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Lump-type wave solution of the Bogoyavlenskii–Kadomtsev–Petviashvili equation is constructed by using the bilinear structure
and Hermitian quadratic form. �e dynamical behaviors of lump-type wave solution are investigated and presented analytically
and graphically. Furthermore, we discuss the interaction between a lump-type wave and a kink wave solution. Absorb-emit
interaction between two kinds of solitary wave solutions is shown.�is kind of interaction solution can be regarded as a lump-type
wave which propagates on the kink wave background.

1. Introduction

Lump-type wave solution is a special class of rational lo-
calized wave solution which decays algebraically to the
background wave in space direction [1]. Since the lump-type
wave solution was �rst discovered in the research of
Kadomtsev–Petviashvili (KP) equation [2], seeking for
lump-type wave solution of nonlinear evolution equations
and exploring its dynamical behavior have attracted more
and more attention in the �eld of nonlinear wave. Over the
years, many researchers have found a mass of methods to
construct the lump-type wave solution. For example, the
inverse scattering transformation method [1], direct alge-
braic approach [3–6], long wave limit technique [7–9],
dressing method [10], Hirota’s bilinear method [11, 12],
Darboux transformation method [13], Riemann–Hilbert
approach [14, 15], and so on. By means of these methods,
lump-type wave solutions to many nonlinear wave models
have been given, for instance, the Benjamin–Ono equation
[9], Veselov–Novikov equation [10], high dimensional
Korteweg–de Vries equation [3, 6, 8, 16], Sawada–Kotera
equation [17], Jimbo–Miwa equation [4, 18], and so on.
Some properties about lump-type wave solution are dem-
onstrated in virtue of the theoretical analysis and graphical
representation. In addition, many researchers have also
investigated the interaction between lump-type wave and

other type of solitary wave solutions, and some interesting
interaction phenomena have been shown [16–24].

In this paper, we will devote to investigating the
Bogoyavlenskii–Kadomtsev–Petviashvili (BKP) equation
[25–32]:

uxxt + uxxxxy + 12uxxuxy + 8uxuxxy + 4uxxxuy � uyyy,
(1)

which is an extension of the Bogoyavlenskii–Schi¦ equation
and the KP equation [25]. If we neglect uyyy, then it can be
reduced to the Bogoyavlenskii–Schi¦ equation [1]. �rough
the following transformation [23]:

u �(logf)x �
fx
f
, (2)

the BKP equation (1) can be converted into the Hirota bi-
linear system.

D4
x − 3αDx Ds − 3D2

y( )f · f � 0,

3Dx Dt + 2D3
xDy + 3αDy Ds( )f · f � 0,


 (3)

where f � f(x, y, t, s) is an unknown real function, s is an
auxiliary independent variable, and α is a nonzero constant.
�e di¦erential operator D is de�ned by [1]
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(4)

Hence, if f(x, y, t, s) is solved from the Hirota bilinear
system (3), then the logarithmic transformation (2) gives rise
to a solution of the BKP equation (1). ,e BKP equation is a
member of the high-dimensional KP equations and has been
discussed by many researchers [25–31]. ,e BKP equation is
integrable and possesses the Lax pair [25]. ,e construction
of N-soliton solutions owes to the work [26]. Some exact
solutions, such as period function solution, solitary wave-
like solution, and singular rational solution, have been
deduced in [27]. Estévez et al. [28] have constructed Lie
symmetries by using the Lax pair and the classical Lie group
method. ,e transformation groups and conservation laws
of the BKP equation have been presented by the group
transformation method and Ibragimov’s theorem [29]. By
employing the truncated Painlevé method [30], Wang and
Fang have also studied the non-auto Bäcklund transfor-
mation and consistent Riccati expansion solvable of BKP
equation. ,e bilinear structures and multiple wave solu-
tions have been constructed by means of the binary Bell
polynomials method [31]. In [32], Wang and Fang have also
investigated various kinds of high-order solitons by
employing the perturbation method and Taylor expansion
approach. In this paper, we will mainly investigate the lump-
type wave solution of the BKP equation (1) by the Hermitian
quadratic form. Secondly, we will give the interaction so-
lution of a lump-type wave and a kink wave solutions.

,e plan of this work is as follows. Based on the Her-
mitian quadratic form, Section 2 constructs the lump-type
wave and studies its dynamical behavior and symmetrical
property further. In Section 3, the hybrid solution consists of
a lump-type wave and a kink wave is presented. ,e absorb-
emit interaction between a lump-type wave and a kink wave
is discussed. Finally, conclusions are given in section 4.

2. Hermitian Quadratic Form and Lump-Type
Wave Solution

,is section we construct the lump-type wave solution of
BKP equation by employing the Hermitian quadratic form.
Firstly we introduce the Hermitian matrix and the Her-
mitian quadratic form.

Definition 1 (see [33]). If A is a complex square matrix and
A � AH, then the matrix A is said to be a Hermitian matrix,
where the symbol H denotes the complex conjugate
transpose.

Definition 2 (see [33]). If X � (x1, x2, · · · , xn)T ∈ Cn is a
column matrix and A � (aij) ∈ Cn×n is a Hermitian matrix,
then the quadratic form,

f(X) � X
H

AX, (5)

is called a Hermitian quadratic form, where the symbol T
represents the transpose.

Based on the Hermitian quadratic form, we can obtain
the following result:

Theorem 1. 'e BKP equation (1) has the lump-type wave
solution u � (logf(x, y, t))x with

f(x, y, t) � X
H

AX + R, (6)

where R is a real nonzero constant, X � (x, y, t, s)T is a real
column matrix, A is a four-order Hermitian matrix which is
defined by the following matrix:

A �

a11 a∗21 a∗31 a∗41

a21 a22 a∗32 a∗42

a31 a32 a33 a∗43

a41 a42 a43 a44

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (7)

where ∗ is the complex conjugate and the matrix elements
a11, a21, a22, a31, a32, a33, a41, a42, a43 and a44 are determined
by the following relations:

R
2

a21( 􏼁 �
a11 Ra22 − a2

11( 􏼁

R
,

R a31( 􏼁 �
R a21( 􏼁 Ra22 − 4a2

11( 􏼁

Ra11
,

R a32( 􏼁 �
a22 Ra22 − 2a2

11( 􏼁

Ra11
,

R a41( 􏼁 �
2a2

11 − Ra22

Rα
,

R a42( 􏼁 � −
R a21( 􏼁a22

αa11
,

R a43( 􏼁 � −
R a21( 􏼁a2

22
αa2

11
,

a33 �
a3
22

a2
11

,

a44 �
a2
22

α2a11
,

(8)

whereR(aij) denotes the real part of the complex number aij

and the arbitrary parameters a11, a22, and R need to satisfy
the constraint conditions:

Ra22 − a
2
11 ≥ 0,

Ra11 > 0.
(9)

Substituting the solution (6) with (7) and (8) into (3), we
can easily verify that this solution is a solution of the Hirota
bilinear system (3). In the solution (6), the parameter
constraint condition (9) ensures that the solution (6) is well
defined and nonzero. In order to reveal the positive de-
finitiveness about the solution (6), let us study further the
Hermitian quadratic form XHAX. It is not difficult to find
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that the Hermitian quadratic form XHAX can be rewritten
as

X
H

BX, B �

a11 R a21( 􏼁 R a31( 􏼁 R a41( 􏼁

R a21( 􏼁 a22 R a32( 􏼁 R a42( 􏼁

R a31( 􏼁 R a32( 􏼁 a33 R a43( 􏼁

R a41( 􏼁 R a42( 􏼁 R a43( 􏼁 a44

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (10)

Considering all k-order principal minors of the real
symmetric matrix B, where k � 1, 2, 3, 4, then we obtain the
following four types of results:

(a) Four first-order principal minors are

a11,

a22,

a33 �
a3
22

a2
11

,

a44 �
a2
22

α2a11
.

(11)

(b) Six second-order principal minors are

a3
11
R

,

a2
22a11

α2R
,

a4
22

α2Ra11
,

4a2
22 Ra22 − a2

11( 􏼁

R2 ,

4a2
11 Ra22 − a2

11( 􏼁

(αR)2
,

a11 3Ra22 − 4a2
11( 􏼁

2

R3 .

(12)

(c) Four third-order principal minors are zero.
(d) One four-order principal minor is zero.

Combining the above principal minors and the method
to test positive definiteness of a matrix [33], we can obtain
the following two cases:

(1) If Ra22 − a2
11 ≥ 0, a11 > 0 and R> 0, then all principal

minors of B are nonnegative and the matrix B is
positive semidefinite

(2) if Ra22 − a2
11 ≥ 0, a11 < 0 and R< 0, then all odd order

principal minors of B are nonpositive, all even order
principal minors of B are nonnegative, and the
matrix B is negative semidefinite

,erefore, two results above illustrate that the solution
(6) is nonzero under condition (9), and the rational poly-
nomial solution (2) with (6) is a nonsingular rational
solution.

Based on the above ,eorem 1, let

aij � aia
∗
j , i, j � 1, 2, 3, 4, (13)

in the matrix A, that is,

A �

a1a
∗
1 a1a

∗
2 a1a

∗
3 a1a

∗
4

a2a
∗
1 a2a

∗
2 a2a

∗
3 a2a

∗
4

a3a
∗
1 a3a

∗
2 a3a

∗
3 a3a

∗
4

a4a
∗
1 a4a

∗
2 a4a

∗
3 a4a

∗
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (14)

then we can obtain the following corollary.

Corollary 1. 'e BKP equation (1) has the lump-type wave
solution u � (log f(x, y, t))x with

f(x, y, t) � X
H

AX + R � a1x + a2y + a3t + a4s( 􏼁

· a
∗
1x + a

∗
2y + a

∗
3 t + a

∗
4 s( 􏼁 + R,

(15)

where the parameters a1, a2, a3, a4, R are determined by the
following relations:

R � −
4 a1a

∗
1( 􏼁

3

a1a
∗
2 − a2a

∗
1( 􏼁

2,

a3 �
a3
2

a2
1
,

a4 �
− a2

2
αa1

,

(16)

and the complex parameters a1, a2 need to satisfy the nonzero
constraint condition:

a1a
∗
2 − a2a

∗
1 ≠ 0. (17)

In Corollary 1, condition (17) ensures that the parameters
a3, a4 and R are well-defined. Meanwhile, this also suggests
thatR> 0. Consequently, the function (15) is a positive definite
function. ,e rational polynomial solution (2) with f(x, y, t)

given by (15) is a nonsingular rational solution.
,e above theoretical analysis and results show that the

lump-type wave solution can be expressed by (2) with the
auxiliary function (6) or (15). However, according to the
expressions of the solutions and their constraint conditions,
the solution (6) is complicated, because it needs to satisfy ten
parameters constraint conditions. ,e function (15) is more
concise and intuitive, and it only contains four parameters
constraint conditions. In order to explore and reveal the
dynamical properties of the lump-type wave more conve-
niently, let us represent the complex numbers a1 and a2 as
a1 � m1 + in1, a2 � v1 + iw1, where m1, n1, v1, w1 are arbi-
trary real parameters, so the polynomial solution (15) can be
rewritten as

f(x, y, t) � m1x + v1y + r1t + θ1( 􏼁
2

+ n1x + w1y + d1t + θ2( 􏼁
2

+ R,
(18)
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where

r1 �
v31 − 3v1w

2
1( 􏼁 m2

1 − n2
1( 􏼁 + 2 3v21w1 − w3

1( 􏼁m1n1

m2
1 − n2

1( 􏼁
2

+ 4m2
1n

2
1

,

d1 �
3v21w1 − w3

1( 􏼁 m2
1 − n2

1( 􏼁 − 2 v31 − 3v1w
2
1( 􏼁m1n1

m2
1 − n2

1( 􏼁
2

+ 4m2
1n

2
1

,

θ1 �
w2

1 − v21( 􏼁m1 − 2v1w1n1( 􏼁

α m2
1 + n2

1( 􏼁
s,

θ2 �
v21 − w2

1( 􏼁n1 − 2v1w1m1( 􏼁

α m2
1 + n2

1( 􏼁
s,

R �
m2

1 + n2
1( 􏼁

3

m1w1 − n1v1( 􏼁
2,

(19)

and the nonzero constraint condition (17) about the pa-
rameters a1 and a2 becomes

m1w1 − n1v1 ≠ 0. (20)

So, based on (18)–(20), we derive the specific expression
of lump-type wave solution:

Corollary 2. 'e BKP equation has the following lump-type
wave solution:

u(ξ, η) �
2 m2

1 + n2
1( 􏼁ξ + m1v1 + n1w1( 􏼁η + m1θ1 + n1θ2( 􏼁

m1ξ + v1η + θ1( 􏼁
2

+ n1ξ + w1η + θ2( 􏼁
2

+ R
,

(21)

where

ξ � x −
2 v21 + w2

1( 􏼁 m1v1 + n1w1( 􏼁

m2
1 + n2

1( 􏼁
2 t,

η � y −
m1w1 − n1v1( 􏼁

2
− 3 m1v1 + n1w1( 􏼁

2

m2
1 + n2

1( 􏼁
2 t,

(22)

where θ1, θ2, andR are given by (19) and the arbitrary real
parameters m1, n1, v1, and w1 need to satisfy condition (20).

,e lump-type wave solution (21) is nonsingular and
well defined when the parameters m1, n2, v1, and w1 satisfy
condition (20). In the meantime, the condition
m1w1 − n1v1 ≠ 0 also indicates that this solution cannot be
transformed into the line lump-type wave solution [34]. In
the solution (21), the parameters θ1 and θ2 can be regarded
as two arbitrary phase constants. Figure 1 shows the spatial
structure and projection of the lump-type wave solution (21)
at t � 0. As can be seen from the Figure 1(a), this wave is a
localized lump-type wave which has one upper peak and one
down hump near the origin. ,e down hump hides under
the background plane wave, and the height of the peak is
equal to the depth of the down hump-type wave. In [6], this
kind of solution is also known as “bright-dark lump-type
wave solution,” and its amplitude is |m1w1 − n1v1|/m2

1 + n2
1.

Figure 1(b) is the contour lines and projection of the lump-
type wave solution in the (x, y) plane. ,e localization
features and energy distribution are clearly presented. In the
(x, y) plane, the lump-type wave solution is divided into two
parts by the line L. Here the line L is given by the straight line
(m2

1 + n2
1)ξ + (m1v1 +n1w1)η + m1θ1 + n1θ2 � 0, which

represents the contour line with u � 0. ,e right area rep-
resents the energy distribution of the bright hump-type
wave, and the left area shows the energy distribution of the
dark hump-type wave (Figure 1(b)). Moreover, the lump-
type wave solution (21) also indicates that it tends to zero as
ξ2 + η2 goes to the infinity for any fixed time t. ,ese
properties demonstrate that the lump-type wave (21) is a
rationally decaying solution and localized in all directions in
the background space. Furthermore, we can see from (22)
that the lump-type wave propagates in the (x, y)-plane with
the velocity:

v � vx, vy􏼐 􏼑 �
2 w2

1 + v21( 􏼁 m1v1 + n1w1( 􏼁

m2
1 + n2

1( 􏼁
2 ,

m1w1 − n1v1( 􏼁
2

− 3 m1v1 + n1w1( 􏼁
2

m2
1 + n2

1( 􏼁
2

⎛⎝ ⎞⎠. (23)

,is also means that the lump-type wave moves
obliquely along the straight line,

x − x0

vx

�
y − y0

vy

, (24)

in the (x, y) plane, where

x0 �
v1θ2 − w1θ1
m1w1 − n1v1

,

y0 �
n1θ1 − m1θ2
m1w1 − n1v1

.

(25)

In Figure 1(b), the demarcation line L between the bright
and the dark areas is oblique. ,is suggests that the shape of
lump-type wave is nonaxisymmetric, that is, the lump-type
wave is skew. ,rough the straight line L, we can obtain that
the angle ϕ between the line L and the positive y-axis is
determined by tanϕ � − m1v1 + n1w1/m2

1 + n2
1. ,erefore, if

ϕ≠ 0, i.e., m1v1 + n1w1 ≠ 0, the lump-type wave is skew
(Figure 1). However, if m1v1 + n1w1 � 0, then the velocity vx

along the x-axis is zero. As a result, the propagation velocity
of the lump-type wave is completely determined by
vy � (m1w1 − n1v1/m2

1 + n2
1)

2, and this implies that the
lump-type wave propagates only along the positive y-axis. In
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this case, the contour lines of the lump-type wave with s � 0
and t � 0 are determined by the following equation:

x −
1
h

􏼒 􏼓
2

+
v21 + w2

1
m2

1 + n2
1
y
2

�
1
h2 −

m2
1 + n2

1
m1w1 − n1v1

􏼠 􏼡

2

, (26)

where 0< |h|< |m1w1 − n1v1|/m2
1 + n2

1. Specially, when h � 0,
the contour line becomes the line x � 0. Obviously, equation
(26) represents the elliptic curve. ,is elliptic curve is
symmetrical with respect to the line x � 1/h and y � 0.
,erefore, when m1v1 + n1w1 � 0, the lump-type wave is
symmetric (Figure 2).

3. Absorb-Emit Interaction between Lump-
Type Wave and Kink Wave Solutions

We investigate the interaction between a lump-type wave
and kink wave solutions. ,e kink wave solution can be
obtained by using the following exponential function [35]:

f(x, y, t) � 1 + e
τ
, τ � kx + ly + ct + ds , (27)

where the nonzero real parameters k, l, c, and d satisfy the
following conditions:

c �
l l2 − k4( 􏼁

k2 ,

d �
k4 − 3l2

3αk
.

(28)

Substituting (27) with (28) into (2) yields a kink wave
solution:

u(x, y, t) �
1
2

k 1 + tanh
1
2
τ􏼒 􏼓. (29)

By the asymptotic analysis, we can find that this solution
tends to k as τ⟶ +∞ and approaches to zero as

τ⟶ − ∞. Two different asymptotic states are presented.
So the solution (29) is a kink-type solitary wave and has
amplitude |k|.

In the above discussion, we study the lump-type wave
and kink wave solutions. Next, we will consider the inter-
action solution of a lump-type wave and a kink wave. Based
on the structure form of the two-soliton solution [1], we
assume that the Hirota bilinear system (3) has the following
hybrid solution:

f(x, y, t) � X
H

AX + R + e
XHK

Y
H

BY + R􏼐 􏼑, (30)

where

X �

x

y

t

s

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

K �

k

l

c

d

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

Y �

x

y

t

s

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

B �

a1a
∗
1 a1a

∗
2 a1a

∗
3 a1a

∗
4 a1a

∗
5

a2a
∗
1 a2a

∗
2 a2a

∗
3 a2a

∗
4 a2a

∗
5

a3a
∗
1 a3a

∗
2 a3a

∗
3 a3a

∗
4 a3a

∗
5

a4a
∗
1 a4a

∗
2 a4a

∗
3 a4a

∗
4 a4a

∗
5

a5a
∗
1 a5a

∗
2 a5a

∗
3 a5a

∗
4 a5a

∗
5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(31)

where A is given by (14), the parameters a1, a2, a3, and a4
and R satisfy conditions (16) and (17), the relationships
between k, l, c and d are given by (28), and a5 is a shift

1

0

–1

u

x

y

15
10

10

5

5
0

0
–5

–5

–10

–10

–15

(a)

15

15

10

5

0

1050

–5

–5

–10

–10
–15

–15
x

y

L

(b)

Figure 1: 3D profile of lump-type wave solution at t � 0 (a) and its contour plot (b). ,e parameters are selected with
a1 � 1 + i, a2 � − 1.5 + i, α � 1, and s � 0. ,e line L is given by y � 4x.
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parameter to be determined later. ,en, substituting (30)
with (31) into equation (3) yields

a5 �
− 4 ka1( 􏼁

3

a2
1k

4 + ka2 − la1( 􏼁
2. (32)

Hence, the interaction solution consists of a lump-type
wave, and a kink wave can be obtained as follows.

Theorem 2. 'e BKP equation (1) has the interaction so-
lution u � (log f(x, y, t))x with (30), where a1, a2, a3, a4, a5,

k, l, c, d, and R are given by

a3 �
a3
2

a2
1
,

a4 �
− a2

2
αa1

,

a5 �
− 4 ka1( 􏼁

3

a2
1k

4 + ka2 − la1( 􏼁
2,

c �
l l2 − k4( 􏼁

k2 ,

d �
k4 − 3l2

3αk
,

R �
− 4 a1a

∗
1( 􏼁

3

a1a
∗
2 − a2a

∗
1( 􏼁

2,

(33)

where the parameters a1, a2, and k need to satisfy the nonzero
constraint conditions:

k≠ 0, a1a
∗
2 − a2a

∗
1 ≠ 0. (34)

As can be seen from the hybrid solution (30), it consists of
three parts, i.e., two polynomial functions and an exponential
function, corresponding to the lump-type wave and kink wave
solutions. Hence, this solution describes a kind of interaction
between a lump-type wave and a kinkwave. Figure 3 shows the
interaction phenomenon between a lump-type wave and a
kink wave in the (x, y) plane. When t is much less than zero,
i.e., far from the interaction region, the resulting interaction
solution describes a superposition of a kink wave and a lump-
type wave, (Figure 3(a)). ,e lump-type wave is located at the
asymptotic background u � 0 of the kink wave. However,
when the lump-type wave approaches to the kink wave, the
lump-type wave is gradually absorbed by the kink wave,
(Figures 3(b) and 3(c)). At the same time, a new lump-type
wave is emitted from the top of the kink wave. In particular,
when t � 0, this solution clearly displays a hybrid structure of
two lump-type waves and a kink wave, as presented in
Figure 3(c). When t> 0, with the development of time, the
lump-type wave at the bottom finally disappears in the kink
wave. ,e lump-type wave at the top is separated completely
from the kink wave, and it is located at another asymptotic
background u � k of the kink wave (Figures 3(d) and 3(e)). In
the process of interaction, the lump-type wave seems to ex-
change the energy by the absorption and emission of the kink
wave at the interaction instant. And in this way, the lump-type
wave can jump from one asymptotic state of the kink wave to
another asymptotic state. ,us, this interaction phenomenon
is called absorb-emit interaction of a lump-type wave and a
kink wave. Besides, from Figure 3, we can see that, when the
distance between the lump-type wave and the kink wave
increases, the interaction solution can be expressed as a sum of
two isolated lump-type wave and one kink wave solutions:

u(x, y, t) �
ul(x, y, t) + uk(x, y, t),

ur(x, y, t) + uk(x, y, t),
􏼨 (35)

y
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0

(b)

Figure 2: (Color online) Contour of symmetrical lump-type wave solution at t � 0 (a) and its cross-sectional plot at |x| � 1 (b). ,e
parameters are selected with a1 � 1 + i, a2 � − 1 + i, α � 1, and s � 0.
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where

ul(x, y, t) � ln X
H

AX + R􏼐 􏼑􏼐 􏼑
x
,

ur(x, y, t) � ln Y
H

BY + R􏼐 􏼑􏼐 􏼑
x
,

(36)

are two single lump-type waves and uk is a kink wave given
by (29). Indeed, ul(x, y, t) and ur(x, y, t) display the lump-
type waves before and after the interaction, and they are the
same lump-type wave except for a phase shift. ,is implies

that the interaction between a lump-type wave and a kink wave
yields a lump-type wave with phase shift. ,e kink wave re-
mains the initial propagation trajectory and has no phase shift.
Furthermore, using the asymptotic behaviors of kink wave, we
also note that in terms of the interaction solution, we have the
following asymptotic behaviors for t⟶ ±∞ with c< 0

u(x, y, t)⟶
ul(x, y, t) + k, as t⟶ +∞,

ur(x, y, t), as t⟶ − ∞.
􏼨 (37)
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Figure 3: (Color online) Absorb-emit interaction between a lump-type wave and a kink wave. ,e parameters are selected with
a1 � 1 + 1 � 1.2i, a2 � 1.5 − i, α � 1, k � 1.25, l � 0.3, and s � 0. (a) t� − 60; (b) t� − 30; (c) t� − 20; (d) t� 0; (e) t� 40.
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,e asymptotic behaviors show that when |t|⟶∞, the
interaction solution represents only a lump-type wave so-
lution which is located at the asymptotic background of the
kink wave.

In short, as can be seen from the above analysis and
graphical representations, the interaction solution given by
(30) can be regarded as a lump-type wave which propagates
on the kink wave background. On the kink wave back-
ground, the lump-type wave can move from one asymptotic
state to another asymptotic state (Figure 3). In [36, 37], the
interaction between a kink solitary wave solution and a
lump-type wave solution was investigated. However, the
obtained results showed that when the lump-type wave
solution collided with the kink solitary wave, the lump-type
wave solution was completely absorbed or emitted by the
kink solitary wave. ,e lump-type wave cannot jump from
one asymptotic state of the kink wave to another asymptotic
state.

4. Conclusion

By using the Hermitian quadratic form, we have derived the
lump-type waves of the BKP equation (,eorem 1 and
Corollaries 1 and 2). ,e dynamical behavior and sym-
metrical property of the lump-type wave solution have been
investigated and displayed analytically and graphically
(Figures 1 and 2). We also showed that this lump-type wave
solution propagates along the straight line given by (24) on
the constant background wave. Furthermore, we have dis-
cussed the interaction solution of a lump-type wave and kink
wave solutions (,eorem 2). Absorb-emit interaction be-
tween a lump-type wave and a kink wave has been dem-
onstrated (Figure 3). Indeed, Figure 3 has also shown that
the lump-type wave can move from one asymptotic state of
the kink wave to another asymptotic state. ,us, this kind of
interaction solution can be regarded as a lump-type wave
which propagates on the kink wave background.
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