h 1− 􏽑
n

i�1 1− 1− ci/h( )( )
n wiξi( )( )/􏽐

n

t�1
wtξt( )􏼒 􏼓􏼒 􏼓

1/n

􏼠 􏼡􏼠 􏼡

, s

h 1− 􏽑
n

i�1 1− 1− di/h( )( )
n wiξi( )( )/􏽐

n

t�1
wtξt( )􏼒 􏼓􏼒 􏼓

1/n

􏼠 􏼡􏼠 􏼡

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� LIVIFWPGA α1, α2, . . . , αn( 􏼁,

(48)
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which is a linguistic interval-valued intuitionistic fuzzy
weighted power GA (LIVIFWPGA) operator.

Similarly, if the additive generators of other (e.g., Ein-
stein, Hamacher, and Frank) ATNTCs [60, 69] are, re-
spectively, assigned to f and g, then other specific operators
can be constructed according to equation (40).

4. MAGDM Method

In this section, an MAGDM method based on the LIVI-
FAWPMM operator is designed to resolve the MAGDM
problems based on LIVIFNs.

In general, a MAGDM problem based on LIVIFNs can
be formalised by a set of options O � O1, O2, . . . , Om􏼈 􏼉, a set
of attributes A � A1, A2, . . . , An􏼈 􏼉, a vector of weights of
attributes w � [w1, w2, . . . , wn] such that 0≤w1, w2,

. . . , wn ≤ 1 and w1 + w2 + . . . + wn � 1, a set of experts
E � E1, E2, . . . , EnL􏼈 􏼉, a vector of weights of experts
- � [-1, -2, . . . , -n] such that 0≤-1, -2, . . . , -n ≤ 1 and
-1 + -2 + . . . + -n � 1, and L linguistic interval-valued
intuitionistic fuzzy decision matrices Mh � [αh,i,j]m×n (h �

1, 2, . . . , L; i � 1, 2, . . . , m; j � 1, 2, . . . , n) such that
([s⌊ah,i,j⌋, s⌊bh,i,j⌋], [s⌊ch,i,j⌋, s⌊dh,i,j⌋]) is a LIVIFN that

denotes the evaluation value of Aj with respect to Oi pro-
vided by Eh. Based on these components, the MAGDM
problem can be formalised as determining the optimal
option according to a ranking of all options inO based onA,
Mh, w, and ˆ. Using the LIVIFAWPMM operator, the
problem is solved according to the following steps:

(1) Normalise the linguistic interval-valued intuitionistic
fuzzy decision matrices Mh. To balance the physical
dimensions of the rating values in Mh, they are
normalised as

Nh �

sah,i,j
, sbh,i,j

􏼔 􏼕, sch,i,j
, sdh,i,j

􏼔 􏼕􏼒 􏼓􏼔 􏼕
m×n

, C1,

sch,i,j
, sdh,i,j

􏼔 􏼕, sah,i,j
, sbh,i,j

􏼔 􏼕􏼒 􏼓􏼔 􏼕
m×n

, C2,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(49)

where C1 denotes “if Cj is a benefit attribute” and C2
denotes “if Cj is a cost attribute.”

(2) Compute the power weights of αh,i,j -e power
weights of αh,i,j are calculated using

Wh,i,j �
-hξh( 􏼁

􏽐
L
z�1 -zξz( 􏼁

�
-h 1 + 􏽐

L
x�1,x≠h 1 − D αh,i,j, αx,i,j􏼐 􏼑􏼐 􏼑􏼐 􏼑

􏽐
L
z�1 -z 1 + 􏽐

L
y�1,y≠z 1 − D αz,i,j, αy,i,j􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑

, (50)

where D(αh,i,j, αx,i,j)(D(αz,i,j, αy,i,j)) is the distance
of αh,i,j and αx,i,j(αz,i,j and αy,i,j) that can be calcu-
lated via equation (3).

(3) Compute the collective values of αh,i,j. Taking the
matrices Nh and the set ˆ as input, the collective
values of αh,i,j are calculated using

αi,j � sai,j
, sbi,j

􏼔 􏼕, sci,j
, sdi,j

􏼔 􏼕􏼒 􏼓 � LIVIFAWPMMQ

· α1,i,j, α2,i,j, . . . , αL,i,j􏼐 􏼑,

(51)

where LIVIFAWPMM is an arbitrary specific LIVI-
FAWPMM operator (for example, it can be the
LIVIFWPMMoperator in equation (42)), and the values
of Q � (Q1, Q2, . . . , QL) are assigned as Q1 > 0 and
Q1 � Q3 � · · · � QL � 0 since the rating values of dif-
ferent experts should generally be mutually independent.

(4) Compute the power weights of αi,j. -e power
weights of αi,j are calculated using

Wi,j �
wjξj􏼐 􏼑

􏽐
n
t�1 wtξt( 􏼁

�
wj 1 + 􏽐

n
r�1,r≠j 1 − D αi,j, αi,r􏼐 􏼑􏼐 􏼑􏼐 􏼑

􏽐
n
t�1 wt 1 + 􏽐

n
s�1,s≠t 1 − D αi,t, αi,s􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑

, (52)

where D(αi,j, αi,r)(D(αi,t, αi,s)) is the distance of αi,j

and αi,r (αi,t and αi,s) that can be calculated via
equation (3).

(5) Calculate the collective values of αi,j. -e collective
values of αi,j are computed using

αi � sai
, sbi

􏽨 􏽩, sci
, sdi

􏽨 􏽩􏼐 􏼑 � LIVIFAWPMMQ

· αi,1, αi,2, . . . , αi,n􏼐 􏼑,
(53)

where LIVIFAWPMM is the same specific operator
used in equation (51), and the values of
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Q � (Q1, Q2, . . . , Qn) are determined by identifying
the interrelationships of the n attributes in A. If n
attributes are mutually independent, then Q1 > 0 and
Q2 � Q2 � · · · � Qn � 0. If there are interrelation-
ships between any two attributes, then Q1, Q2 > 0 and
Q3 � Q4 � · · · � Qn � 0. If there are interrelation-
ships among any k(k � 3, 4, . . . , n),
Q1, Q2, . . . , Qk > 0 and Qk+1 � Qk+2 � · · · � Qn � 0.

(6) Compute the scores and accuracies of αi. -e scores
and accuracies of αi are calculated using equations
(1) and (2), respectively.

(7) Generate a ranking of Oi. According to the scores
and accuracies of αi and the comparison rules in
Definition 4, a ranking of Oi is generated.

(8) Determine the optimal option. -e optimal option is
determined according to the ranking.

5. Example, Experiments, and Comparisons

In this section, a practical example is firstly used to illustrate
the designed MAGDM method. -en a set of test experi-
ments are carried out to validate the method and explore the
effects of different values of Q on the aggregation and
ranking results. Finally, qualitative and quantitative com-
parisons between the presented AO and the existing AOs are
reported to show the characteristics and advantages of the
presented AO.

5.1. Example. -ree-dimensional (3D) printing refers to
a series of emerging manufacturing technologies that
build 3D physical objects from 3D model data, in which
materials are stacked layer by layer through a specific
process like sintering, melting, jetting, and lamination. A
well-known characteristic of 3D printing technologies
compared with traditional manufacturing technologies is
that they can be used to fabricate 3D objects with
complicated geometric structures and heterogeneous
materials without additional cost. Due to such charac-
teristic, the study and application of 3D printing tech-
nologies have received extensive attention from the
academia and industry. Some even believed that 3D
printing technologies would trigger a new round of
manufacturing revolution.

-e existing 3D printing technologies can be divided
into vat photopolymerisation, material jetting, binder
jetting, powder bed fusion, material extrusion, directed
energy deposition, and sheet lamination. Based on these
technologies, over one thousand different industrial 3D
printers have been developed and identified in the market

so far. A controversy regarding which printer is better than
the others is meaningless, as each printer has its own
features and application range. However, research on the
selection of a suitable printer from a specific number of
alternative printers for printing a specific component is
nontrivial. -is is because such selection needs a com-
prehensive understanding of the features of all alternative
printers and a dynamic interaction with the quality of the
built component, while most users lack such knowledge
and experience. In addition, different printers could have
similarities or overlaps at features, which brings certain
difficulties to the selection objectively.

To offer an effective tool for selection of 3D printers,
many different kinds of methods have been presented, where
methods based on multiattribute decision-making (MADM)
are one of the most important kinds. -is kind of methods
determine appropriate printers by synthetically assessing the
values of multiple interrelated attributes of all alternative
printers, which are usually achieved from experiments or
simulations or provided by domain experts. It is generally
difficult to ensure the absolute objectivity of these ways. -is
means that there could be some attributes values having
“noise.” To achieve reasonable selection result in this case, it
is of necessity to capture the interrelationships of the at-
tributes and concurrently reduce the influence of the at-
tributes values having “noise.” But there is yet no evidence
that any of the existing MADM-based methods for 3D
printer selection have such capabilities. -e proposed
MAGDM method can meet this requirement when the
values of attributes of all alternative printers are quantified
by LIVIFNs. -e following is an illustrative example about
the application of the proposed method in the 3D printer
selection.

In this example, a user needs to select a proper printer
from four alternative printers, denoted as P1, P2, P3, and
P4, to print a component using a specific material. -e user
invited three experienced domain experts, denoted as E1,
E2, and E3, to evaluate the four alternative printers based
on four attributes, which are the surface roughness (A1),
strength (A2), elongation (A3), and hardness (A4) of the
built component. -e relative importance of the three
experts is quantified by ˆ � [0.4, 0.3, 0.3]. -e relative
importance of the four attributes is measured by w � [0.1,
0.3, 0.3, 0.3]. In the evaluation, the three experts were
asked to use LIVIFNs. -e available linguistic variables are
extremely small (s0), very small (s1), small (s2), slightly
small (s3), medium (s4), slightly large (s5), large (s6), very
large (s7), and extremely large (s8). -e evaluation results
of the three experts are, respectively, listed in the following
three matrices:
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M1 �

s2, s4􏼂 􏼃, s3 , s4􏼂 􏼃( 􏼁 s6, s6􏼂 􏼃, s1, s2􏼂 􏼃( 􏼁 s5, s6􏼂 􏼃, s1, s1􏼂 􏼃( 􏼁 s6, s6􏼂 􏼃 , s1, s1􏼂 􏼃( 􏼁

s3, s5􏼂 􏼃, s2, s3􏼂 􏼃( 􏼁 s5, s6􏼂 􏼃, s1, s2􏼂 􏼃( 􏼁 s4, s5􏼂 􏼃, s1, s1􏼂 􏼃( 􏼁 s4, s6􏼂 􏼃, s1, s2􏼂 􏼃( 􏼁

s1, s1􏼂 􏼃, s6, s7􏼂 􏼃( 􏼁 s6, s6􏼂 􏼃, s1, s2􏼂 􏼃( 􏼁 s3, s4􏼂 􏼃, s3, s3􏼂 􏼃( 􏼁 s5, s6􏼂 􏼃, s1, s2􏼂 􏼃( 􏼁

s1, s1􏼂 􏼃, s7, s7􏼂 􏼃( 􏼁 s3, s4􏼂 􏼃, s2, s3􏼂 􏼃( 􏼁 s3, s5􏼂 􏼃, s2, s3􏼂 􏼃( 􏼁 s2, s3􏼂 􏼃, s3, s4􏼂 􏼃( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

M2 �

s3, s4􏼂 􏼃, s3, s4􏼂 􏼃( 􏼁 s5, s6􏼂 􏼃, s1, s2􏼂 􏼃( 􏼁 s6, s6􏼂 􏼃, s1, s2􏼂 􏼃( 􏼁 s5, s6􏼂 􏼃, s1, s2􏼂 􏼃( 􏼁

s3, s5􏼂 􏼃, s1, s3􏼂 􏼃( 􏼁 s6, s6􏼂 􏼃, s1, s1􏼂 􏼃( 􏼁 s5, s6􏼂 􏼃, s1, s2􏼂 􏼃( 􏼁 s3, s5􏼂 􏼃, s1, s2􏼂 􏼃( 􏼁

s1, s2􏼂 􏼃, s6, s6􏼂 􏼃( 􏼁 s5, s6􏼂 􏼃, s1, s1􏼂 􏼃( 􏼁 s3, s5􏼂 􏼃, s3, s3􏼂 􏼃( 􏼁 s5, s6􏼂 􏼃, s1, s2􏼂 􏼃( 􏼁

s1, s2􏼂 􏼃, s6, s6􏼂 􏼃( 􏼁 s3, s3􏼂 􏼃, s3, s3􏼂 􏼃( 􏼁 s3, s4􏼂 􏼃, s2, s3􏼂 􏼃( 􏼁 s3, s4􏼂 􏼃, s3, s4􏼂 􏼃( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

M3 �

s3, s3􏼂 􏼃, s3, s4􏼂 􏼃( 􏼁 s6, s6􏼂 􏼃, s2, s2􏼂 􏼃( 􏼁 s5, s6􏼂 􏼃, s1, s1􏼂 􏼃( 􏼁 s6, s7􏼂 􏼃, s1, s1􏼂 􏼃( 􏼁

s3, s4􏼂 􏼃, s2, s3􏼂 􏼃( 􏼁 s6, s7􏼂 􏼃, s1, s1􏼂 􏼃( 􏼁 s5, s5􏼂 􏼃, s1, s3􏼂 􏼃( 􏼁 s5, s5􏼂 􏼃, s1, s2􏼂 􏼃( 􏼁

s2, s3􏼂 􏼃, s5, s5􏼂 􏼃( 􏼁 s4, s5􏼂 􏼃, s1, s2􏼂 􏼃( 􏼁 s3, s4􏼂 􏼃, s3, s4􏼂 􏼃( 􏼁 s4, s5􏼂 􏼃, s2, s2􏼂 􏼃( 􏼁

s1, s1􏼂 􏼃, s6, s7􏼂 􏼃( 􏼁 s3, s4􏼂 􏼃, s2, s3􏼂 􏼃( 􏼁 s3, s5􏼂 􏼃, s1, s2􏼂 􏼃( 􏼁 s4, s5􏼂 􏼃, s3, s3􏼂 􏼃( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(54)

According to the conditions above, the determination
can be carried out leveraging the designed MAGDM
method. Its process includes the following steps:

(1) Normalise the fuzzy decision matrices Mh (h� 1, 2,
3). Since surface roughness is cost attribute and

strength, elongation, and hardness are benefit at-
tributes, the fuzzy decision matricesM1,M2, andM3
are, respectively, normalised as follows:

N1 �

s3, s4􏼂 􏼃, s2, s4􏼂 􏼃( 􏼁 s6, s6􏼂 􏼃, s1, s2􏼂 􏼃( 􏼁 s5, s6􏼂 􏼃, s1, s1􏼂 􏼃( 􏼁 s6, s6􏼂 􏼃, s1, s1􏼂 􏼃( 􏼁

s2, s3􏼂 􏼃, s3, s5􏼂 􏼃( 􏼁 s5, s6􏼂 􏼃, s1, s2􏼂 􏼃( 􏼁 s4, s5􏼂 􏼃, s1, s1􏼂 􏼃( 􏼁 s4, s6􏼂 􏼃, s1, s2􏼂 􏼃( 􏼁

s6, s7􏼂 􏼃, s1, s1􏼂 􏼃( 􏼁 s6, s6􏼂 􏼃, s1, s2􏼂 􏼃( 􏼁 s3, s4􏼂 􏼃, s3, s3􏼂 􏼃( 􏼁 s5, s6􏼂 􏼃, s1, s2􏼂 􏼃( 􏼁

s7, s7􏼂 􏼃, s1, s1􏼂 􏼃( 􏼁 s3, s4􏼂 􏼃, s2, s3􏼂 􏼃( 􏼁 s3, s5􏼂 􏼃, s2, s3􏼂 􏼃( 􏼁 s2, s3􏼂 􏼃, s3, s4􏼂 􏼃( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

N2 �

s3, s4􏼂 􏼃, s3, s4􏼂 􏼃( 􏼁 s5, s6􏼂 􏼃, s1, s2􏼂 􏼃( 􏼁 s6, s6􏼂 􏼃, s1, s2􏼂 􏼃( 􏼁 s5, s6􏼂 􏼃, s1, s2􏼂 􏼃( 􏼁

s1, s3􏼂 􏼃, s3, s5􏼂 􏼃( 􏼁 s6, s6􏼂 􏼃, s1, s1􏼂 􏼃( 􏼁 s5, s6􏼂 􏼃, s1, s2􏼂 􏼃( 􏼁 s3, s5􏼂 􏼃, s1, s2􏼂 􏼃( 􏼁

s6, s6􏼂 􏼃, s1, s2􏼂 􏼃( 􏼁 s5, s6􏼂 􏼃, s1, s1􏼂 􏼃( 􏼁 s3, s5􏼂 􏼃, s3, s3􏼂 􏼃( 􏼁 s5, s6􏼂 􏼃, s1, s2􏼂 􏼃( 􏼁

s6, s6􏼂 􏼃, s1, s2􏼂 􏼃( 􏼁 s3, s3􏼂 􏼃, s3, s3􏼂 􏼃( 􏼁 s3, s4􏼂 􏼃, s2, s3􏼂 􏼃( 􏼁 s3, s4􏼂 􏼃, s3, s4􏼂 􏼃( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

N3 �

s3, s4􏼂 􏼃, s3, s3􏼂 􏼃( 􏼁 s6, s6􏼂 􏼃, s2, s2􏼂 􏼃( 􏼁 s5, s6􏼂 􏼃, s1, s1􏼂 􏼃( 􏼁 s6, s7􏼂 􏼃, s1, s1􏼂 􏼃( 􏼁

s2, s3􏼂 􏼃, s3, s4􏼂 􏼃( 􏼁 s6, s7􏼂 􏼃, s1, s1􏼂 􏼃( 􏼁 s5, s5􏼂 􏼃, s1, s3􏼂 􏼃( 􏼁 s5, s5􏼂 􏼃, s1, s2􏼂 􏼃( 􏼁

s5, s5􏼂 􏼃, s2, s3􏼂 􏼃( 􏼁 s4, s5􏼂 􏼃, s1, s2􏼂 􏼃( 􏼁 s3, s4􏼂 􏼃, s3, s4􏼂 􏼃( 􏼁 s4, s5􏼂 􏼃, s2, s2􏼂 􏼃( 􏼁

s6, s7􏼂 􏼃, s1, s1􏼂 􏼃( 􏼁 s3, s4􏼂 􏼃, s2, s3􏼂 􏼃( 􏼁 s3, s5􏼂 􏼃, s1, s2􏼂 􏼃( 􏼁 s4, s5􏼂 􏼃, s3, s3􏼂 􏼃( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(55)

(2) Compute the power weights of αh,i,j(i �

1, 2, 3, 4; j � 1, 2, 3, 4). According to equation (50),
the power weights of αh,i,j are calculated and listed in
the following matrices:
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W1,i,j􏽨 􏽩4×4 �

0.3987 0.4026 0.4026 0.4039
0.4026 0.3961 0.3974 0.4000
0.4000 0.4013 0.4026 0.4039
0.4000 0.4026 0.4039 0.3987

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

W2,i,j􏽨 􏽩4×4 �

0.3023 0.2987 0.2955 0.2964
0.2987 0.3036 0.3013 0.3000
0.3068 0.3010 0.2987 0.3029
0.2967 0.2955 0.2997 0.3057

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

W3,i,j􏽨 􏽩4×4 �

0.2990 0.2987 0.3019 0.2997
0.2987 0.3003 0.3013 0.3000
0.2932 0.2977 0.2987 0.2932
0.3033 0.3019 0.2964 0.2956

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(56)

(3) Compute the collective values of αh,i,j. TakingNh and
ˆ as input, the collective values of αh,i,j can be
calculated using equation (51). Here, the
LIVIFWPMM operator in equation (42) (when
adapting the operator, Q� (1, 0, 0)) is used in the
calculation. -e calculated results are listed in the
following matrix:

αi,j􏽨 􏽩4×4 �

s3.0000, s4.0000􏼂 􏼃, s2.5522 , s3.6703􏼂 􏼃( 􏼁 s5.7425, s6.0000􏼂 􏼃, s1.2300, s2.0000􏼂 􏼃( 􏼁 s5.3387, s6.0000􏼂 􏼃, s1.0000, s1.2273􏼂 􏼃( 􏼁 s5.7446, s6.3751􏼂 􏼃, s1.0000, s1.2281􏼂 􏼃( 􏼁

s1.7173, s3.0000􏼂 􏼃, s3.0000, s4.6776􏼂 􏼃( 􏼁 s5.6516, s6.3759􏼂 􏼃, s1.0000, s1.3159􏼂 􏼃( 􏼁 s4.6367, s5.3450􏼂 􏼃, s1.0000, s1.7158􏼂 􏼃( 􏼁 s4.0767, s5.4492􏼂 􏼃, s1.0000, s2.0000􏼂 􏼃( 􏼁

s5.7475, s6.2930􏼂 􏼃, s1.2253, s1.7070􏼂 􏼃( 􏼁 s5.2226, s5.7434􏼂 􏼃, s1.0000, s1.6234􏼂 􏼃( 􏼁 s3.0000, s4.3294􏼂 􏼃, s3.0000, s3.2692􏼂 􏼃( 􏼁 s4.7360, s5.7476􏼂 􏼃, s1.2253, s2.0000􏼂 􏼃( 􏼁

s6.4843, s6.7716􏼂 􏼃, s1.0000, s1.2284􏼂 􏼃( 􏼁 s3.0000, s3.7274􏼂 􏼃, s2.2546, s3.0000􏼂 􏼃( 􏼁 s3.0000, s4.7299􏼂 􏼃, s1.6285, s2.6603􏼂 􏼃( 􏼁 s2.9663, s3.9843􏼂 􏼃, s3.0000, s3.6739􏼂 􏼃( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(57)

(4) Compute the power weights of αi,j. According to
equation (52), the power weights of αi,j are calculated
and listed in the following matrix:

Wi,j􏽨 􏽩4×4 �

0.0888 0.3044 0.3044 0.3024

0.0861 0.2962 0.3089 0.3089

0.1017 0.3091 0.2784 0.3108

0.0888 0.3054 0.3068 0.2990

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (58)

(5) Calculate the collective values of αi,j. -e collective
values of αi,j can be computed according to equation
(53). Since the LIVIFWPMM operator in equation
(42) has been leveraged in the third step, this op-
erator (when adapting the operator, Q� (1, 2, 3, 4),
i.e., there are interrelationships among the four at-
tributes) is also used in this step to complete the
calculation. -e calculated results are listed as
follows:

α1 � S4.6635, S5.2066􏼂 􏼃, S1.9801, S2.4910􏼂 􏼃( 􏼁,

α2 � S3.8050, S4.7172􏼂 􏼃, S2.0661, S2.8436􏼂 􏼃( 􏼁,

α3 � S4.3660, S5.2202􏼂 􏼃, S1.9944, S2.4892􏼂 􏼃( 􏼁,

α4 � S3.4932, S4.4878􏼂 􏼃, S2.3124, S2.9583􏼂 􏼃( 􏼁.

(59)

(6) Compute the scores and accuracies of αi. According
to equations (1) and (2), the scores and accuracies of
αi are calculated and, respectively, listed as follows:

S α1( 􏼁 � S5.3498,

S α2( 􏼁 � S4.9031,

S α3( 􏼁 � S5.2757,

S α4( 􏼁 � S4.6776,

A α1( 􏼁 � S7.1706,

A α2( 􏼁 � S6.7160,

A α3( 􏼁 � S7.0349,

A α3( 􏼁 � S6.6258.

(60)

(7) Generate a ranking of Pi. According to the scores and
accuracies of αi and the comparison rules in Defi-
nition 4, a ranking of Pi is generated as
P1 ≻P3 ≻P2 ≻P4.

(8) Determine the best printer. According to the
ranking, the best 3D printer is determined as printer
P1.

5.2. Experiments

5.2.1. Validation Experiments. To demonstrate the effec-
tiveness of an MADM method, Wang and Triantaphyllou
[70] presented the following three test criteria:

(1) Criterion 1: “An effective MADMmethod should not
change the place of the best option in the generated
ranking when a nonoptimal option is replaced by
a new worse option under the condition that the
weight of each attribute remains unchanged”
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(2) Criterion 2: “-e rankings of options generated by an
effective MADM method should be transitive”

(3) Criterion 3: “If a MADM problem is decomposed
into several sub MADM problems and the same
MADM method is used in the problem and its sub
problems, then a collective ranking of all subMADM
problems should be the same as the ranking of the
undecomposed MADM problem.”

According to these three criteria, thirteen test experi-
ments using the practical example were designed and carried
out.-e options included in each of the thirteen experiments
are listed in Table 1. In Experiments 1, 2, and 3, the non-
optimal options P2, P3, and P4 are, respectively, replaced by
the new worse options P2′ , P3′ , andP4′ , whose evaluation
results are listed in Table 2. Using the designed method, the
rankings of Experiments 1, 2, and 3 can be generated and are
shown in Table 1. From the generated rankings, it can be
seen that the best options in them remain unchanged. -us,
the designed method can meet Criterion 1.

-e remaining ten test experiments (i.e., Experiments
4− 13) aim to solve all sub MAGDM problems of the
MAGDM problem in the practical example. Using the
designed method, the rankings of these experiments can be
generated and are also shown in Table 1. From the rankings
of Experiments 2, 4, 7, and 10, Experiments 4, 6, 8, and 11,
Experiments 5, 6, 9, and 12, and Experiments 7, 8, 9, and 13,
it can be seen that transitivity is satisfied. -erefore, the
designed method can meet Criterion 2. In addition, if the
rankings of Experiments 4− 9 or Experiments 10− 13 are
combined, then the same collective ranking
P1 ≻P3 ≻P2 ≻P4 will be obtained, which is exactly the
ranking of the undecomposed MAGDM problem. From this
point of view, the designed method can also meet Criterion
3.

In summary, the designed method is effective for re-
solving the practical MAGDM problems since it can meet all
of the three test criteria.

5.2.2. Exploration Experiment. To show the influence of
different values of Q on the aggregation and ranking results,
a test experiment using the practical example was designed
and carried out. In this experiment, Q was respectively
assigned (1, 0, 0, 0), (2, 0, 0, 0), (3, 0, 0, 0), (4, 0, 0, 0), (1, 1, 0,
0), (1, 2, 0, 0), (1, 3, 0, 0), (1, 4, 0, 0), (1, 1, 1, 0), (1, 2, 3, 0), (1, 1,
1, 1), (2, 2, 2, 2), (3, 3, 3, 3), (4, 4, 4, 4), and (1, 2, 3, 4) when
calculating the collective values of αi,j in Step (5) in the
example. Based on these different values of Q, the
LIVIFWPMM operator will reduce to different operators,
which are, respectively, listed in Table 3. -e results of the
experiment are the computed scores of αi and the generated
ranking of Pi under each Q, which are also listed in Table 3.
As can be seen from the table, the rankings of the four 3D
printers generated by the proposed method may have dif-
ference, in the situations where (1) all of the four attributes
are independent of each other, (2) there are interrelation-
ships between any two attributes, (3) there are in-
terrelationships among any three attributes, and (4) there are

interrelationships among the four attributes. -is indicates
that the presented LIVIFWPMM operator has the capability
and generality to capture the interrelationships of attributes.
In practical application of the operator, Q is recommended
to take (1, 0, 0, 0), (1, 2, 0, 0), (1, 2, 3, 0), and (1, 2, 3, 4) under
the four situations, respectively.

5.3. Comparisons. As mentioned in the introduction, rep-
resentative AOs of LIVIFNs are the WA, OWA, HA, WG,
OWG, and HG operators presented by Garg and Kumar
[54, 55], the PWA, POWA, PWG, and POWG operators
presented by Kumar and Garg [56], and the WMSM op-
erator presented by Liu and Qin [57]. In this subsection,
qualitative and quantitative comparisons between these AOs
and the presented AO of LIVIFNs are carried out to evaluate
the presented AO:

(1) Qualitative Comparison. -is comparison was car-
ried out via comparing the characteristics of the AOs.
For the twelve AOs above, the generality and flexi-
bility in aggregating the values of attributes, the
generality in capturing the interrelationships of at-
tributes, and the capability to reduce the effect of
biased attribute values are selected as the comparison
characteristics. -e results of the comparison, as
shown in Table 4, are explained as follows.

(a) Generality and Flexibility in Aggregating the
Values of Attributes. Among the twelve AOs, the
WA, OWA, HA,WG, OWG, HG, PWA, POWA,
PWG, POWG, and WMSM operators perform
the aggregation using the Algebraic T-norm and
T-conorm, their generality and flexibility are
relatively limited. Such characteristics of the
presented Archimedean weighted power Muir-
head mean (AWPMM) operator are satisfying
since the aggregation in it can be performed by
any types of ATNTCs (e.g., Algebraic, Einstein,
Hamacher, and Frank T-norms and T-conorms).

(b) Generality in Capturing the Relationships of
Attributes.-eWA, OWA,HA,WG, OWG,HG,
WMSM, and AWPMMoperators are suitable for
the case where all aggregated attributes are in-
dependent of each other. In addition, the
WMSM and AWPMM operators can also be
applicable in the situations where there are in-
terrelationships between any two attributes and
where there are relationships among any mul-
tiple attributes, because they, respectively, use
the all-in-one MM and MSM operators for
capturing interrelationships. It should be noted
that MM is more generalised than MSM since
MSM is just a special case of MM. From this
point of view, the AWPMM operator is more
generalised than the WMSM operator. -e
PWA, POWA, PWG, and POWG operators are
specifically presented for dealing with the situ-
ation where the attributes are in different priority

18 Complexity



levels. -ey are totally different from other AOs
from the perspective of application range.

(c) Capability to Reduce the Effect of Biased Attribute
Values. Among the twelve AOs, only the
AWPMM operator has this capability due to the
combination of the PA operator.

(2) Quantitative Comparison. -is comparison was
carried out using the practical examples in the
present paper and in [55, 57] as benchmarks. In the

comparison, the WA and WG operators were se-
lected as the AOs for the method of Garg and Kumar
[55]. -e PWA and PWG operators were chosen as
the AOs for the method of Kumar and Garg [56].-e
given weights in the three examples were directly
used as the priority weights of the PWA and PWG
operators to make the input of all comparison op-
erators the same (it should be pointed out that the
PWA and PWG operators will, respectively, reduce

Table 1: -e details and results of the validation experiments.

Experiment Included options Generated ranking
Experiment 1 P1, P2′, P3, P4 P1≻P3≻P4≻ P2′
Experiment 2 P1, P2, P3′, P4 P1≻P2≻P3′ ≻P4
Experiment 3 P1, P2, P3, P4′ P1≻P3≻P2≻ P4′
Experiment 4 P1, P2 P1≻P2
Experiment 5 P1, P3 P1≻P3
Experiment 6 P1, P4 P1≻P4
Experiment 7 P2, P3 P3≻P2
Experiment 8 P2, P4 P2≻P4
Experiment 9 P3, P4 P3≻P4
Experiment 10 P1, P2, P3 P1≻P3≻P2
Experiment 11 P1, P2, P4 P1≻P2≻P4
Experiment 12 P1, P3, P4 P1≻P3≻P4
Experiment 13 P2, P3, P4 P3≻P2≻P4

Table 2: -e evaluation results of the new worse options.

Option Attribute A1 Attribute A2 Attribute A3 Attribute A4

P2′ in M1 ([s3, s5], [s1, s2]) ([s4, s5], [s1, s2]) ([s3, s4], [s1, s1]) ([s3, s5], [s1, s2])
P2′ in M2 ([s3, s5], [s1, s3]) ([s5, s5], [s1, s1]) ([s4, s5], [s1, s2]) ([s2, s4], [s1, s2])
P2′ in M3 ([s3, s4], [s1, s2]) ([s5, s6], [s1, s1]) ([s4, s4], [s1, s3]) ([s4, s4], [s1, s2])
P3′ in M1 ([s1, s1], [s5, s6]) ([s5, s5], [s1, s2]) ([s2, s3], [s3, s3]) ([s4, s5], [s1, s2])
P3′ in M2 ([s5, s5], [s1, s2]) ([s4, s5], [s1, s1]) ([s2, s4], [s3, s3]) ([s4, s5], [s1, s2])
P3′ in M3 ([s4, s4], [s2, s3]) ([s3, s4], [s1, s2]) ([s2, s3], [s3, s4]) ([s3, s4], [s2, s2])
P4′ in M1 ([s1, s1], [s6, s6]) ([s2, s3], [s2, s3]) ([s2, s4], [s2, s3]) ([s1, s2], [s3, s4])
P4′ in M2 ([s1, s2], [s5, s5]) ([s2, s2], [s3, s3]) ([s2, s3], [s2, s3]) ([s2, s3], [s3, s4])
P4′ in M3 ([s1, s1], [s5, s6]) ([s2, s3], [s2, s3]) ([s2, s4], [s1, s2]) ([s3, s4], [s3, s3])

Table 3: -e details and results of the exploration experiment.

Value of Q Actual operator Interrelationships
-e computed scores of all

printers -e generated ranking
S (α1) S (α2) S (α3) S (α4)

(1, 0, 0, 0) LIVIFWPAA (equation (44)) Independent of each other 6.1822 5.8369 5.6327 4.7823 P1 ≻P2 ≻P3 ≻P4
(2, 0, 0, 0) LIVIFWPGAA (equation (43)) Independent of each other 6.3032 5.9960 5.7047 4.8070 P1 ≻P2 ≻P3 ≻P4
(3, 0, 0, 0) LIVIFWPGAA (equation (43)) Independent of each other 6.3892 6.1016 5.7753 4.8327 P1 ≻P2 ≻P3 ≻P4
(4, 0, 0, 0) LIVIFWPGAA (equation (43)) Independent of each other 6.4509 6.1753 5.8420 4.8588 P1 ≻P2 ≻P3 ≻P4
(1, 1, 0, 0) LIVIFWPBM (equation (45)) Between any 2 attributes 5.7939 5.4072 5.3790 4.7050 P1 ≻P2 ≻P3 ≻P4
(1, 2, 0, 0) LIVIFWPBM (equation (45)) Between any 2 attributes 5.9428 5.5941 5.4509 4.7281 P1 ≻P2 ≻P3 ≻P4
(1, 3, 0, 0) LIVIFWPBM (equation (45)) Between any 2 attributes 6.0762 5.7504 5.5429 4.7589 P1 ≻P2 ≻P3 ≻P4
(1, 4, 0, 0) LIVIFWPBM (equation (45)) Between any 2 attributes 6.1780 5.8670 5.6315 4.7902 P1 ≻P2 ≻P3 ≻P4
(1, 1, 1, 0) LIVIFWPMSM (equation (46)) Among any 3 attributes 5.4135 4.9825 5.2503 4.6695 P1 ≻P3 ≻P2 ≻P4
(1, 2, 3, 0) LIVIFWPMM (equation (42)) Among any 3 attributes 5.7674 5.4217 5.3606 4.7043 P1 ≻P2 ≻P3 ≻P4
(1, 1, 1, 1) LIVIFWPGA (equation (48)) Among the 4 attributes 4.8961 4.3272 5.1750 4.6449 P3 ≻P1 ≻P4 ≻P2
(2, 2, 2, 2) LIVIFWPGGA (equation (47)) Among the 4 attributes 4.8961 4.3272 5.1750 4.6449 P3 ≻P1 ≻P4 ≻P2
(3, 3, 3, 3) LIVIFWPGGA (equation (47)) Among the 4 attributes 4.8961 4.3272 5.1750 4.6449 P3 ≻P1 ≻P4 ≻P2
(4, 4, 4, 4) LIVIFWPGGA (equation (47)) Among the 4 attributes 4.8961 4.3272 5.1750 4.6449 P3 ≻P1 ≻P4 ≻P2
(1, 2, 3, 4) LIVIFWPMM (equation (42)) Among the 4 attributes 5.3498 4.9031 5.2757 4.6776 P1 ≻P3 ≻P2 ≻P4
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to the WA and WG operators in this case). -e
method of Liu and Qin [57] and the proposed
method respectively used the WMSM operator and
the weighted power MM (WPMM) operator (see
equation (42)). Moreover, the same score function
(i.e., the function in equation (1)) was used in all of
these operators for easy comparison. -e details and
results of the comparison are listed in Table 5.

As can be seen from Table 5, the best option of the
designed method is exactly the same as the best option of the
method of Liu and Qin for all examples. -is is mainly
because the two methods are the most similar in nature (see
Table 4). From this result, it can be observed that the
designedmethod is feasible and effective for solving practical

decision-making problems based on LIVIFNs. In addition,
the rankings of the methods of Garg and Kumar and Kumar
and Garg are different from that of the method of Liu and
Qin and the designed method at the first and second places
for the example in [57]. -e reason is that the in-
terrelationships in the former methods are set as “all at-
tributes are independent of each other” and those in the
latter two methods are set as “there are interrelationships
among any three attributes.”

From the qualitative comparison above, the advantage of
combination of the PA and MM operators is providing
generality in capturing the interrelationships of attributes
and capability to reduce the effect of biased attribute values.
Such advantage cannot be intuitively seen from the com-
parison results in Table 5. To explicitly show the advantage,

Table 4: -e results of the qualitative comparison.

AOs presented in
the method

Generality and flexibility
in aggregation

Generality in capturing interrelationships of attributes
Capability to reduce

the effectIndependent of
each other

Between
any two

Among any
multiple

In different
priority levels

WA [55] Limited Yes No No No No
OWA [55] Limited Yes No No No No
HA [55] Limited Yes No No No No
WG [55] Limited Yes No No No No
OWG [55] Limited Yes No No No No
HG [55] Limited Yes No No No No
PWA [56] Limited No No No Yes No
POWA [56] Limited No No No Yes No
PWG [56] Limited No No No Yes No
POWG [56] Limited No No No Yes No
WMSM [57] Limited Yes Yes Yes No No
AWPMM Satisfying Yes Yes Yes No Yes

Table 5: -e details and results of the quantitative comparison.

Benchmark Decision-making
method Used AOs Value of

arguments

-e calculated scores of all
options -e generated

ranking
S (α1) S (α2) S (α3) S (α4)

Example in this
paper

Garg and Kumar [55] WA, WA — 6.1654 5.8171 5.5985 4.8181 O1 ≻O2 ≻O3 ≻O4
Garg and Kumar [55] WG, WG — 5.9921 5.5132 5.3441 4.5370 O1 ≻O2 ≻O3 ≻O4
Kumar and Garg [56] PWA, PWA — 6.1654 5.8171 5.5985 4.8181 O1 ≻O2 ≻O3 ≻O4
Kumar and Garg [56] PWG, PWG — 5.9921 5.5132 5.3441 4.5370 O1 ≻O2 ≻O3 ≻O4

Liu and Qin [57] WMSM,
WMSM k� 1, k� 3 5.4523 5.0127 5.2577 4.7343 O1 ≻O3 ≻O2 ≻O4

-e designed method WPMM,
WPMM

Q� (1, 0, 0),
Q� (1, 2, 3, 0) 5.7674 5.4217 5.3606 4.7043 O1 ≻O2 ≻O3 ≻O4

Example in [55]

Garg and Kumar [55] WA, WA — 5.3457 4.6145 5.1125 4.9687 O1 ≻O3 ≻O4 ≻O2
Garg and Kumar [55] WG, WG — 5.1069 4.3577 4.9218 4.5868 O1 ≻O3 ≻O4 ≻O2
Kumar and Garg [56] PWA, PWA — 5.3457 4.6145 5.1125 4.9687 O1 ≻O3 ≻O4 ≻O2
Kumar and Garg [56] PWG, PWG — 5.1069 4.3577 4.9218 4.5868 O1 ≻O3 ≻O4 ≻O2

Liu and Qin [57] WMSM,
WMSM k� 1, k� 3 5.1768 4.2902 4.7499 4.6151 O1 ≻O3 ≻O4 ≻O2

-e designed method WPMM,
WPMM

Q� (1, 0, 0),
Q� (1, 2, 3, 0) 5.2054 4.3988 4.8582 4.6997 O1 ≻O3 ≻O4 ≻O2

Example in [57]

Garg and Kumar [55] WA — 6.2621 6.2709 5.6111 5.5823 O2 ≻O1 ≻O3 ≻O4
Garg and Kumar [55] WG — 6.1407 6.1620 5.3326 5.2541 O2 ≻O1 ≻O3 ≻O4
Kumar and Garg [56] PWA, PWA — 6.2621 6.2709 5.6111 5.5823 O2 ≻O1 ≻O3 ≻O4
Kumar and Garg [56] PWG, PWG — 6.1407 6.1620 5.3326 5.2541 O2 ≻O1 ≻O3 ≻O4
Liu and Qin [57] WMSM k� 3 6.1034 6.0611 5.5196 5.1819 O1 ≻O2 ≻O3 ≻O4

-e designed method WPMM Q� (1, 2, 3, 0, 0) 6.1584 6.1157 5.5637 5.3056 O1 ≻O2 ≻O3 ≻O4
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two additional quantitative comparison experiments were
carried out. -e first experiment aims to show the generality
in capturing attribute relationships. In this experiment, the
practical examples in the present paper and in [55, 57] were
used to compare the proposed method and the methods of
Garg and Kumar, Kumar and Garg, and Liu and Qin. Given
the following are five assumptions: (a) all attributes are
independent of each other; (b) there are interrelationships
between any two attributes; (c) there are interrelationships
among any three attributes; (d) there are interrelationships
among any four attributes; (e) there are interrelationships
among any five attributes (only for the example in [57]). -e
applicability of the four comparison methods and the results
of the experiment are shown in Table 6. It can be intuitively
seen from the table that the methods of Garg and Kumar and
Kumar and Garg are applicable only under assumption a,
while both the method of Liu and Qin and the designed
method can be applied to generate ranking results under all
assumptions. -is indicates that both of the latter two
methods have the generality in capturing the in-
terrelationships of attributes.

-e second experiment aims to show the capability to
reduce the influence of extreme attribute values. In this
experiment, the practical example in the present paper is
used to compare the proposed method and the method of
Liu and Qin, which have difference only in whether com-
bining the PA operator when Q� (1, 0, 0, 0) and k� 1 and
Q� (1, 1, 1, 0) and k� 3 for the example. It is assumed that
the value of attribute A2 of printer P1 evaluated by expert E1
(i.e., α1,1,2) is a biased attribute value. -is value was con-
stantly adjusted from high to low, as listed in the first column
of Table 7. -e change of the relative importance (i.e.,
weight) of α1,1,2 with respect to the adjusted value is also

shown in Table 7. As can be intuitively seen from the table,
the weight of α1,1,2 becomes smaller and smaller as the value
of α1,1,2 changes from high to low in the proposed method,
while it remains the same in this process in the method of
Liu and Qin. -e greater the change of the value of α1,1,2, the
greater the bias. -e relative importance of the value should
be dynamically decreased to reduce the effect of this extreme
value. From the comparison results, only the proposed
method has such capability. -at is, the method can reduce
the effect of biased attribute values.

On the basis of the comparisons above, the advantages of
the designed method over the methods of Garg and Kumar,
Kumar and Garg, and Liu and Qin are summarised as
follows:

(1) Compared to the methods of Garg and Kumar and
Kumar and Garg, the designed method is generalised
and flexible for aggregation of attribute values and
handling of attribute relationships and concurrently
has the capability to reduce the influence of the
distortion of attribute values.

(2) Compared to the method of Liu and Qin, the
designed method has desirable generality and flex-
ibility in aggregation of attribute values and can
reduce the influence of the biased attribute values on
aggregation result.

6. Conclusion

In this paper, a LIVIFAPMM operator and a LIVI-
FAWPMM operator have been presented to solve the
MAGDM problems based on LIVIFNs. -e generalised
expressions of the two operators have been established.-eir

Table 6: -e details and results of the first additional quantitative comparison experiment.

Benchmark Decision-making
method

Generated ranking
under

assumption (a)

Generated ranking
under

assumption (b)

Generated ranking
under

assumption (c)

Generated ranking
under

assumption (d)

Generated ranking
under

assumption (e)

Example in
this paper

Garg and
Kumar [55] O1 ≻O2 ≻O3 ≻O4 Cannot be applied Cannot be applied Cannot be applied —

Kumar and
Garg [56] O1 ≻O2 ≻O3 ≻O4 Cannot be applied Cannot be applied Cannot be applied —

Liu and Qin [57] O1 ≻O2 ≻O3 ≻O4 O1 ≻O2 ≻O3 ≻O4 O1 ≻O3 ≻O2 ≻O4 O3 ≻O1 ≻O4 ≻O2 —
-e designed

method O1 ≻O2 ≻O3 ≻O4 O1 ≻O2 ≻O3 ≻O4 O1 ≻O2 ≻O3 ≻O4 O1 ≻O3 ≻O2 ≻O4 —

Example in
[55]

Garg and
Kumar [55] O1 ≻O3 ≻O4 ≻O2 Cannot be applied Cannot be applied Cannot be applied —

Kumar and
Garg [56] O1 ≻O3 ≻O4 ≻O2 Cannot be applied Cannot be applied Cannot be applied —

Liu and Qin [57] O1 ≻O4 ≻O3 ≻O2 O1 ≻O3 ≻O4 ≻O2 O1 ≻O3 ≻O4 ≻O2 O1 ≻O3 ≻O4 ≻O2 —
-e designed

method O1 ≻O4 ≻O3 ≻O2 O1 ≻O3 ≻O4 ≻O2 O1 ≻O3 ≻O4 ≻O2 O1 ≻O3 ≻O4 ≻O2 —

Example in
[57]

Garg and
Kumar [55] O2 ≻O1 ≻O3 ≻O4 Cannot be applied Cannot be applied Cannot be applied Cannot be applied

Kumar and
Garg [56] O2 ≻O1 ≻O3 ≻O4 Cannot be applied Cannot be applied Cannot be applied Cannot be applied

Liu and Qin [57] O2 ≻O1 ≻O3 ≻O4 O1 ≻O2 ≻O3 ≻O4 O1 ≻O2 ≻O3 ≻O4 O1 ≻O2 ≻O3 ≻O4 O1 ≻O2 ≻O3 ≻O4
-e designed

method O2 ≻O1 ≻O3 ≻O4 O1 ≻O2 ≻O3 ≻O4 O1 ≻O2 ≻O3 ≻O4 O1 ≻O2 ≻O3 ≻O4 O1 ≻O2 ≻O3 ≻O4
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properties have been explored and proved and specific ex-
pressions have been constructed using the operational rules
of LIVIFNs based on the Algebraic T-norm and T-conorm.
On the basis of the presented LIVIFAWPMM operator,
a method for resolving the LIVIFN-based MAGDM prob-
lems has been proposed. -e paper has also introduced
a practical example to illustrate the proposed method and
reported a set of experiments and comparisons to evaluate it.
-e results of the experiments and comparisons suggest that
the method is feasible and effective which has advantages in
providing the generality and flexibility in aggregation of
attribute values and capturing of attribute interrelationships
and the capability to reduce the effect of the deviation of
attribute values. Two main limitations of the proposed
method are that the method has not captured the risk at-
titudes of decision makers and it cannot work properly

under incomplete attribute information. Future work will
focus especially on addressing these limitations. In addition,
the application of the method in real MAGDM problems
may also be studied.

Appendix

A. Proof of Theorem 1

Proof. To prove LIVIFAPMMQ(α1, α2, . . . , αn) � ([sa, sb],

[sc, sd]), we need to prove equation (28)� ([sa, sb], [sc, sd]).
-e proof process is as follows.

According to the operational rule in equation (6), we
have

nξp(i)􏼐 􏼑αp(i) � s
g− 1 nξp(i)( 􏼁g ap(i)( 􏼁( 􏼁( 􏼁

, s
g− 1 nξp(i)( 􏼁g bp(i)( 􏼁( 􏼁( 􏼁􏼔 􏼕, s

f− 1 nξp(i)( 􏼁f cp(i)( 􏼁( 􏼁( 􏼁
, s

f− 1 nξp(i)( 􏼁f dp(i)( 􏼁( 􏼁( 􏼁􏼔 􏼕􏼒 􏼓. (A.1)

According to the operational rule in equation (7), we can
obtain

nξp(i)􏼐 􏼑αp(i)􏼐 􏼑
Qi

� s
f− 1 Qif g− 1 nξp(i)( 􏼁g ap(i)( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁

, s
f− 1 Qif g− 1 nξp(i)( 􏼁g bp(i)( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁􏼔 􏼕,􏼒

s
g− 1 Qig f− 1 nξp(i)( 􏼁f cp(i)( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁

, s
g− 1 Qig f− 1 nξp(i)( 􏼁f dp(i)( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁􏼕􏼔 􏼓.

(A.2)

According to the operational rule in equation (5), we
have

⊗
n

i�1
nξp(i)􏼐 􏼑αp(i)􏼐 􏼑

δi

� s
f− 1 􏽐

n

i�1 Qif g− 1 nξp(i)( 􏼁g ap(i)( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁
, s

f− 1 􏽐
n

i�1 Qif g− 1 nξp(i)( 􏼁g bp(i)( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁􏼔 􏼕,􏼒

s
g− 1 􏽐

n

i�1 Qig f− 1 nξp(i)( 􏼁f cp(i)( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁
, s

g− 1 􏽐
n

i�1 Qig f− 1 nξp(i)( 􏼁f dp(i)( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁􏼕􏼔 􏼓.

(A.3)

According to operational rule in equation (4), we can
obtain

⊕
p∈Pn

⊗
n

i�1
nξp(i)􏼐 􏼑αp(i)􏼐 􏼑

δi
�

s
g− 1 􏽐p∈Pn

g f− 1 􏽐
n

i�1 Qif g− 1 nξp(i)( 􏼁g ap(i)( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑

s
g− 1 􏽐p∈Pn

g f− 1 􏽐
n

i�1 Qif g− 1 nξp(i)( 􏼁g bp(i)( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦,
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f− 1 􏽐p∈Pn

f g− 1 􏽐
n
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⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠. (A.4)
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According to operational rule in equation (6), we have

1
n!
⊕

p∈Pn
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n

i�1
nξp(i)􏼐 􏼑αp(i)􏼐 􏼑

δi
�
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(A.5)

-e following equation is obtained according to the
operational rule in equation (7):
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(A.6)

-is completes the proof of the theorem. □

B. Proof of Theorem 2

Proof:. Since αi � α � ([s⌊aα⌋, s⌊bα⌋], [s⌊cα⌋, s⌊dα⌋]) for all
i� 1, 2, . . ., n, we have D(αi, αj)� 0 for all j� 1, 2, . . ., n and
j≠ i. According to equation (27), we further have

nξp(i) �
n 􏽐p∈Pn

􏽐
n
i�1 1 + T αp(i)􏼐 􏼑􏼐 􏼑􏼐 􏼑

􏽐
n
j�1 1 + T αj􏼐 􏼑􏼐 􏼑

�
n(1 +(n − 1))

(n(1 +(n − 1)))
� 1.

(B.1)

According to -eorem 1, we can obtain
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Since s⌊ai⌋ � s⌊aα⌋, we have
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We further have
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n
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,

s
g− 1 (1/n!)􏽐p∈Pn

g f− 1 􏽐
n

i�1 Qif ap(i)( 􏼁( 􏼁( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑
� s

f− 1 􏽐
n

i�1Qi( 􏼁f aα( )( 􏼁( 􏼁
.

(B.4)
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-en, we can obtain

sa � s
1/􏽐

n

i�1Qi( 􏼁f g− 1 (1/n!)􏽐p∈Pn
g f− 1 􏽐

n

i�1 Qif ap(i)( 􏼁( 􏼁( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑􏼐 􏼑
� s f aα( )( ),

s
f− 1 1/􏽐

n

i�1Qi( 􏼁f g− 1 (1/n!)􏽐p∈Pn
g f− 1 􏽐

n

i�1 Qif ap(i)( 􏼁( 􏼁( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑
� saα

.
(B.5)

-at is s⌊α⌋ � s⌊aα⌋. Similarly, we can prove
s⌊b⌋ � s⌊bα⌋, s⌊c⌋ � s⌊cα⌋, and s⌊d⌋ � s⌊dα⌋. -us, we have
LIVIFAPMMQ(α1, α2, . . . , αn) � ([s⌊aα⌋, s⌊bα⌋], [s⌊cα⌋,

s⌊dα⌋]), which completes the proof of the theorem. □

C. Proof of Theorem 3

Proof:. Since (β1, β2, . . . , βn) is any permutation of
(α1, α2, . . . , αn), we have

1
n!
⊕

p∈Pn

⊗ n
i�1

n 1 + T βp(i)􏼐 􏼑􏼐 􏼑

􏽐
n
j�1 1 + T βj􏼐 􏼑􏼐 􏼑

βp(i)
⎛⎝ ⎞⎠

Qi

⎛⎝ ⎞⎠

1/Σni�1Qi

�
1
n!
⊕

p∈Pn

⊗
n

i�1

n 1 + T αp(i)􏼐 􏼑􏼐 􏼑

􏽐
n
j�1 1 + T αj􏼐 􏼑􏼐 􏼑

αp(i)
⎛⎝ ⎞⎠

Qi

⎛⎝ ⎞⎠

1/Σn
i�1Qi

.

(C.1)

-us, we can obtain LIVIFAPMMQ(β1, β2, . . . , βn) �

LIVIFAPMMQ(α1, α2, . . . , αn), which completes the proof
of the theorem. □

D. Proof of Theorem 4

Proof:. According to -eorem 2, we have
LIVIFAPMMQ(α− , α− , . . . , α− ) � α− , LIVIFAPMMQ(α+,

α+, . . . , α+) � α+, and nξp(i) � 1 for both
LIVIFAPMMQ(α− , α− , . . . , α− ) and LIVIFAPMMQ

(α+, α+, . . . , α+). Because s⌊aα− ⌋≤ s⌊ap(i)⌋≤ s⌊aα+ ⌋ and g(x)

is monotonically increasing, we can obtain

s g aα−( )( )≤ s
nξp(i)( 􏼁g ap(i)( 􏼁( 􏼁

≤ s g aα+( )( ). (D.1)

Because g− 1(t) is monotonically increasing, we have

s aα−( )≤ s
g− 1 nξp(i)( 􏼁g ap(i)( 􏼁( 􏼁( 􏼁

≤ s aα+( ). (D.2)

Since f(x) is monotonically decreasing, we can obtain

s
􏽐

n

i�1Qi( 􏼁f aα−( )( 􏼁
≥ s

􏽐
n

i�1 Qif g− 1 nξp(i)( 􏼁g ap(i)( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁
≥ s

􏽐
n

i�1Qi( 􏼁f aα+( )( 􏼁
. (D.3)

Because f− 1(t) is monotonically decreasing, we have

s
f− 1 􏽐

n

i�1Qi( 􏼁f aα−( )( 􏼁( 􏼁
≤ s

f− 1 􏽐
n

i�1 Qif g− 1 nξp(i)( 􏼁g ap(i)( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁
≤ s

f− 1 􏽐
n

i�1Qi( 􏼁f aα+( )( 􏼁( 􏼁
. (D.4)

Since g(x) is monotonically increasing, we can obtain

s
g f− 1 􏽐

n

i�1Qi( 􏼁f aα−( )( 􏼁( 􏼁( 􏼁
≤ s

(1/n!)􏽐p∈Pn
g f− 1 􏽐

n

i�1 Qif g− 1 nξp(i)( 􏼁g ap(i)( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁􏼐 􏼑
≤ s

g f− 1 􏽐
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. (D.5)

Because g− 1(t) is monotonically increasing, we have

s
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Since f(x) is monotonically decreasing, we can obtain

s f aα−( )( )≥ s
1/􏽐

n

i�1Qi( 􏼁f g− 1 (1/n!)􏽐p∈Pn
g f− 1 􏽐

n
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≥ s f aα+( )( ). (D.7)
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Because f− 1(t) is monotonically decreasing, we have

s aα−( )≤ s
f− 1 1/􏽐

n

i�1Qi( 􏼁f g− 1 (1/n!)􏽐p∈Pn
g f− 1 􏽐

n

i�1 Qif g− 1 nξp(i)( 􏼁g ap(i)( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑
≤ s aα+( ). (D.8)

-at is s⌊aα− ⌋≤ sa ≤ s⌊aα+1⌋. Similarly, we can prove
s⌊bα− ⌋≤ sb ≤ s⌊bα+1⌋, s⌊cα− ⌋≥ sc ≥ s⌊cα+1⌋, and s⌊dα− ⌋≥
sd ≥ s⌊dα+1⌋. According to Definitions 2 and 4, we can
obtain LIVIFAPMMQ(α− , α− , . . . , α− )≤ LIVIFAPMMQ

(α1, α2, . . . , αn)≤ LIVIFAPMMQ(α+, α+, . . . , α+), and thus
α− ≤ LIVIFAPMMQ(α1, α2, . . . , αn)≤ α+. -is completes the
proof of the theorem. □
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