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In this paper, the bifurcation control of a fractional-order mosaic virus infection model for Jatropha curcas with farming
awareness and an execution delay is investigated. By analyzing the associated characteristic equation, Hopf bifurcation induced by
the execution delay is studied for the uncontrolled system.(en, a time-delayed controller is introduced to control the occurrence
of Hopf bifurcation. Our study implies that bifurcation dynamics is significantly affected by the change of the fractional order, the
feedback gain and the extended feedback delay provided that the other parameters are fixed. A series of numerical simulations is
performed, which not only verifies our theoretical results but also reveals some specific features. Numerically, we find that the
Hopf bifurcation gradually occurs in advance with the increase of the fractional order, and there exist extreme points for the
feedback gain and the extended feedback delay which can minimize the bifurcation value.

1. Introduction

Jatropha curcas is a plant that is commonly seen in tropical
and subtropical areas. It can grow well in marginal and poor
soil, grows fast, and lives relatively long. Meanwhile, it
produces seeds with an oil content of about 27% to 40%.(e
oil burns with clear smoke-free flame and can be used to
produce biodiesel fuel [1]. (erefore, as one of the most
suitable alternative renewable energy resources, it is widely
planted in many countries [2, 3]. However, many studies
showed that Jatropha plants are hosts of mosaic virus which
is a main cause of the occurrence of viruses in Jatropha
curcas [4, 5]. Early reports about virus infections of Jatropha
plants indicated that the occurrence of Cassava mosaic virus
in India causes a high disease incidence from 25 to 47%.(is
constitutes a major obstacle to the large scale planting of
Jatropha [6]. When the Jatropha plant is infected with
mosaic virus, its fruit will be attacked and the yield and the
quality of oil may be severely affected.

Awareness of the disease is really necessary for farmers who
plant Jatropha curcas because they can take action to prevent or
mitigate the problem in time. Effective knowledge can provide
proper control measures when the virus infection outbreaks. It

is advisable to educate the Jatropha curcas growers with ag-
ricultural information about agronomic practices and plant
protection measures [7]. Common platforms for mass media
such as newspapers, magazines, radio, television, and the In-
ternet are main ways to propagandize correct and relevant
information about this crop and its disease. (ere are also new
technologies adopted in agricultural awareness programs [8, 9].
(ese are very important for the grower who is engaged in the
crop production. For example, Yang et al. exploited the levels of
knowledge and awareness of the side effects of insecticides to
the environment and human health in regions with different
farming modes and found that farmers can improve their
agronomic practice to reduce environmental hazard and
protect human health after properly raising awareness [10]. Le
Bellec et al. studied the collaboration mechanism of growers,
researchers, and other factors which can alleviate the problem
we face in crop management [11]. Basir et al. proposed a
mathematical model to investigate the impact of awareness
programs on the protection of the Jatropha curcas plant against
possible epidemic spread of the mosaic disease [3].

Generally speaking, when Jatropha curcas growers re-
alize the harm of virus infection, they need to take some time
before they can take appropriate measures to prevent or
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reduce the occurrence of this disease. So, it is more plausible
to consider an execution time delay when building such kind
of virus infection model. Basir et al. analyzed how execution
time delay in accepting the awareness campaign can affect
the ultimate dynamics of the mosaic disease [2], while the
authors in [3] investigated the Hopf bifurcation phenom-
enon of an epidemic model with awareness programs due to
the execution time delay. Basir et al. [12] proposed a
mathematical model and analyzed the effect of awareness
programs on the control of pest in agricultural practice.
However, these studies are all aimed at integer-ordermodels.
In this work, we further analyze the stability and Hopf bi-
furcation of a fractional-order virus infection model with
execution delay of awareness programs.

In recent decades, fractional calculus theory has been
widely applied in biology, optical and thermal system,
materials science, electromagnetic field theory, mechanical
mechanics, and so on [13, 14]. It has been found that
fractional calculus can accurately describe the rules and
development process of some phenomena in natural science.
Furthermore, it is found that fractional-order differential
system has the advantages of simple modeling, clear pa-
rameter meaning, and accurate description for some ma-
terials and processes with memory and genetic
characteristics [15–17]. Hence, fractional calculus has be-
come a new mathematical tool favored by researchers, and
more and more study of practical problems introduces the
theory of fractional calculus and remarkable achievements
have been made [18–30].

For a given nonlinear system, a controller aiming at
modifying the bifurcation behavior is usually designed, so as
to achieve some desirable dynamical behaviors, which is
often called bifurcation control [31, 32]. According to the
different objectives of bifurcation control, different control
strategies are formulated, such as PD control, time-delayed
feedback control, and hybrid control. For example, Xiao
et al. [22] adopted a PD control method to control Hopf
bifurcations in delayed fractional-order small-world net-
works, while Lu et al. [32] analysed the stability and bi-
furcation of a fractional-order single-gene regulatory model
under a PD control law. Xu et al. [28] applied two time-
delayed feedback controllers to regulate a fractional-order
chaotic Genesio-Tesi model, andHuang et al. [33] designed a
hybrid controller for the first time to control the Hopf bi-
furcation of a network model.

As an effective control scheme, time-delayed feedback
control was proposed by constructing a control force using
the difference between the current state and its delay value,
i.e., x(t) − x(t − δ), and once the system reaches a stable
state, the control force vanishes [34]. (e main advantage of
this scheme is that it is noninvasive and it does not require a
reference system because the control is generated from the
information of the system itself. Besides, this scheme can be
easily implemented in the actual system. Hence, in recent
years, the bifurcation controls of many dynamic systems in
many fields are studied by introducing time-delayed feed-
back controllers.

In this paper, delayed fractional mosaic disease models
for Jatropha curcas with farming awareness are proposed.

We will study the stability and bifurcation of the system and
discuss the bifurcation control by introducing a time-
delayed feedback controller.

(is paper is organized as follows. In Section 2, some
basic materials regarding fractional calculus are presented.
(e delayed fractional mosaic disease models with and
without control are proposed in Section 3. In Section 4,
detailed analysis of bifurcation phenomena for the two
systems is carried out. Series of numerical simulations are
carried out in Section 5, which not only confirm the the-
oretical results we have obtained but also are complementary
to those results with specific features. (e paper ends with a
brief conclusion.

2. Preliminaries

In this section, we will briefly introduce some notations and
definitions about fractional calculus theory, which will be
useful in the following discussion. (ere are several kinds of
definitions of fractional derivatives proposed in previous
research, such as Riemann–Liouville fractional derivative,
Grünwald–Letnikov fractional derivative, Caputo fractional
derivative, Weyl fractional derivative, and Marchaud frac-
tional derivative [35]. It is important to note that Caputo
fractional derivative has the advantage of requiring the
initial conditions to be easily derived from the controlled
system, which make it easier to apply to practical problems
[32]. (erefore, in this paper, we only study Caputo frac-
tional derivative.

Definition 1 (see [36]). (e Caputo fractional-order deriv-
ative with fractional order α for a continuous function
p(t): R+⟶ Rn is defined by

CD
α
t0 ,tp(t) �

1
Γ(m − α)

􏽚
t

t0

(t − τ)
m− α− 1

p
(m)

(τ) dτ, (1)

where 0≤m − 1≤ α<m, m ∈ Z+ and Γ(·) is the Gamma
function. (e constant α is the value of the fractional order.

Especially, when 0< α≤ 1,
CDα

t0 ,tp(t) � (1/Γ(m − α)) 􏽒
t

t0
(t − τ)αp′(τ) dτ.

Remark 1. Our work is based on the Caputo derivative, and
for convenience, in this work, we denote the Caputo frac-
tional-order derivative operator CDα

t0 ,tp(t) by Dαp(t) and
suppose that α ∈ [0, 1].

Definition 2 (see [37]). Consider the following n-dimension
fractional-order system:

D
α
x(t) � f(x(t)), (2)

where x(t) � (x1(t), x2(t), . . . , xn(t)) and f(t) � (f1(x

(t)), f2(x(t)), . . . , fn(x(t))). (e equilibrium point x∗ �

(x∗1 , x∗2 , . . . , x∗n ) is defined by the algebraic equation
fi(x1, x2, . . . , xn) � 0, i � 1, 2, . . . , n.

(e stability of the solution of the above n-dimension
system is defined in a lot of literature studies. For more
details, readers can refer to [38].
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3. Model Formulation

(e authors in [2] studied an integral order model of virus
infection for Jatropha curcas with farming awareness. An
execution delay is incorporated, which measures from the
moment that the relevant information is available to the
moment that farmers take action with these knowledge.(ey
mainly explored the impact of the time delay on the dy-
namical behaviors.

Motivated by the work in [2], in this paper, we consider
the virus infection model with fractional-order and the
execution delay; then, we propose the following delayed
fractional-order virus infectious model:

DαPS(t) � rPS(t) 1 −
PS(t) + PI(t)

K
􏼠 􏼡 − aPS(t)V(t),

DαPI(t) � aPS(t)V(t) − mPI(t) − nM(t − τ)PI(t),

DαV(t) � bPI(t) − cV(t) − dM(t − τ)V(t),

DαM(t) � c + βPI(t) − ηM(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

with PS(0)≥ 0, PI(0)≥ 0, V(0)≥ 0, M(0)≥ 0, and 0< α≤ 1.
(e interpretations of the variables and parameters are

listed in Table 1.

To control the bifurcation caused by the execution delay,
we introduce a time-delayed feedback controller as follows:

k PS(t) − PS(t − δ)􏼂 􏼃. (4)

(en, we gain the following controlled system:

DαPS(t) � rPS(t) 1 −
PS(t) + PI(t)

K
􏼠 􏼡 − aPS(t)V(t) + k PS(t) − PS(t − δ)􏼂 􏼃,

DαPI(t) � aPS(t)V(t) − mPI(t) − nM(t − τ)PI(t),

DαV(t) � bPI(t) − cV(t) − dM(t − τ)V(t),

DαM(t) � c + βPI(t) − ηM(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

Remark 2. k< 0 is the negative feedback gain and δ > 0
stands for the delay of feedback control. In the field of
ecological control, with the aim of enhancing the stability
performance, the farmers may harvest or transplant some
plants on the basis of past data (PS(t − δ)).

We will study the existence of Hopf bifurcation and
explore the impact of time delay, the fractional order, the
feedback gain, and the feedback delay on the occurrence of
the bifurcation.

4. Main Results

In this section, we firstly study the stability of the coexistence
equilibrium and the Hopf bifurcation caused by the time
delay for the uncontrolled system (3). (en, the impact of
the fractional order and the feedback control on the

occurrence of the bifurcation is investigated for the con-
trolled system (5).

(e system (3) has three equilibria: the plant-vector-free
equilibrium E1 � (0, 0, 0, (c/η)), the disease-free equilib-
rium E2 � (K, 0, 0, (c/η)), and the coexistence equilibrium
E∗ � (P∗S , P∗I , V∗, M∗). By direct calculation, we can easily
obtain

P
∗
S �

m + nM∗( ) c + dM∗( )

ab
,

P
∗
I �

ηM∗ − c

β
,

V
∗

�
bP∗I

c + dM∗
,

(6)

and M∗ is the positive root of the following equation:

Table 1: Descriptions of parameters in (3).

Parameter Description
PS(t) (e healthy plant biomass at time t

PI(t) (e infected plant biomass at time t

V(t) (e number of infected vectors at time t

M(t) (e density of aware people at time t

r (e intrinsic growth rate of healthy plants
K (e carrying capacity of healthy plants

a
(e contact rate between healthy plants and infected

vectors
m (e disease-induced death rate of infected plants
n (e harvesting rate of infected plants by aware people
b (e appearance rate of infected vector
c (e death rate of infected vectors
d (e removal rate of vectors by aware
c (e rate of global awareness
β (e recruitment rate of aware people
η (e fading rate of awareness
τ (e execution delay
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f(x) � a1x
3

+ a2x
2

+ a3x + a4 � 0, (7)

where

a1 � βrnd
2 > 0,

a2 � r d(a dη + 2cβn + β dm)> 0,

a3 � βr 2c dm + c
2
n − kab d􏼐 􏼑 + ab[r(cη − dc) + Kaη],

a4rβc(mc − Kab) − abc(rc + Ka).

(8)

Obviously, if a4 < 0, the above cubic polynomial equation
has a unique positive root which is denoted by x � M∗.
(en, we give the following result.

Proposition 1. Assume that

H1( 􏼁: a4 < 0 and ηM
∗ > c. (9)

Then, system (3) has a unique coexistence equilibrium
E∗ � (P∗S , P∗I , V∗, M∗).

For convenience, let

m1 � m + nM
∗
,

m2 � c + dM
∗
,

m3 � m1 + m2,

m4 � m + nM
∗

+ aV
∗
,

m5 � m + nM
∗

+
r

K
P
∗
S ,

m6 � m1m2,

(10)

and these denotations will be used in the following
discussion.

4.1. Bifurcation Analysis of the Uncontrolled System (3).
In this section, by choosing the execution delay τ as a bi-
furcation parameter, we analyse the existence of Hopf bi-
furcation and the critical value of the time delay at which a
Hopf bifurcation occurs is obtained.

By linearizing (3) at E∗, we get the following Jacobian
matrix:

J E
∗

( 􏼁 �

−
r

K
P
∗
S −

r

K
P
∗
S − aP∗S 0

aV∗ − m − nM∗ aP∗S − nP∗I e− sτ

0 b − c − dM∗ − dV∗e− sτ

0 β 0 − η

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(11)

(us, we have the following characteristic equation:

sα +
r

K
P
∗
S

r

K
P
∗
S aP∗S 0

− aV∗ sα + m + nM∗ − aP∗S nP∗I e− sτ

0 − b sα + c + dM∗ dV∗e− sτ

0 − β 0 sα + η

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 0.

(12)

(rough simplification, we can obtain

s
4α

+ A1s
3α

+ A2s
2α

+ A3s
α

+ A4 + A5s
2α

+ A6s
α

+ A7􏼐 􏼑e
− sτ

� 0,

(13)

where

A1 � η + m2 + m5,

A2 � m6 +
r

K
P
∗
S m2 + m4( 􏼁 − abP

∗
S + η m2 + m5( 􏼁,

A3 � m2m4
r

K
P
∗
S − abP

∗
S

r

K
P
∗
S − aV

∗
􏼒 􏼓

+ η m2m5 + m4
r

K
P
∗
S − abP

∗
S􏼒 􏼓,

A4 � η m2m4
r

K
P
∗
S − abP

∗
S

r

K
P
∗
S − aV

∗
􏼒 􏼓􏼔 􏼕,

A5 � βnP
∗
I ,

A6 � β nP
∗
I m2 +

r

K
P
∗
S􏼒 􏼓 + a dP

∗
S V
∗

􏼔 􏼕,

A7 � βP
∗
S m2n

r

K
P
∗
I + a dV

∗ r

K
P
∗
S − aV

∗
􏼒 􏼓􏼔 􏼕.

(14)

Suppose that τ � 0, then equation (13) becomes

s
4α

+ A1s
3α

+ A2 + A5( 􏼁s
2α

+ A3 + A6( 􏼁s
α

+ A4 + A7 � 0.

(15)

Assume that

H2( 􏼁: A4 + A7 > 0,

A1 A2 + A5( 􏼁 − A3 + A6( 􏼁> 0,

A1 A2 + A5( 􏼁 − A3 + A6( 􏼁􏼂 􏼃 A3 + A6( 􏼁 − A
2
1 A4 + A7( 􏼁> 0.

(16)

(en, by the Routh–Hurwitz criterion, we have the
following result.

Proposition 2. For τ � 0, if assumptions (H1) and (H2) are
satisfied, then the roots of (15) are real and negative.
2erefore, the coexistence equilibrium E∗ is locally asymp-
totically stable.

To study the phenomenon of Hopf bifurcation, we as-
sume that s � ωi(ω> 0) is a root of (13), then, we can have
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ω4α
(cos 2απ + i2 sin απ) + A1ω

3α cos
3απ
2

+ i sin
3απ
2

􏼒 􏼓 + A2ω
2α

(cos απ + i sin απ)

+ A3ω
α cos

απ
2

+ i sin
απ
2

􏼒 􏼓 + A4 + A5ω
2α

(cos απ + i sin απ)􏽨

+A6ω
α cos

απ
2

+ i sin
απ
2

􏼒 􏼓 + A7􏼕(cosωτ − i sinωτ) � 0.

(17)

Separating the real and imaginary parts, we obtain
C1 cosωτ + C2 sinωτ � − C3,

C2 cosωτ − C1 sinωτ � − C4,
􏼨 (18)

where

C1 � A5ω
2α cos απ + A6ω

α cos
απ
2

+ A7,

C2 � A5ω
2α sin απ + A6ω

α sin
απ
2

,

C3 � ω4α cos 2 απ + A1ω
3α cos

3απ
2

+ A2ω
2α cos απ

+ A3ω
α cos

απ
2

+ A4,

C4 � ω4α sin 2 απ + A1ω
3α sin

3απ
2

+ A2ω
2α sin απ

+ A3ω
α sin

απ
2

.

(19)

It follows from (18) that

sinωτ �
C1C4 − C2C3

C2
1 + C2

2
,

cosωτ � −
C1C3 + C2C4

C2
1 + C2

2
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(20)

Since sin2 ωτ + cos2 ωτ � 1, we can obtain

C
2
3 + C

2
4 � C

2
1 + C

2
2. (21)

By simple calculation, we deduce

λ8 + 2A1 cos
απ
2
λ7 + A

2
1 + 2A2 cos απ􏼐 􏼑λ6 + 2A3 cos

3απ
2

+ 2A1A2 cos
απ
2

􏼒 􏼓λ5

+ A
2
2 + 2A1A3 cos απ + 2A4 cos 2απ − A

2
5􏼐 􏼑λ4 + 2 A1A3 − A5A6( 􏼁cos

απ
2

􏼒

+2A1A4 cos
3απ
2

􏼓λ3 + A
2
3 + 2 A2A4 − A5A7( 􏼁cos απ − A

2
6􏼐 􏼑λ2

+ 2 A3A4 − A6A7( 􏼁cos
απ
2

􏼒 􏼓λ + A
2
4 − A

2
7 � 0,

(22)

where λ � ωα.
Assume that

H3( 􏼁: A
2
4 − A

2
7 < 0. (23)

(en, (18) has at least one positive real root ω0. Denote

τ(i)
�

1
ω0

arccos
C1C3 + C2C4

C2
1 + C2

2
+ 2iπ􏼢 􏼣, i � 0, 1, 2, . . . .

(24)

Define

τ0 � min τ(i)
􏽮 􏽯, i � 0, 1, 2, . . . . (25)

To derive conditions for the existence of Hopf bifur-
cation, we make the following hypothesis:

H4( 􏼁:
Φ1Ψ1 +Φ2Ψ2
Ψ21 + Ψ22

≠ 0, (26)

where Φ1,Φ2,Ψ1, andΨ2 are defined by equation (30).

Lemma 1. Let s(τ) � φ(τ) + iω(τ) be a root of the char-
acteristic equation (13) near τ � τ(i) meeting φ(τ(i)) �

0, ω(τ(i)) � ω0; then, the transversality condition

Re
ds

dτ
􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌 τ�τ0 ,ω�ω0( )
≠ 0, (27)

holds.

Proof. Differentiating both sides of (13) with respect to τ, we
obtain
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ds

dτ
�
Φ(s)

Ψ(s)
, (28)

where Φ(s) � (A5s
2α + A6s

α + A7)se− sτ and

Ψ(s) � 4αs
4α− 1

+ 3αA1s
3α− 1

+ 2αA2s
2α− 1

+ αA3s
α− 1

+ 2αA5s
2α− 1

+ αA6s
α− 1

− A5s
2α

+ A6s
α

+ A7􏼐 􏼑τ􏽨 􏽩e
− sτ

.

(29)

Let

Φ ω0i( 􏼁
􏼌􏼌􏼌􏼌τ�τ0 � Φ1 + iΦ2,

Ψ ω0i( 􏼁
􏼌􏼌􏼌􏼌τ�τ0 � Ψ1 + iΨ2,

(30)

where

Φ1 � n1 sinω0τ
0

− n2 cosω0τ
0
,

Φ2 � n1 cosω0τ
0

+ n2 sinω0τ
0
,

Ψ1 � n3 + n5 cosω0τ
0

+ n6 sinω0τ
0
,

Ψ2 � n4 − n5 sinω0τ
0

+ n6 cosω0τ
0
,

(31)

and ni, i � 1, 2, . . . , 6 are defined by Appendix A.
By straightforward computation, it can be derived from

(28) that

Re
ds

dτ
􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌 τ�τ0,ω�ω0( )
�
Φ1Ψ1 +Φ2Ψ2
Ψ21 + Ψ22

≠ 0. (32)

(e proof is completed. □

Theorem 1. Suppose assumptions (H1) − (H4) hold; then,

(1) 2e coexistence equilibrium E∗ of system (3) is locally
asymptotically stable for τ ∈ [0, τ0)

(2) System (3) undergoes Hopf bifurcation at E∗ when
τ � τ0

4.2. Bifurcation Control of System (5). In this section, we
exploit the bifurcation control problem of system (5)
through the time-delayed feedback controller.

Analogously, by linearizing (5) at E∗, we get the Jacobian
matrix:

J E
∗

( 􏼁 �

−
r

K
P
∗
S + k 1 − e

− sδ
􏼐 􏼑 −

r

K
P
∗
S − aP∗S 0

aV∗ − m − nM∗ aP∗S − nP∗I e− sτ

0 b − c − dM∗ − dV∗e− sτ

0 β 0 − η

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (33)

and the corresponding characteristic equation:

s
4α

+ B1s
3α

+ B2s
2α

+ B3s
α

+ B4 + B5s
2α

+ B6s
α

+ B7􏼐 􏼑e
− sτ

� 0,

(34)

where

B1 � A1 − k 1 − e
− sδ

􏼐 􏼑,

B2 � A2 − m3 + η( 􏼁k 1 − e
− sδ

􏼐 􏼑,

B3 � A3 − m6 + m3η − abP
∗
S􏼂 􏼃k 1 − e

− sδ
􏼐 􏼑,

B4 � A4 − η m6 − abP
∗
S􏼂 􏼃k 1 − e

− sδ
􏼐 􏼑,

B5 � A5,

B6 � A6 − βnP
∗
I k 1 − e

− sδ
􏼐 􏼑,

B7 � A7 − m2nP
∗
I + a dP

∗
S V
∗

( 􏼁βk 1 − e
− sδ

􏼐 􏼑.

(35)

Assume that s � ωi(ω> 0) is a root of (11); then, we
obtain
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ω4α
(cos 2απ + i sin 2απ) + A1 − k(1 − cos δω + i sin δω)􏼂 􏼃ω3α cos

3απ
2

+ i sin
3απ
2

􏼒 􏼓

+ A2 − m3 + η( 􏼁k(1 − cos δω) − i m3 + η( 􏼁k sin δω􏼂 􏼃ω2α
(cos απ + i sin απ)

+ A3 − m6 + m3η − abP
∗
S( 􏼁k(1 − cos δω) − i m6 + m3η − abP

∗
S( 􏼁k sin δω􏼂 􏼃ωα

× cos
απ
2

+ i sin
απ
2

􏼒 􏼓 + A4 − η m6 − abP
∗
S( 􏼁k(1 − cos δω − i sin δω)

+ A5ω
2α

(cos απ + i sin απ) + A6 − βnP
∗
I k(1 − cos δω) − iβnP

∗
I k sin δω􏼂 􏼃􏽮

× ωα cos
απ
2

+ i sin
απ
2

􏼒 􏼓 + A7 − m2nP
∗
I + adP

∗
S V
∗

( 􏼁βk(1 − cos δω)􏼂

− i m2nP
∗
I + adP

∗
S V
∗

( 􏼁βk sin δω􏼃􏼉(cosωτ − i sinωτ) � 0.

(36)

Separating the real and imaginary parts, we obtain
D1 cosωτ + D2 sinωτ � − D3,

D2 cosωτ − D1 sinωτ � − D4,
􏼨 (37)

where

D1 � φ1 cos απ + φ2 cos
απ
2

+ φ3 sin
απ
2

+ φ4,

D2 � φ1 sin απ + φ2 sin
απ
2

− φ3 cos
απ
2

− φ5,

D3 � ω4α cos 2απ + φ6 cos
3απ
2

+ φ7 sin
3απ
2

+ φ8 cos απ

+ φ9 sin απ + φ10 cos
απ
2

+ φ11 sin
απ
2

+ φ12,

D4 � ω4α sin 2απ + φ6 sin
3απ
2

− φ7 cos
3απ
2

+ φ8 sin απ

− φ9 cos απ + φ10 sin
απ
2

− φ11 cos
απ
2

− φ13,

(38)

and φi, i � 1, 2, . . . , 13 are defined by Appendix B.
It follows from (40) that

sinωτ �
D1D4 − D2D3

D2
1 + D2

2
,

cosωτ � −
D1D3 + D2D4

D2
1 + D2

2
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(39)

Similarly, we can obtain

D
2
3 + D

2
4 � D

2
1 + D

2
2. (40)

Assume that equation (40) has at least one positive real
rootω1; then, it follows from the second equation of (39) that

τ(i)
δ �

1
ω1

arccos
D1D3 + D2D4

D2
1 + D2

2
+ 2iπ􏼢 􏼣, i � 0, 1, 2, . . . .

(41)

Define

τ(i)
δ � min τ(i)

δ􏽮 􏽯, i � 0, 1, 2, . . . . (42)

To derive conditions for the existence of Hopf bifur-
cation, we make the following hypothesis:

H4( 􏼁:
Φ1Ψ1 +Φ2Ψ2
Ψ21 + Ψ22

≠ 0, (43)

where 􏽥Φ1, 􏽥Φ2, 􏽥Ψ1, and 􏽥Ψ2 are defined by equation (47).

Lemma 2. Let s(τ) � φ(τ) + iω(τ) be a root of the char-
acteristic equation (34) near τ � τ(i)

δ meeting
φ(τ(i)

δ ) � 0, ω(τ(i)
δ ) � ω1; then, the transversality condition

Re
ds

dτ
􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌 τ�τ0δ ,ω�ω1( )
≠ 0, (44)

holds.

Proof. Differentiating both sides of (39) with respect to τ, we
obtain

ds

dτ
�

􏽥Φ(s)

􏽥Ψ(s)
, (45)

where 􏽥Φ(s) � (B5s
2α + B6s

α + B7)se
− sτ and

􏽥Ψ(s) � 4αs
4α− 1

+ 3αB1s
3α− 1

+ 2αB2s
2α− 1

+ αB3s
α− 1

+ 2αB5s
2α− 1

+ αB6s
α− 1

− B5s
2α

+ B6s
α

+ B7􏼐 􏼑τ􏽨 􏽩e
− sτ

− kδe
− sδ

s
3α

+ m3 + η( 􏼁s
2α

+ m6 + m3η − abP
∗
S( 􏼁s

α
􏽮

+η m6 − abP
∗
S( 􏼁 + βnP

∗
I s

α
+ m2nP

∗
I + adP

∗
S V
∗

( 􏼁β􏼂 􏼃e
− sτ

􏼉.

(46)

Let
􏽥Φ ω1i( 􏼁

􏼌􏼌􏼌􏼌τ�τ0δ
� 􏽥Φ1 + i 􏽥Φ2,

Ψ ω1i( 􏼁
􏼌􏼌􏼌􏼌τ�τ0δ

� 􏽥Ψ1 + i 􏽥Ψ2,
(47)

where 􏽥Φ1 and 􏽥Φ2 are the real and imaginary parts of 􏽥Φ(ω1i),
respectively, while 􏽥Ψ1 and 􏽥Ψ2 are the real and imaginary
parts of 􏽥Ψ(ω1i), respectively.
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Table 2: Model parameter values from [3, 39–41].

Parameter Value Unit
r 0.05 day− 1

a 0.005 kg vector− 1day− 1

n 0.005 day− 1

c 0.12 day− 1

c 0.03 day− 1

η 0.015 day− 1

K 50 kg·plant− 1

M 0.03 day− 1

b 0.8 day− 1

d 0.005 day− 1

β 0.05 day− 1

t
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t
0 2000 4000 6000 8000
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t
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(d)

Figure 1: (e time series of system (3) when α � 0.95 and τ � 45< τ0.
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Figure 2: (e time series of system (3) when α � 0.95 and τ � 53> τ0.
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By straightforward computation, it can be derived from
(45) that

Re
ds

dτ
􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌 τ�τ0δ ,ω�ω1( )
�

􏽥Φ1 􏽥Ψ1 + 􏽥Φ2 􏽥Ψ2
􏽥Ψ21 + 􏽥Ψ22

≠ 0. (48)

(e proof is completed. □

Theorem 2. Suppose assumptions (H1), (H2), and (H5)

hold; then,

(1) 2e coexistence equilibrium E∗ of system (5) is locally
asymptotically stable for τ ∈ [0, τ0δ)

(2) System (5) undergoes Hopf bifurcation at E∗ when
τ � τ0δ
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Figure 3: (e impact of the fractional order α on the bifurcation value τ0 for the uncontrolled system (3).
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Figure 4: (e time series of system (3) when α� 0.98, α� 0.92, α� 0.86, and τ � 15.
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5. Numerical Simulation

In this section, two numerical examples are provided to
verify our theoretical results of systems (3) and (5).

5.1. Example 1. In the following, we will investigate the
stability of the coexistence equilibrium E∗ and the existence
of Hopf bifurcation for system (3). Model parameters are
chosen from [3, 39–41] (refer to Table 2).

By simple computation, we get the unique coexistence
equilibrium:

E
∗

� (39.3954, 2.9012, 13.0133, 11.6706). (49)

Selecting the fractional order as α � 0.95, we easily
obtain that ω0 � 0.0215 and the critical value τ0 � 52.5989.
According to(eorem 1, the coexistence equilibrium E∗ is
asymptotically stable when τ � 45< τ0, which is shown in
Figure 1. Figure 2 shows that the coexistence equilibrium
E∗ is unstable when τ � 53> τ0 and a Hopf bifurcation
occurs.

In addition, we explore the impact of the fractional order
α on the bifurcation value τ0 for the uncontrolled system (3).
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Figure 5: (e time series of system (5) when α� 0.95 and τ � 28< τ0δ.
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Figure 6: (e time series of system (5) when α� 0.95 and τ � 33> τ0δ.
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From Figure 3, we can see that the bifurcation value τ0 is very

sensitive to the change of the fractional order α. With the
increase of the order, the bifurcation value decreases rapidly,
which implies that the stability region of system (3) becomes
smaller. In particular, compared to the corresponding

integral order, the fractional system has a larger stability

region.
Besides, by selecting τ � 15, we investigate the con-

vergence rate of the system. From Figure 4, we find that,
with the increase of the order α, the convergence rate of
system (3) becomes slower.
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Figure 7: (e impact of the fractional order α on the bifurcation value τ0δ for the controlled system (5).
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Figure 8: (e time series of system (5) when α� 0.98, α� 0.92, α� 0.86, k� − 2, δ � 4.8, and τ � 15.
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5.2. Example 2. Now, we study the bifurcation control
problem of uncontrolled system (3) by introducing the
time-delayed feedback controller. Model parameters of
controlled system (5) are chosen the same as in Table 2,
while the feedback gain and the feedback delay are se-
lected as k � − 2 and δ � 4.8, respectively. When the order

is chosen as α � 0.95, we can obtain that ω1 � 0.0213 and
the corresponding critical value τ0δ � 32.8007. According
to (eorem 2, the coexistence equilibrium E∗ is asymp-
totically stable when τ � 28< τ0δ (see Figure 5), while it is
unstable when τ � 33> τ0δ and a Hopf bifurcation occurs
(see Figure 6).
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Figure 9: (e impact of the feedback gain k on the bifurcation value τ0δ for the controlled system (5).
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Figure 10: (e time series of system (5) when α� 0.95, k� − 0.5, k� − 2, k� − 6, δ � 4.8, and τ � 30.
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We also explore the impact of the fractional order α on
the bifurcation value τ0δ for the controlled system (5). From
Figure 7, we can see that the bifurcation value decreases
rapidly with the increase of the order, which means that the
stability region of system (5) also becomes smaller. Similarly,

with the rise of the order α, the convergence rate of system
(5) slows down (see Figure 8).

Furthermore, we investigate the impact of the feedback
gain k and the feedback delay δ on the bifurcation value τ0δ.
By fixing α � 0.95, δ � 4.8, and τ � 30, we find that there is a
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Figure 12: (e time series of system (5) when α� 0.98, k � − 2, δ � 0.5, δ � 4, δ � 10, and τ � 30.
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Figure 11: (e impact of the extended feedback delay δ on the bifurcation value τ0δ for the controlled system (5).
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minimum point around k � − 2 (see Figure 9). Specifically,
with the increase of the feedback gain k, the stability region
of system (5) first slowly reduces to a minimum, then
gradually increases to a high level. (ree representative
values k � − 0.5, k � − 2, and k � − 6 are chosen in Figure 10,
and we can see that system (5) displays the slowest con-
vergence rate when k � − 2 (which is the nearest to the
minimum point).

In addition, by fixing α � 0.95, k � − 2, and τ � 30, we
can see from Figure 11 that there is also a minimum point
around δ � 3.5. Specifically, with the increase of the
feedback delay δ, the stability region of system (5) first
quickly reduces to a minimum and then slowly increases.
(ree representative values δ � 0.5, δ � 4, and δ � 10 are
chosen, and we can see that system (5) converges the
slowest when δ � 4 which is the nearest to the minimum
point (see Figure 12).

6. Conclusion

In this paper, a fractional-order mosaic virus infection
model for Jatropha curcas with farming awareness and an
execution delay was studied based on the model in [2].
Compared with the studies, we not only generalized the
integral order system to a fractional-order systemwhichmay
describe the mechanism of the disease transmission more
accurately but also investigated the Hopf bifurcation control
through a time-delayed feedback controller. We mainly
studied the existence of Hopf bifurcation and explored the
impact of time delay, the fractional order, the feedback gain,
and the feedback delay on the occurrence of bifurcation
phenomenon.

By choosing the execution delay as a bifurcation pa-
rameter, Hopf bifurcation of the uncontrolled system was
firstly studied. (e stability of the coexistence equilibrium
and the bifurcation criteria were obtained. (en, by intro-
ducing a time-delayed feedback controller, the bifurcation
control problem of the uncontrolled system was investigated
in detail. A series of numerical simulations were performed,
which not only verified our theoretical results but also
revealed some specific features. Numerically, we exploited
the impact of the time delay, the fractional order, the
feedback gain, and the feedback delay on the occurrence of
Hopf bifurcation. We found that, for both uncontrolled and
controlled systems, when the execution delay is small
enough (less than the critical values), the systems are stable,
while they lose their stability and Hopf bifurcations occur
when the execution delay exceeds the critical values. Besides,
our study showed that the bifurcation values are very sen-
sitive to the change of the fractional order. With the increase
of the order, the bifurcation values of the two systems de-
crease rapidly, which implies that the stability region of
systems becomes smaller. Furthermore, we investigated the
impact of the feedback gain and the extended feedback delay
on the bifurcation value for the controlled system, and we
found the existence of the extreme points for the feedback
gain and the extended feedback delay which can minimize
the bifurcation value.

According to our study, the execution time delay can
lead to the fluctuation of the population quantity of
Jatropha plants, which means that the population quantity
is at some unreasonable level. By introducing a time-
delayed feedback controller, we can stabilize the pop-
ulation by harvesting or transplanting new plants
according to the current and past population level (at time
t and t − δ). If the population quantity of the healthy plant
at t − δ is more than the current level, we harvest some
plants. Otherwise, we transplant some new plants. Our
numerical simulations show that there exist extreme
points for the feedback gain k and the feedback delay δ
which can both minimize the bifurcation value, so we can
select values of the parameters k and δ which are far away
from those extreme points, then the population size tends
to be stabilized. Specifically, we prefer to choose the
feedback gain k which is greater than the minimum point
and choose the feedback delay δ which is less than the
minimum point because these values are more conducive
to a stable population level.

For the control of system (3), we can also add a controller
to the other equations or add more than one controller at a
time, and comparisons between different controllers would
be very meaningful. Besides, introducing artificial impulsive
control behaviors into system (3) is also interesting. We will
continue these studies in our future work.

Appendix

A. Important Expressions

(e expressions of ni, i � 1, 2, . . . , 6 in (31):

n1 � A5ω
2α+1
0 cos απ + A6ω

α+1
0 cos

απ
2

+ A7ω0,

n2 � A5ω
2α+1
0 sin απ + A6ω

α+1
0 sin

απ
2

,

n3 � 4αω4α− 1
0 cos

(4α − 1)π
2

+ 3αA1ω
3α− 1
0 cos

(3α − 1)π
2

+ 2αA2ω
2α− 1
0 cos

(2α − 1)π
2

+ αA3ω
α− 1
0 cos

(α − 1)π
2

,

n4 � 4αω4α− 1
0 sin

(4α − 1)π
2

+ 3αA1ω
3α− 1
0 sin

(3α − 1)π
2

+ 2αA2ω
2α− 1
0 sin

(2α − 1)π
2

+ αA3ω
α− 1
0 sin

(α − 1)π
2

,

n5 � 2αA5ω
2α− 1
0 cos

(2α − 1)π
2

+ αA6ω
α− 1
0 cos

(α − 1)π
2

− A5τ
0ω2α

0 cos απ − A6τ
0ωα

0 cos
απ
2

− A7τ
0
,

n6 � 2αA5ω
2α− 1
0 sin

(2α − 1)π
2

+ αA6ω
α− 1
0 sin

(α − 1)π
2

− A5τ
0ω2α

0 sin απ − A6τ
0ωα

0 sin
απ
2

.

(A.1)
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B. Important Expressions

(e expressions of φi, i � 1, 2, . . . , 13 in (37):

φ1 � A5ω
2α

,

φ2 � A6 − βnP
∗
I k(1 − cos δω)􏼂 􏼃ωα

,

φ3 � βnP
∗
I kωα sin δω,

φ4 � A7 − m2nP
∗
I + a dP

∗
S V
∗

( 􏼁βk(1 − cos δω),

φ5 � m2nP
∗
I + a dP

∗
S V
∗

( 􏼁βk sin δω,

φ6 � A1 − k(1 − cos δω)􏼂 􏼃ω3α
,

φ7 � kω3α sin δω,

φ8 � A2 − m3 + η( 􏼁k(1 − cos δω)􏼂 􏼃ω2α
,

φ9 � m3 + η( 􏼁kω2α sin δω,

φ10 � A3 − m6 + m3η − abP
∗
S( 􏼁k(1 − cos δω)􏼂 􏼃ωα

,

φ11 � m6 + m3η − abP
∗
S( 􏼁kωα sin δω,

φ12 � A4 − η m6 − abP
∗
S( 􏼁k(1 − cos δω),

φ13 � η m6 − abP
∗
S( 􏼁k sin δω.

(B.1)
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